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A series of identities involving even-subscripted Fibonacci numbers and binomial coeffi-
cients are derived in this paper by means of a sequence of special 2 x 2 matrices. We begin
with the simplest case.

3 1
Let R = ) and the characteristic equation, of course, is 22 -3z +1 = 0, which is
-1 0 :
related to the recursion formula for the alternate Fibonacci numbers. By induction, one can
easily establish that, for all integers n,

R" _ F2n+2 FZn
'F2n 'FZn-Z

2 1
and, if the auxiliary matrix S = ( ), then
-1 -1
n Fones Fonsr
RS = s
'F2n+1 'FZn-l

where F, is the nth Fibonacci number defined by F,,, = F, + F,_;, F; = F, = 1. Since R satis-
fies its own characteristic equation, R2 - 3R+ 1 =0o0r (R+ I)? = 57, which leads to

(1) R™(F + I)?" = 5"R™*™,

(2) R™R + I)®"S = 5"R"*"S,

(3) RM(R + I)2n+1 = San-o-M(R + I),

(4) R™(R + I)*"*15 = 5"R"*™(R + I)S.

We use the binomial theorem to rewrite equation (1) and equate elements in the upper
right from equations (1) and (2), which gives us

2n

Z (27:1)1?;“"" = San+m’

k=0
2n 2
n
an ; (k>F2k+2m = 5"F pi2ms
=0
pi om
2" Z(k>F2k+2m+1 = 5 Fonsomer-
k=0

Similarly, from equations (3) and (4), we can obtain

2n+1
2n + 1
(3') kZ:o ( k >F2k+2m = 5n(l'-'z»+2m+2 + F2n+2m) = 5nL2n+2m+1’
2n+1 om + 1
n
(4" E( k >F2k+2m+1 = Sn(F2n+2m+3 + F2n+2m+1) = 5nL2n+2m+2’
k=0

where L, is the nth Lucas number defined by L,,, =L, + L,_;5 L, =1, L, = 3.

The equations above can be simplified still further. Equations (1') and (2') can be com-
bined by letting p = 2m in (1') and p = 2m + 1 in (2'), and noting that p takes on any integral
value, we write, finally,
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2n m
n
E (k)F2k+p =3 F2n+p'

k=0
Similarly, equations (3') and (4') can be combined into the single identity
zil 2n + 1 F = 5",
£ k 2k+p 2n+14p°
-0

As an interesting special case, let p = -(2n + 1) in the above equation, and use the

replacement n - k for k, yielding

2n+1 |

n
2n + 1 ’ 2n +1 :
Z ( % )sz-(2n+1) = 2{*2: (rz - k)FZk-l} =5"L,
=0

k=0
n
2n+ 1
Z (n - k)FZk-l = 5"

k=0

or

a result given by S. G. Guba in [2].

Returning to the characteristic polynomial of R, since R* - 3R + I =0, (R - ? =R,

which leads to

(5) R"(R - I)?" = R"*",
(6) R™(R - I)?"S = R"*"s,
(7) R™R - I)?"*! = R"™R - I),
(8) E™(F - )?"*15 = R"*™R - D)S.

Proceeding as before and equating elements in the upper right for the four matrix equatioms

above, we have

n
k(2n
(5') Z(—I) <"K)F2k+2m = F2n+2m’
k=0
& 2n
6" Z(—l)k<k>sz+2m+1 = Fonsams1s
k=0
2n+1 o + 1
k+1(<n . = =
(7') kz: (—l) * ( k >F2k+2m - (F2n+2m+2 - F2n+2m) - F2n+2m+l’
=0
S m o+ 1
p? "
(8') Z (-1)K+l< k )F2k+2m+1 = (F2n+2m+3 - F2n+2m+1) = F2n+2m+2'
k=0

Again, equations (5') and (6') can be combined by taking p = 2m in (5') and p = 2m + 1 in

(6'), and letting p be any integer in the resulting identity,
2n
k([ 2n -
Z ("1) (k >F2k+p - F2n+p'
k=0

Similarly, combining (7') and (8')_1eads to

2n+1

2
2: k+1{2n + 1 =
(-1) ( % >F2k+p - F2n+1+p'
k=0

The two identities above can be streamlined even more by taking ¢ = 27 in the first and

g =2n + 1 in the second, leading to

q
Z (‘1)k+q(g) sz+p = Fq+P’
k=0

which holds for all integers ¢ > 0 and for any integer p. The special case p = -g yields

q
Z ('1)k+1(Z>Fq—2k = 0.

