(e) L, F7 - FZ+2r FZ 2r T 7L2r n- 2rF Fn+2r(F2+2r +L2rF Fn 2:')2

2r°n

(d) Ler: Ln+2r LZ 2r T 7L2an ernLn+2r(Ln+2r +L2anLn-2r)2

The proofs of 4(a) and 4(c) could serve as proof models for the remaining identities.

4(a): F!

7 _ 7 7 7
vors1 = LopiaFl = Flgnoy = o 1F) + Flugpiy = Fplgnn

I

- _ _ 7 7 _ 7
- (Fn+2r+1 Fn-zr-l) +Fn+2r+1 Fn-Zr-l

3 4
= 7F+2r+1Fn—2r-1 - 21F +2r+1F 2r+1 + 35F:+2r-1F3-2r+1 35Fn+2r+1F -2r-1
FG

2 5
+ 21Fn+ 2r+1Fn~2r-1 - 7Fn+2r+1 n-2r-1

3 2 2 3
+ 5Fn+2r+1Fn 2r-1 5Fn+2r+1Fn 2r-1

3r*

n+2r+l

F,

= TF, n-2r-1

5
n+2r+1Fn-2r-1(F+2r+1
5
+ 3Fn+2r+1Fn-2r-1 - Fn-Zr-l)

3 2 2
2Fn+2r+1Fn—2r -1 + 3Fn+21r-+1F 2r -1

N
- 2F, +2r+1Fn 2r -1 +F -2r- 1)

= TFsor+1Fn-or-1 Fnsopsr — Fruoon- 1)( n+2r+1

= 2 2
- 7Fn+2r+1F 2r - 1L2r+1F ( n+2r+1 Fn+2r+1Fn—2r—1 + Fy -2r- 1)

= 2
= Thop 1P ap 1B By +2r+1( n+2r+1 L2r+1F;F%-2r—1)

4(‘1): FZLZr F7+2r Fn7-2r = (FnLZx-)7 - Frz+2r - Frz-zr = (Fn+2r + Fn-2r)7 = Fn7+2r FZ 2r

5
= 7Fn—2an+2r(Fn+2r + 3Frl:+2an-2r + 5F, +2rF5 2r + 5Fn+2rFr? 2r + 3F +2r rl: 2r + Fn 2r)

= 7Fn-2an+2r(Fn+2r 21')( +2r + 2F3+2an-2r + 3Fr%+2rFr% 2r + 2Fn+2rF3 2r + F: 2r)

7Fn-2an+2rL2rF (F2+2r + F +2an-2r + F2 zr)2
= 7L2an-2rF Fn+2r(F3+2r + LZanFn—Zr)2

NOTE: On the assumption that Type I primitive units are given by

a + b/D\" —Ln+anD-
2 - 2 >
these sixteen generalized F-L identities are valid Type I identities.
REFERENCE
1. Problem H-112 (and its solution), proposed by Leonard Carlitz. The Fibonacei Quarterly 7
(1969).
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A CHARACTERIZATION OF THE PYTHAGOREAN TRIPLES

JOHN KONVALINA
The University of Nebraska at Omaha, Omaha, NE 68101

The Pythagorean triples are all the systems of positive integers x, y, 2 which satisfy
the "Pythagorean equation'
(1) z? + y? = 2%,

It is well known (see Uspensky and Heaslet [2]) that the Pythagorean triples can be char-
acterized by the formulas

(2) x=Mx? - s?), y=Mrs, z = Mx? + %),

where r and s are any two relatively prime numbers of different parity with r > s and M is an
arbitrary positive integer.
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In this note we characterize the Pythagorean triples that satisfy (1) in terms of the
integer k, where

(3) z=y+k
for some k > 1.

The case where Kk = 1 and thus 2 = y + 1 is also well known and a proof appears in Ore [1].
The solutions are characterized by the formulas

(4) x=2m+1l,y=2nn+1), z=m(n+1) +1

where n is any integer > 1. )
In order to generalize the result for all positive integers k, we observe that any
positive integer kX can be written in the form

(5) -k =p?g

where p and g are positive integers and ¢ = P,P, ... F, for distinct primes P;, P,, ..., F,.
Consequently, we have the following characterization.

