116027 10457 119057 7187 122117 3677 125687
18917 113147 13457 118757 7727 124277 38747
114197 12227 119657 6947 125207 47297 89237
14867 118037 8387 124427 43457 89417 34337

77867 48197 79907 47207 83207 35267 92507
119087 72977 61967 79757 37967 92867 27107
68687 46457 77267 41897 89087 29027 103067
53507 45737 45887 84857 32237 98867 23417
73517 45557 108677 36767 94727 23327 103997
73907 44987 33647 90107 25847 103577 19727
52127 81707 93047 31727 101957 5477 107057
75377 82217 22307 95027 20147 108587 17117
25097 82847 104597 26927 106637 14057 109847
80447 42197 13757 101267 14657 112757 14387

67187 98717 113417 20357 123737 9767 123677
7547 53087 5657 106307 9137 117167 11807
48767 78437 62987 15287 117797 5987 115547
111767 8597 118247 47837 3767 120917 7607
12437 114407 6977 119687 46817 1787 120587
107717 13487 113177 7877 118907 62597 5147
10607 116177 7577 119447 4517 122957 39047

FIGURE lc. Right-Hand Third of Square
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SOME EXTENSIONS OF PROPERTIES OF THE SEQUENCE OF FIBONACCI POLYNOMIALS

JOHN R. HOWELL
Hill Junior College, Hillsboro, Texas

Sequences of functiomns, (g,), that satisfy the recursion formula
(1) Gper @) = azg, ., (x) + bg, (x)

where @ and b are constants, inherit many of the properties of the sequence of Fibonacci poly-
nomials [1]. This paper is intended to present some of these extensionms.

1. BASIC DEFINITIONS AND PROPERTIES

Suppose that a and b are numbers. Let R denote the set of real numbers and C denote the
set of complex numbers.

Deginition 1: If VCR, Se,p (V) = {{g,>|. For each natural number p,g,:V - C and
gp+2(x) = axgp+1(x) + bg, (x) for each x e V}.

, € V,, it is easy to verify that if <{g,> € 8 1)(V,), the corresponding sequence of
restrlctions is an element of §(4 ) (V,).

Theorem 1: 1If (g,> and <hn) are members of 8¢ ;) (V) and s:V > C and t:V + C, then
{8g, * thnd> € 8(4,1)(V). The proof for Theorem 1 is a straightforward computation.

Theorem 2: 1If {<g,>, <hnd} C Sa,m(V), then (g,> = <hn> if and only if g, = h, and g, = h,.
The proof of one of the implications of Theorem 2 is an application of the definition of
equality of sequences. The other implication is an easy induction proof.
The elements of S, ,(V) share a common summation formula.

Theorem 3: Suppose that for each natural number p, gpiV > C. {gnY € S(a,»(V) if and only if
for each natural number p,

D
(e +b - 1) g, &) = g,,, @ +bg, (@ + (& - Vg, () - g,).
j=1

Proof: 1If {gn> € S(q,»(V), the summation formula can be proved by a simple inductive argu-
ment. If {(g,)> is a sequence of complex-valued functions on V with the given summation for-
mula, then for each natural number p, the identity

p+1 P
(ax + b - 1)gp+1(x) = (ax+ b - l)[Zgj (x) - Zgj (x)]

Jj=1 i=1
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can be transformed into the equation axgp+1(x) = gp+2(x) - bgp(x) and thus
{gn> € Sa,py(V).

One element of §(; 3)(R) seems to correspond to the sequence of Fibonacci polynomials.
Deginition 2: Let Wa,py = <wn)> be the element of Q(aJn(R) defined by w,(x) = 1 and
w, () = ax.