k=0
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In order to distinguish between matrices in our sequence, let us call the R matrix just
developed R,. The next matrix of interest is

< 7 1)
R, = :
-10

The following matrix identities are easily established by mathematical induction. The proofs
are given in the general case so are here omitted for the sake of brevity. We exhibit, for

any integer n,
n Flm +4 F'-m - 3 0
RS, = for S, 5

0 3

RS,

for 5,

Frnes  Funur (5 1

—

-2

[y

"Fl&n+2 'th-z 1

n Z:'tm+7 Flm+3 1
RS, = for S5, =
-F

3 2

n Flm+6 Flm+2 8 1
R,S, for S5, = H

bn+3 _Flm-l 2 -1

Since R, must satisfy its characteristic equation, R? 7R+ I =0or (R-I)% = 5R, leading
to

(9) RM(R - I)Zn = San+n’

(10) R™R - I)#"*1 = 5"R"* ™R - I).

The binomial expansion of matrix equation (9) yields

2n

3% ot (T e srae

Jj=0

Multiplication on the right by the auxiliary matrix S, , chosen from the four listed above, and
then equating elements in the upper right yields

n

i[2n
(o) 2 0¥ (T rugemen = SFumemesr 8= 0 1, 2, 3.
i=0

On the other hand, equation (10) can be expanded as

2n+1 i 2% + 1 .
E (_1)J+1(-?’Zj )Rg+m= 5R(pmHn+L _ pmeny
i=o0

By appropriate S matrices, for s = 0, 1, 2, 3, we have

2n+1

j+1f2n + 1
Z (_1) ( J )Fh(j+M)+s = 5n(Fu(m+n+1)+s - Fu(m+n)+e)‘
j=0

But, the latter two terms can be fabtored, using identities given by I. D. Ruggles in [1]:
4 Foyp = Foop =L,F, 1if p is even (F,L, if p is odd),

(B) Byp tFy.p =F,L, if p is even (L,Fp if p is odd).

Here, applying identity (A), we get

F(u(m+n)+a+2)+2 - F(u(m+n)+a+2)-2 = Lu(m+n)+s+2F2-
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'

Thus, for s = 0, 1, 2, 3,

n+1

+1 2n + 1 _
(10" Z (- l)J ( J >F‘0(J+m)+l - 5nL4(m+n)+s+2'
J=0

Equations (9') and (10') can be written in a slightly simpler form by taking p = 4m + s.
Since there is no restriction on m, there is no restriction on the integer p in the two
resulting identities below:

- i (2n
-1)Y = 5"
Eo( 1) (j)Fw+p 5 Fw+p’
i=
n+1

+1 2n + 1 _en
2( DJ ( J )ij+p =5 L'm+2+P'
J=

Returning to the characteristic equation for R,, in a completely similar manner we can
obtain

(11) R™R + I)?" = 32"g"+7,
(12) R™R 4 I)2"+Y = 32"pn+m(p 4+ I).

Following the previous pattern of equating elements in the upper right in the matrix equations
obtained from the binomial expansions of (11) and (12) and multiplying by auxiliary matrices
S,, we are led eventually to

2n

2n _ a2 = .
<11’) Z (j)Fu(j+m)+a =3 nFu(n+m)+a’ s =0,1, 2 3;
S=Q
K on + 1
_ 2n
(12') Z( > W(j+m+e 3 (Fu(m.m-rl) + Fh(m+n)+a)
= 32+ 1ip s=0,1, 2, 3,

Y(m+n)+e+2?

where in (12') we applied identity (B). Again, let us write the equations above more compact-
ly, taking p = 4m + s and noting that no restrictions on m implies no restrictions on p, as

2n m )
— n
Z(j)F‘w‘w =3 F‘mw’

J=0

2n+1
< 27’1 + 1 - 327‘1+1F
- '*.7+P bn+2+p°

J=

Notice that, by taking g = 2n in the first and ¢ = 2n + 1 in the second, we may combine the
two identities above into the more general identity,

q
q - 4
Z (J'>F‘*3'+P 3 F2¢+P'

J=0
The special case p = -2g - 1 yields

q
z <§>F2q+1-bj = 3%,

J=0

and similar equations arise for the special cases p=-2g + 1 and p = -2g + 2.

