2n-1
Identity 7: 92(_1)kﬂh+lHk+2Hk+ka+5 = Hppes = SHyey = LiHlguey + Hipyy + 3€ + D,
4 0
where D = q(4p® + 6p’q + 4pg® + q°).

The proof of Identities 1-7 follow along the same lines as in [1], hence the details are

omitted here.
Some more identities that are easily verifiable by induction follow:

n

(a) 22.;(-1)"11,"”,, = DBy amer * Hnoy m=2,3, ...3
n

(®) 3D D Hpaur = (D Hppynyy + Hnoy me=2, 3, o3
4 . _

n
(c) 112(-1)’";1“5, (~1)" SHpysnsy + 2Hnys,) + bHy = SHn_1  m=1,2, ...;

n
2
(@) 4z°:HkH2k+1 + 2Hy = Hy, o 3Hy + Hyy By

n

(e) 3;('1)'”['1:1*-21’ = ('1)nHm+2nHm+2n+2 + HyHy o) m=2, 3, ...3
n

£) 7:;:(-1)”Hﬁ+“, = 1By By * Enlny m=4h, 5, ...

n
(8) zzg:Hk+2Hi+1 = Hyyallyyolner - HyH\Hyg
2t n
W) 23 CDTEEL = (D Bl - BolEys

n
(1) ZZ:(-l)rH3+1 = (-1 (Hr12+1Hn+lo = HuHp 4ol 43) - E,

where E = p® - 3pg? - ¢°.
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DIVISIBILITY PROPERTIES OF A GENERALIZED FIBONACCI SEQUENCE

H. V. KRISHNA
Manipal Institute of Technology, Manipal, South India

This note gives some divisitility properties of the generalized Fibonacci numbers viz
Hy=gq, H = p, Hys1 = DHy, + cHay (0 2 1), denoted henceforth by (p, o, D q) GF sequence.
The results have similarity to those of Dov Jarden [1].

For the Horadam generalized Fibonacci sequence: H, = ¢, H, = p, H,y,; = H, t H,_,

(n > 1), we have

Theonem 1: H_,, + (-1) H,_ is divisible by # for all n > k.
Pnooﬁ: The proof easily follows from the identity

(1) Hpsx + (C1)*H, 4 = L,H,-
Conollary a: HZ,, + (-1)2**'p2_. is divisible by H,; and

Corollary b: H: . + (-1)%**?p3_, is divisible by #,.
Divisibility properties of (b, ¢, p, g) GF sequence.
Theorem 2: 1f (myn) = 1 and q = 0, H,H,/H,,.

Proof: Hn = (gr* - hs™)/(r - s) and H,, = (gr"" ~ hs"")/(r - s), where r and s are the
roots of x> ~bxr -c=0and g =p - sq and h = p - rq.
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It is easily seen that H, or H, divides H,, if g = h. Since r s leads to the degen-

erate case, we must have g = 0. Also, it is necessary that (m,n) = 1.
Theorem 3: 1If p? - bpg - eq® = 0, then H,H,/Hp, .
Proog: By the identity

(2) HY = Hypy B,y = (=)' e,

[

where e
Theorem 4: For p = eq(1 - b)/(b*> + ¢+ 1 - b), if ¢ = (-1 - b)(1 + 2¢), then H,H,/H,,.

It is known from [2] that H, = pU, + cqU,.,, where the nth member of the U sequence is
defined by U, = 0, U; = 1, and Un4; = BUpyy + U, (n > 0).

On suitably combining this relation with
3) 2(pUs + cqUp_1) = (pUns1 + cqUn) + (pUn_y + cqUn_2),

it is easy to see that (b, ¢, p, q) GF sequence results in an A.P. Therefore, if H,H, were
to divide H,,, we would get

p2 - bpg - cqz, the desired result follows.

e? = (1 -Db)(1 + 20).

Further equating the initial term of the A.P. with the common difference, we get either
e=0o0r p(* + ¢+ 1-Db) =cq(l -n).

The case ¢ = 0 is already discussed in Theorem 3; hence, the other condition gives the
desired result of divisibility.
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PYTHAGOREAN PENTIDS

H. V. KRISHNA
Manipal Institute of Technology, Manipal, South India

1. INTRODUCTION

Let T, = n(n + 1)/2 denote the nth triangular number. Then we have
(1.1) (Ty)2 + (T, + )2+ Ty + )2+ o0 + (T,, + 1)

=(T2r+r+l)2+(Tér+r+2)2+-..+(TZT+2r)2
and .
(1.2) (T, + 9% + (Ty, + 1+ 12K)2 + «ov + (T,, + 1 + 12k)2

= (T, +r+ 141207+ (T,, + 7+ 2+ 12k)% + -+ + (T, + 2r + 15k)%,

2r

1, 2, 3, ...; k=1, 2, 3,

This gives a generalized identity of squares of numbers with r + 1 terms on the left-hand
side and »r terms on the right-hand side. But the triangular numbers are a particular case
of the generalized Tribonacci sequence having a recurrence relation

(1.3) Xpy3 = 3Xn4y - 3Xps1 + X,, 7> 0, with X, = 0, X, = 1, and X, = 3.

r

Therefore, the properties of the generalized Tribonacci sequence are also properties of the
triangular numbers.

The case » = 1 in equation (1.1) gives the well-known Pythagorean triad (3, 4, 5).
For r» = 2, we have the Pythagorean pentid (10, 11, 12, 13, 14). Pythagorean triads have
been studied by various authors, particularly by Teigen and Hadwin [6] and by Shannon and
Horadam [5]. The object of this note is to extend the results of the above-mentioned
authors to the Pythagorean pentids. Similar extensions are also possible for the general
Pythagorean n-tids of (1.1).
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