W(a,p) 1s well defined as a consequence of Theorem 2. W(,1), for example, is the
sequence of Fibonacci polynomials. If ¢ # 0 and b # 0, M. N. S. Swamy's formula [2] for the
Fibonacci polynomials can be modified to give the following formula:

e . N
wp(x) = Z (p j o)(ax)p - JbJ'
i=0
The importance of Wa,py 1s illustrated by the following theorem, which can easily be proved
by induction. :

Theonem 4: Suppose V C F and that {(g,) is a sequence of complex-valued functioms on V.
<G> € Sa.p,(V) if and only if Gp+2 = bg W, + g,wp 4 for each natural number p.
2. THE BINET FORMS FOR chb)

2,2 2 2
Definition 3: Let A(z) = &L a2x + 4D d B(z) =ax‘”12x + 4b

Theonem 5: <1, A, A%, A*, ...> and <1, B, B?, B%, ...)> are elements of G, 4 (R).
Proof: A%(x) = axA(x) + b and B*(x) = axB(zx) + b. Using these two facts,
AP U z) = 4% (2)AP(x) = axd(z)AP(x) + bAP(x) = axdAPi(z) + AP (x)

]

and

BP*%z) = B*(z)BP(z) = axB(z)BP(x) + bBP(x) = axBP*Xz) + bBP(x).

]

Theohem 6: For each natural number p, (4 - Bwp = AP - B®.

Proof: For each natural number ps let hp = (4 - B)mp and gp = AP - BP. As a consequence of
Theorem 1 and Theorem 5, ®

{<hn> * <gn>} c g(a,b)'
By direct computation, h, = g, and h, = g,. By Theorem 2, {g,> = <{h,> and the result
follows by equating corresponding terms.

3. MATRIX GENERATORS

Let @ = (Zx é)

Theonem 7: 1If {g,” € Q(ifzy then for each natural number p,

<9p+2 gp+1> - g3 92>Qp-1
gp+1 gp g2 gl

Theorem 7 can be proved with a simple induction argument. Using Theorem 7, many iden-
tities analogous to familiar identities for the sequence of Fibonacci polynomials can be shown
by standard methods. For example, the following statement is a result of computing the deter-
minants of the matrices in Theorem 7.

Conollany: If e 8 M and p is a natural number,
Lorokcarny In (a,b) I
-1
Gpasbp = Gpe1 = D g g, - gD
For the sequence W ;), the identity in the corollary above reduces to
Wy 4oWp — Wiy = -(-b)F.

If Theorem 7 is specialized to W, py and the result simplified, the following corollary
results. ’

Conollary: TFor each natural number p, )
1 0 wp+z Wp +1 _ Qp+1
0 b w w *
p+l p
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Theorem §: 1If p and g are natural numbers, W,,o,; = Wp+1 * Wg+1 + Dwp * wq.

Proof: When QP*" is computed directly using the corollary above, Wp4q+1 1s the first row,
first column entry. When QF and @9 are computed using the corollary above, and the results
multiplied, the first row, first column entry of QP « Q9 is Wp41 * Wg+1 t bwp + wg.

X InXplo

Conoflany: 1If m, n, and j are natural numbers and n > j, then

Upap+1 = Unyjailn-j+1+ Dy 45wy e

This corollary can be proved by simply letting p =m + J and q = n - j in Theorem 8.
Theorem 8 may be used to prove another generalization of itself.

e T

Conollarny: 1I1f {u, v, p} is a set of natural numbers,
2
Uy 4+pWy +p ~ (-b) ww, = Wy gy +p*

Phooﬁ: The proof is by induction on p. If p = 1, the corollary reduces to Theorem 8.
Suppose that k is a natural number such that w, W, 4+x - (=D w,w, = W W), 4y 4 ke

Wy +k+1Wo +k+1 ~ D)y rwuw, = Wy +v+2k 41 = PV 13 Wy 41) = (-b)Y**lww,
Wytv+2k+1 ~ b(wu+kwv+k - ('b)kwuwv)

= Wy 4p+2k+1 " POy sy 4k

=Wy eka1Wrer T PO by sk T D0y 4y 4
= W1 ak41e

This corollary can be rearranged to give the following identity, analogous to one pre-
viously published for the sequence of Fibonacci numbers [3].

wu+p

L4, DIVISIBILITY PROPERTIES OF Wa,b)

, _ p
Wysp = Wpllp+u+p = (-b) w,w, .

If b =0, Wap =<@)" "D, Ifa=0, Fap =<1, 0, b, 0, b?, ...>. Divisibility
properties for each of these types of sequences are easily studied as separate cases. As a
result, throughout the remainder of Section 4, ¢ and b will be assumed to be nonzero numbers.

Theorem 9: 1If p and g are natural numbers, wp|wp, .
This theorem can be proved by induction, using Theorem 8 and writing

Upk+1) = Wkp-1) tp+ 1
in the induction step. The converse of Theorem 9 relies on Theorem 9 and a sequence of
lemmas.