In the above identities, the general elements of R were written in the form of a quo-
tient; that is, the element in the upper left of R, was th+u/3 While looking for a gen-
eral form using a sum of Lucas of Fibonacci numbers we are led by observation of the starting
values given to the following expression for the element 7, in the upper left of R::

r, = 7 = Lu,

r, = 48 =L + 1,

r, = 329=L12+LH,
r, = 2255 =1L +L, +1,

117



Py = 15456 = L,y + Ly, + L

12 LA

r, =

)T AN

[(n-1)/2] 0 if n 1is odd
W(n-25)

Jj=0 1 1f n is even,

where [x] is the greatest integer less than or equal to x. A proof can be made by mathematical
induction. Observe that the expression for r, holds for n = 1, 2, 3, 4, 5. Since R satis-
fies its own characteristic equation, R**! = JRX - Rk-1,  and the elements in the upper left of

these matrices must satisfy ry,, = 7r, - r,_,. Assume that the expression for », holds for all
n up through k. Then, if k is odd,

[(k-1)/2] [(k-2)/2]
Tear =7 Lyk-2p) - z Lyg-1-255p = 1
ji=0 i=0
[(k-2)/2]
= Z (7L|'(k_2.7) - L'#(k-l'zj)) + 7Ll‘. -1
J=0
[x/2}
= Z Lb(k+1-2j) +1,
Jji=0

where we noted that [k/2] = [(k - 1)/2], 7Lp -~ Lp-y4 = Lp+y, and 48 = L, + 1. Similarly, if k
is even, since [(k - 1)/2] = [(k - 2)/2] and 7 = L,,

[k -2)/2] (k/2]
Pry1 = Z (TLyx-25) = Duk-1-255) +7 = Z Lysr-25) -
Jj=0 i=0

Then, equating elements in the upper left for Rfk and Rik+1 gives us

k-1

Fyis1) = 32%(&-25) + 3,
Jj=0

x
Fugiez) = 32 Ducaks 1-25)°
i=o

From equation (9), (R - I)2" = 5"R". Considering the cases n = 2k and n = 2k + 1 and
equating elements in the upper left, one obtains

uk (4% k-1
2 (-l)"(j>Fw” =3. 5"(2 Lyk-25 t 1)’
j=0 J=0
bk +2 k
i f4k + 2
2 (‘1)"( j )Fumf 3.57 > Lu(zk+1—2.7‘)> .
i=0 =0

Similarly, from equation (11) with m = 0, we find

Lk

Lk + 2 ane1 [ R
Z ( g )Fuju = 37" < Dyak-259 1>
i=0 J=0

k
4k + 2
( J )Fuj+t+ = 32”1(2 L'-r(zk+1—2j)> .

J=0

bk +2
Jj=0
A third expression for R: was obtained with the element in the upper left given by
[n/2} I .
Z (_1).7< p J)LZ-Z‘?-
j=0
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A proof of the general case will follow, so we will proceed only to use the above form.
Equating elements in the upper left of R, leads to

[n/2]

lm+'4 =3 Z (- I)J( P )Ln ZJ

or, for the cases n = 2k and n = 2k + 1, in that order, to

2k - 2k 25
Z( 1)J( J) J ZL“m 25 * 1

Jg=0

k
+ 1 -
Z( 1)‘7 (27( 1 J)L2k+1 2‘7 ZLM(2k+l~2j)'

Jj=0 =0

Now, to exhibit the pattern in general, if

then
" 1 F(2n+2)k Fonx
RZk = F'—k- .
2 “Fonk 'F(zn-z)k
This result has already been observed for X = 1 and k = 2, and is easily established by induc-
tion. Notice that

Since it is well known that F,, = F,;L,,. We assume that R;k has the above form; then

1 Fan+k Dok = Fank Flan+2)k
PhR =L

k o
N\ Fomrlok + Fonooyx ~Fapy

But, by the ubiquitous identity (B),

Fonkvox+2 + Fopkeok-2k = Fonks 2xlok»

Fonkeork t Fopx-ok = FonxLoxs

so that the matrix above has the desired form for R""l. Thus, by mathematical induction, R;k
has the form prescribed above for all n > 0.
Observe that R™" is given by

P 1 _F(Zn—z)k 'ank _ 1 F(-2n+2)k F—an
F2k ank F(2n+2)k FZk ‘F-an "F(—zn-z)k
and direct multiplication yields
R <‘F<zn-z)z<F(zn+z)z< + 0 )
Fik 0 F%nk = Fon-rFans 2k
Since det(R,,) = 1, det(R;k) = 1", so that
F,?;\. - F(2n+2)kF(2n—z)k = Fzzk ’

and we see that R"R™" = I as well as exhibiting yet another identity arising from the prolific
matrices Rz,(. Also, since F_; = (_1)k+1Fk’

F F
0 ___];_ 2k 0 _
Ry, _F2k< =1T.
Fy “F_
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Hence, R;k has the form given above for all integral exponents 7.