Theorem: Let (x, y, 2) be a Pythagorean triple where z = y + k for k > 1. Then
(i) 4if k is odd and k = pzq, then for n > 1,

x = pg(2n + p)
y = 2ng(n + p)
z = 2ng(n + p) + k,

(ii) if % is even and k = 2p2q, then for n > 1,
x = 2pq(n + p)
y = nqg(n + 2p)
2z =ng(n + 2p) + k.

Proog: (i) Suppose k is odd, k = p?q and q = P.P, ... B, where P,, P,, ..., B, are distinct

odd primes. Then
22+ y?= (w+ k)2

implies
x? = 2yk + k®
or
x® = p*(2yq + p?q*).
Hence,

(6) z = P/2yq + p*q*.

2

Since x is an integer, 2yq + p?q® = t? for some integer t. Solving for y,

2 2.2
7 y =L - pa
<q
But y is positive, hence, ¢t = § + pq for some integer s > 1. Substituting ¢ into
(7) yields
(8) y = 88+ 2pq)

2q
Hence, s must be even, say s = 2w for some integer w > 1, and substituting into
(8) we have
(9) y = 22+ pg)
q
Since g is odd and a product of distinct primes, g must divide w, i.e., w = ng
for some integer n > 1. Substituting w into (9) yields the desired formula for

(10) y = 2ng(n + p),
and substituting (10) for y in (6) yields
x =pg(2n + p).

(ii) Suppose k is even, k = 2p2q and ¢ is a product of distinct primes. Then

x? = 4p2(yq + p2q?),
and
(n @ = plyg + p’q°.
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Again, yq + p?q® = t? for some integer t. Solving for y,

- ;/;2 - pZZZ
q

But y is positive, hence ¢ = s + pq for some integer s > 1. Substituting ¢

into (12) yields

(12) y

.

(13) y = sls + 2pq)
q -

Since q is a product of distinct primes, ¢ must divide s, i.e., s = ng for some
integer n > 1. Substituting s into (13) yields the desired formula for y,

(14) y = ng(n + 2p),
and substituting (14) for y in (11) yields
x = 2pg(n + p).
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ON PRIMITIVE WEIRD NUMBERS

SEPPO PAJUNEN
Tampere University of Technology, Tampere, Finland

1. INTRODUCTION

Let n be a positive integer. Denote by 0(n) the sum of divisors of n. It is called n
perfect if o(n) = 2n, abundant if o(n) > 2n, and deficient if o(n) < 2n. Further, n is defined
to be pseudoperfect if it is the sum of some of its proper divisors that all are distinct (d is
a proper divisor of n, if d/n and d < n).

An integer n is called weird if » is abundant but not pseudoperfect. It is primitive
abundant if it is abundant but all its proper divisors are deficient. If 7n is primitive abun-
dant but not pseudoperfect, it is called primitive weird.

It is not known [1] if there are infinitely many primitive weird numbers or any odd weird
numbers. A list of weird and primitive weird numbers not exceeding 10° is given in [1]. How-
ever, there is a misprint in [1] on page 618: instead of 539774 one should read 539744.

In this note we let n specially be of the form

N n=2%q (@a>1,p<gq,p and g odd primes),
and give necessary and sufficient conditions under which n is primitive weird.

know this cannot be found in the literature. As an application, we list some primitive weird

numbers exceeding 106,
Throughout this note, let p and g be odd primes and p < q.
We use the following notations:

S=Za:2\’=2°‘*1—1, st=3 2
v=0

)

As far as we

(the sum being taken over some of the indices V);

_<- 20+1 - 1);

In
3

5, =3 2% =@ - 1p, 55=5,-m (0

= (29%1 - 1)g, S} =5,-ng (0<n<2% - 1)

A
n
™
"
Q

|

= (2% - 1)pgs Spq = Spg - kpg (0 Sk £ 2% - 1),

9!
T
Q
]
N,
<
s
Q
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