Lemma 1: 1If p is a natural number and p > 1 and U is a polynomial that divides both w, and
W, 41, then Ulwp .

Proof: Suppose S and T are polynomials and wp = U + S and wp4y = U » Tt
w1 (x) = (/D) (V@) (T(2) - axS(x)).

Lemma 2: 1If U is a polynomial and there exists a natural number p such that U|wp and U|wp+1,
then U has degree 0.

Proog: If p = 1, U[w1 and the conclusion follows from the fact that w; = 1. If p > 1,
Lemma 1 may be applied repeatedly to show that U[wl.

Lemma 3: If {n, p, g, r} is a set of natural numbers and p >'1 and ¢ = np + r and wp}wq,

then w;|w,.
P&ooé: Since p » 1, np =1 >0, g = (np - 1) + » + 1, and so by Theorem 8,

Vg = Wpp * Wrpsy t bwnp-l t Wpe
By hypothesis, wplwq, and by Theorem 9, wplwnp and hence wplwnpmr+1. Thus, wplbwnp_lw,.
The greatest common divisor of wpp and Wnp -1 is a constant (Lemma 2), and so the greatest
common divisor of w, and wy,-; 1s a constant. Therefore, wplwp.
Thechem 10: 1f p and ¢ are natural numbers and w;lwq, then p|q.

P&OCQ: If p = 1, the conclusion is obvious. Suppose p > 1. g > p, so there exists a pair
of nonnegative integers, n and r, such that g =np + r and 0 < r <p. r =0 since, if r > 0,
Lemma 3 establishes that w,|w,, which is a contradiction, since r < p.
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A DIVISIBILITY PROPERTY OF BINOMIAL COEFFICIENTS

CARL S. WEISMAN
University of Rochester, Rochester, New York

Let p be a prime number. Let the integers a,, be defined by the identity

py\ - Y
(n) ;a’”‘(z)'
The purpose of this note is to prove that the exponent to which p divides g,, is at least

L-Mn-0/p-1.
Let Y be a set with y elements. Let Y,, ..., Y, be disjoint sets, each equipped with

a fixed bijection to Y. We wish to count the subsets N of Y, U :++ U Y, having exactly 7
elements. For such a setset N, denote by VN; the image of N N Y; in Y.
If j is an m-tuple (Z,, ..., Z,) with 1 < ¢, <4, < +++ < ¢, < p, write © € supp J if

i = 1 for some k.

Let S; = {z e UN;|x € N; if and only if 7 € supp j}. The sets S} are pair-wise dis-
joint, and N = LJ{S Iz € supp j}. Moreover, it is easily seen that any change in the order
p-tuple (N, ..., NP) of subsets must change some S So producing the sets Ny, ..., N, is
the same as producing the sets S

Let [ = LJNl, and let & be 1ts cardinality. Let s" = LJS;; then S™ consists of the

d
points of L that correspond to exactly m points of N. 1If £, is the cardinality of s",

P
therefore, one has n = £ + :E: (m - 1)t,, and n/p < L < n.
m=2
We construct as follows. First select a subset L of Y with cardlnallty £ between n/p
and n. Then select 2 subset SP of L with cardinality tp at most (p - 1)"'(n - 2). Then
select a subset S "!of L - Sp with cardinality tp-; at most (p - 2)° 1(n -2 - (p - Ltp).

Continue in this way until 5% has been selected as a subset of L - SP .. - 8% with car-
dinality t, at most 2 '(n = & = (p - 1)tp - +++ - 3%,). Now select a subset 5% of
L - 8P~ ... - 5% with cardinality %, equal to
p
n-8 =) (m- Dt,.
m=3
Define S!' = L - SP - +.+. - $? with cardinality t,. Finally, select a partition of each s"

into (p) subsets S.
m J
The above procedure yields the following expression for (53):

Zl:(%)%:(t’;);l(gt;i) (R_tp_t'z“ _t3)(€)t’ (plfl)t"; ,

in which the numbers { and ¢, are constrained by the equalities and inequalities of the pre-
ceding paragraph. In this expression, each term in the coefficient of (%) includes a power

of p at least t; + -+ + t,.1= 2 - tp >4 - (p - 17 - 2).

Lot o)
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