The remaining piece of machinery needed is a general expression for the auxiliary S

matrices which will raise the subscripts of R;k. The matrix

Ss - <F2k+s Fé‘ )
~F, Fe.,

adds s to each subscript for elements of R;;, as seen by

TOMeen

1 < Fonks2kFoxss = FoniFe FonksakFs = F2nkfg-2k)

1}

R;kss
Foi
’ankF2k+s *t Fopx-2kFe “FonkFs t FopxoxFo- 2k

< F2nk+2k+s F2nk+8
’
“Fonk+s “Fonk-2k+ s
where the two matrices can be shown equal element by element. Each case can be demonstrated
by judicious use of the known formula

B Ey = FByFpyy = (_l)n-kaF

m+k-n*
Before leaving the matrix S,, it is interesting to notice that

& _ L8-1
8y = F3 'S

., and S, = F, VE,.

One more bit of information will allow us to give our most general results. The even-
subscripted Lucas numbers have the following curious properties:

L,, +2=1I2,
Ly, -2= 5F§n’
Lyper +2 = 5F%,,1s
Lynso = 2 = L5,yr-

We demonstrate the first. If a = (1 ++5)/2, B = (1 - V5)/2, then L, = ™ + 8". Thus,
Lgn = (szn + 8271)2 = a‘m + Blm + 2a2n82n = an + 2’

since af = -1. The other three can be proved just as neatly.
Now the characteristic equation of R,; gives us

Ry, = LyR, +I =0 or (Ry tI? = (I, t 2R,,

leading to the following by considering properties of even-subscripted Lucas numbers and
raising each equation to the nth power:

(15) Ry (R, + D" = ngﬁ;‘;’",

(16) Ry (Ry, + D21 = ngﬁfq*’"(ﬁ,,q + 1),

(17) Ry Ry = N = 5”F§;R:q*'",

(18) Ry (R, = D21 = 5"F§;R:q“"’<}?,,q - D,

(19) R:;+2(Ruq+2 + D = 5nF§;+1R:;¥Z’

(20) R:;+2(Ruq+2 + )t = 5nF§;+1R:;1Z(Ruq+2 + D,
(21) R:;+2(Ruq+2 - I)zn = L§Z+1R:;:2,

(22) Rqu+2(th+2 - Dt

L§Z+1R:q++m2 (Ruq+2 - D).
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For each equation above, we will write the binomial expansion, multiply by the auxiliary
matrix S,, and equate elements in the upper right, leading to the correspondingly numbered
equations below. For equations (15') through (18'), s = 0, 1, 2, ..., 4g - 1; and for equa-
tions (19') through (22'), s =0, 1, 2, ..., 4g + 1.

n
2n _ r2ng
(15") Z:o (J )F‘bq(j+m)+s- LZqF'dq(n+m)+s
i=
n+1 \
2n + 1 2
(16") : 0( J )qu(j+m)+s= Lz;(th(n+m+1)+s +F‘+q(n+m)+s)
i=
_ r2n+1
, a L2Z F“ﬂn+m)+2q+e
' ‘ i 2n 2
arh Z (“1)J<j )Floq(j+ m)+a 5nF2ZFﬁ+q(n+m)+s
J=0
T geafn 1
+ Ny2 ., -
(18" Z ('DJ ( J )FL.q(j+m)+s= 5 Fz; (qu(n+m +1)+8 _bkq(n+m)+a)
i=0
— neZn+l
. =5 Fz; Luq(n+m)+2q+e
n
n\ 152
(19") Z (j)F‘“wZ)(ﬂ m)+s " SFF?Z+1F(hq+2)(H+m)+e
i=0
, N (2n + 1\ npzn
(20") 3 (vg+2)(jtm)+s = D Frae1Flugeo)inem +1)+8 T Flugeo)nem+s)
im0 — rMo2n+lr
\ =0 Fog419(ug+2) (neme2; +14 8
n
if 2n ol T g
(217 Z (—I)V(J' >[(4q+2)(;-'+ my+s ‘-’ig-‘rlF(u: +2)(n+my+s
i=0
oAy m o+ 1
J+1 _ 72n -
(227) Z(—l) N ( J )F(uq+2)(j+m)+s - L2;+1(~F(L+q+2)(u+m +1)+a F('iq+2)(n+m)+3)
j=0

= 72n+ly
- LZq +1F(’—L7+2)(n+m)+2q +1l46

In each case, the proper Ruggles' identity (A) cor (B) was applied.

Equations (15') through (227) can be rewritten in more compact forms which better dis-
play their properties. In equatiomns (15') through (18') take p = 4gm + s and in equations
(19*) through (22') take p = (4g + 2)m + s. Notice that since there are no restrictiomns on
m and since s takes on any value from 0 through 4p - 1 or 4g + 1, respectively, p can be any
integer. In the combined identity below, notice that equation (15') is the case r = 2n and
(16’) the case r = 2n + 1:

r
r _ r
(23) Z(j)F(Zq)(Z.ij = LogFagray

i=o

Equations (17') and (19'), respectively, lead to

2n

- 2n _ ghp2n .
;3 (—I)J<,j >F(2q)(2.7')+ e = 2 o Fagen + po
£

2n
2n _ chnn2n
2: ( )ﬁ&;+n&ﬂ+p - 55}q+1puq+1xh)+p’

3
J=0 VY
which can be combined into the more general identity

2n

(+ 2n _ efnp2
Eo(—l)ﬂ( *1><j )Fzmp = S"EPE, -
£

Similarly, equations (18') and (20’) can be condensed to the identity
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m+1l

i 2n + 1
JZ:O(']-)("-FI)“*I)( J )Fth+p=5"F2n+1L(2"+1)t*P’

which becomes (18') when ¢t = 2q and (20') when t = 2 + 1.
Equations (21') and (22') lead to

r
ifr
(24) ;:o (-l)r+J(j)F(2q+l)(2j)+p = L;q+1F(2q+1)r+p’

which is (21') when r» = 2n and (22') when f =2n+1.
Finally, equations (23) and (24) taken together provide

r

(reg)tfr _
}:;J(—l) J <J,>Fmﬂ, = L Fepypo
=

which is (23) when t = 2q and (24) when t = 2q + 1.
Returning to the matrix Rj, , the element in its upper left can be shown to be

[n/2]}

r, = 2: (-l)j(n 3 j)LZQZJ,

j=0

which form readily becomes apparent by computing the first few powers of R, . Notice that the
binomial coefficients used appear on rising diagonals of Pascal's triangle. A proof by mathe-
matical induction is outlined below. First, if n = 1, the expression becomes L,;, the element
in the upper left of R,;, and if n = 0, we find r, = 1, the element in the upper left of

ng= I. From the characteristic equation of R,;, the elements r,,,, 7, and r,_; must satisfy

Tpiy = LZkr’P - Ty Assume that r, and rp_oq have the form given above. Then,

[p/2} (D - 0 [(p-1)/2] ifp-1-4 1-24
e PN P DI G K P
i=0 j=0
[p/2] s ) [ ry)/2] . -5 ;
- 2 (P e SO (A e
) J in gt
[(p+1)/2]

ifp+1-4J 1-25
('l)J (p j )LZ: 7

j=0

by the recursion relation for binomial coefficients and by carefully considering the end
terms. Since r,,; has the prescribed form whenever r, and T,y do, r, has the form given
above for all integers n > O.

Equating elements in the upper left for the matrix R;; yields

[n/2] .
- .
(25) Fox Z (_1).7< J J>L;k2‘7 = F(ns1)okr

| i=o |
Using equations (15), (17), (19), and (21) with m = 0 and equating elements in the upper
left,

2 [k/2] (n/2]

" S 2n\(k - j k-2 _ 2 i (n - j n-24
5% DD <'1)J<k)( j )th Te1 2 ('W( J )Lup "
k=0 ;=0 i=0
A k(20N (K = 7\ k-2 A n-j
a2 - -27 _ ghnp2n i - n-24
ar 3 2 o) P - ey g e (7 e,
- J= . J=
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NS )

2n [k/2) [n/2]

2n\(k - n i(n -
(19 kz:o 2) (= I)J( )( J)Lipiaz =5 ng*’l 'Zo (—I)J( J )Lﬁpi%’
-0 j= -
2n  [k/2) ) Ay n/2] "
+ - k-2; j -
an 3 3 e (@) - i, e (P
- J= Jj=0

Returning to the first expression given for R;k , in which the element in the upper
right is F,,; /F,x» a second proof can be given which utilizes Chebyshev polynomials. A
special group of Chebyshev. polynomials of the second kind are defined here by u,(}) =

u, (A) =1, u, ., (A = 22, () - u,_.;(A). [Commonly, the starting values of the same series

are taken as uy(A) =1, u,(A) = 2X.] Consider the known relationship:

— = > U,z
1 -2\ + 22 n=0

However, as with H. W. Gould [3], for a = (1 + /5)/2, B = (1 - /5)/2, we have, by sum-

ming the geometric series,

© ©

1 2kn_.n
- p="rz”,
1 - a2kx 1 - BZk "E r;)
which can be rewritten on both sides to yield
(@ - g%z -3 (a2kn — g2knygn

1 - (%% + 8%)z + (aB)**x?  n=0

Since aB = -1, o™ + B" = L,, and (0" - B™)/(a - B) =

z _o (e - g2y /(e = B o Fank

1 - Ly + 2% neo (@?* - B%*)/(a - B) ne=0 Fai

for k # 0. But, we also have, when X = L,, /2,
-————x—— = Z un (sz /2).’8”,
1 - Lyx+ax? ne=o

which implies that u,(L, /2) = F, /Fp» k # O.

Similar results are obtainable for the Fibonacci polynomials defined by f,(A) =0
L0 =1, £,,, QA = £, A + f,_, (1), which lead to

x
—_—= f()\)x
1 - Ax - z2 nz-:
and

Fy Cogar) = F(Zk;i-l)n/sz-fl'
A matrix having a Chebyshev polynomial as its characteristic polynomial is
. =(2>\ 1>’ o < U, N u, (1) >’
-1 0 =u, (A) U, _, (A)

while for the Fibonacci polynomials such a matrix is

<x 1) <fn+1(>\) Fn V) >
F = , F'= .
1 0 7, Fuo1 )

[Notice that, when A =1, ) =F,.1]



By substituting A = sz/Z in the above matrix R, we obtain

1 I}Zn+2)k F

R, =—
2% T F .
2k \ =F ~F(an- 2)k

2nk

Also, substituting A = sz/2 into up+1(A) = 2Au,(A) - u,_,(A) yields the expression for the
general element in the upper left of R;k as given in equation (25).
Since we could also show that

[n/2] ” ;
Frs1@oxsq) = 2: ( g )L;£fi

Jj=0

by substituting A = L,, , into the recursion formula for the Fibonacci polynomials, and since
also f,, 1T, 1) = Foxa1yn+1)/Faxs1» We can generalize equation (25) to the following:

[n/2] .
. n - - .
F(n+1)p/Fp = 2 (-1).7(p+1)( p J)L’; 25 p #0,

j=0
which was a problem posed by H. H. Fern [4].
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ANTIMAGIC PENTAGRAMS WITH LINE SUMS IN ARITHMETIC PROGRESSION, A =3

CHARLES W. TRIGG
2404 Loring Street, San Diego, CA 92109

A pentagram or five-pointed star can be formed by extending the sides of a regular
pentagon until they meet. - This figure consists of five equal line segments that form a
closed path. Each line intersects every other line, so that there are four intersections
or vertices on each line, and two lines at each vertex.

A magic pentagram is formed by distributing ten elements on the vertices of a pentagram
in such a way that the sum of the four elements (quartet) on one line equals each of the
other four line sums. It has been shown [l1, 2, 3, 4, 5] that no magic pentagram can be
formed with the first ten positive integers.

An antimagic pentagram is ome with five different line sums. Those formable with the
first ten positive integers are formidably numerous. We restrict our search to those with
five line sums in arithmetic progression and a common difference, A = 3. 1In the sum of the

five line sums, each element appears twice, so 5[2a + 4(3)]/2 = 2(55). Hence, the progression

must be 16, 19, 22, 25, and 28.

The partitions of the five terms of this progression into four elements each < 11 are
exhibited in Table 1. To make the table compact, 10 is recorded as X. Designate any quartet
with a sum of x as an x-quartet. For the purposes of this discussion, two integers are said
to be complementary if their sum is 11. Two quartets are complementary and two pentagrams
are complementary if their corresponding elements are complementary.

To construct an antimagic pentagram, we start with the l6-quartet (1, 2, X) and seek
a 19-quartet with which it has exactly one element in common, such as (3 7, 4 5) A 22-
quartet with exactly one element in common with each of these is (2, 5, 6 9) A 25-quartet
with exactly one element in common with each of these three quartets is (1, 7 8, 9). The
unduplicated elements, which are not underscored, in these four quartets form the 28—quartet
(4, 6, 8, X). These five quartets can be distributed on the vertices of a pentagram with
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