syringe of the 'tuberculin" type, which contains one milliliter (formerly styled 'cubic
centimeter") and is calibrated at hundredths, 0.01, 0.02, ..., 0.99, 1.00 ml. The first
five injections were administered one every seven days beginning later November through
December. The first five amounts measured were 0.08, 0.13, 0.21, 0.34, and 0.55. The
greatest and least increments between any of these doses were 62.5 percent and
61.5385... percent. Q.E.D.

For another patient, a sequence of dosages growing stronger at a rate of approximately
27 percent might be appropriate. Such a sequence could be given using two solutions, A and
B, with B approximately 27 percent stronger than A and alternating the dosages between the
solutions as follows:

0.08A, 0.08B, 0.13A, 0.13B, 0.21A, 0.21B, ...

We shall follow up the progress of these patients and shall review other patients' allergic
problems in a later paper.

So far, we have considered the mathematical problems met in semnsory biology and in
allergy-immunology but not often solved by nonmathematicians. We have touched upon the
special limitations imposed by our tools that measure out amounts of liquids, and have
groped toward adapting these tools for best results. We shall aim to get results that can
be safe, simple, and on the mark. Our quest will lead us through continued fractions, and
sometimes through Fibonacci-ratio fractional approximations.
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VALUES OF CIRCULANTS WITH INTEGER ENTRIES
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It is well known that the differences of squares m = x° - yz, with £ and y integers, are
the integers satisfying me or 4 | m. It is not difficult to show that the integers m of the
form z® + y® + 2% - 3xyz, with z, y, and 2 integers, are those integers satisfying 3/ m or
9 | m. This paper generalizes on those results.

Let Cn(xy, ..., Ty) be the determinant of the circulant matrix (a;;) in which a;; = xi
when j - 7 + 1 = k (mod n). Note that C,(x, y) = x® - y? and C,(x, y, 2) =x* + y® + 2% -
3xyz. '

Y Let V, be the set of values of C, when the domain is the set of all ordered n-tuples

(xy, +.., &,) with integer entries xy. We will show below that, for odd primes p, V, consists
of the integers m with either p [ m or p? | m, and that V,y consists of the integers m satis-
fying either p j’rn or p2 [ m and also satisfying either 2 I m or 4 ]_m, i.e.,

Vap = [{m:p I m} U{m:p? | m}IN[{m:2}m} U {m:4 | m}1.

1. GENERAL V¥

In this section, the x; may be any complex numbers. It is well known (see [1]) that

n-1 n .
(1.1) Cpl@ys «vvr ) =TI (Zxk exp[2rh(k - l)z/n]).
h=0 \ k=1
We use this to establish the following.
Theorem 1: Cp(xz, +a, x, + a5 «ues Ty, +a) =R * Cp(xy, T,5 «vvy T,) Where
R=(ma+x +x, + - +2,)/(x, +2, + - +x,).
Proog: nel s
Colxy +ay, «oer x, + @) = Il < (z;, + a) exp[2mh(k - l)i/n])
h=0 \ k=1
n-1 n ”
=11 ( x, exp[2mh(k - 1)i/n] + aZexp[Z’nh(k - l)i/n]).
heo \ k=1 k=1
Now
n S " : for h =0
> expl2mh(k - 1)i/n] =
k=1 1 - exp(2Thni /n) —0forl1<h<n- L.

1 - exp(2mhi/n)
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Thus

Colzy +a, «.vy T, + @)

<na + z:ck> . (Zxk exp[2Tmh(k - 1)L/n]>
=Co(xys ouus x,,)(na + Zxk>/<2xk).
k=1 k=1

Another result to be used later is the following.
Theonem 72: Let n = rg where r and s are relatively prime. Then
: a-1 :
Colys vuny ) ggl:loc"(y“’ Ygar +++» Ygp)
where
s~-1
=Zxkr+jexp[2ﬂg(kr‘ +J - Di/s].
k=0

g-1 -1 r-1 r
Ql}ocr(ygl' T yg") ) gl:lo hI:IO jz-;ygj expl2Th(7 - 1)7'/1’])

r

r-i g-1
= i (Z Zkaexp{zﬂi[g(kr +7-1/s+h(j - 1)/11})

8-1
g=0 h=0\j=1k
g-1 r-1,/8-1 T

= : n (Z Zxkr+7exp{ [(rg + sh) (G - 1) + rzgk]}>
g= =0\k=0 j=1

e-1 r_1
=1 D>, h.
h=0

In D(g, h) each varlable x, appears once and only once. Let d, be the coefficient of x,.
Then

d . S\
B4l exp{21i[(rg + sh)j + r’gkl/n}) = exp{2mi(rg + sh) /n}

exp{2mi[(rg + sh) (§ - 1) + rPgk]/n}
or
de+1  exp{2mi[(rg + sh)(l - 1) + r2g(k + 1)1/n}

exp{2mi[(rg + sh) (r - 1) + r?gk]/n}

= exp[2nZ(rg + sh - rsh)/n]
= exp[2mi(rg + sh)/n] + exp(-2mih)

= exp[2ni(rg + sh)/n].

Also, d:L occurs when X = 0 and j = 1. So d, =exp 0 = 1. Thus

D(g, h) = )z, expl21i(rg + sh) (¢ - 1)/n].

t=1

Now as g goes from O to s - 1 and & goes from 0 to » - 1, (rg + sh) (mod n) takes on n values.
To see that these 7 values are distinct, one has that if rg, + sh, = r'g + sh, (mod n) then
r(g, - g,) = 8(k, - hy) (mod n). As gecd(r, s) = 1, one then has r‘[(h hy) and s[(gl - g,)-
But0<g<s—land0<h<r—1,soh hl—gl—gz—o Thushl=h2 and g, = g,-
Hence (rg + sh) (mod n) achieves every value from 0 to n - 1. Thus

8-1 n-l
I C’,.(ygl, ey ygr) = (th exp[2mZiu(t - 1)/n]> = Cp(xy, oves Ty).
g=0

u=0 \ ¢t =1

Cornoflary: 1Let m = 2r where r is an odd integer. Then C,(Z,, ..., Ty)

=Cp(z, +x,,,, %, + X, - T ).

2 I,+2,...,.'r7,+.r.

) + C.(x, - «x -z

2r 1 rr1’ Trag 2°
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Proog: Cn(xl, cees X)) = Cr(yul’ ey yOr)C (yll’ ey ylr) where

= 0 0 = . .
Yo; = x;e + Tpy i€ T+ Tpy;

and

Y =% (=177 + xr+j(-l)(r+j_l)= (—1)j-l(xj = Tpyg)

since r is an odd integer.
It is now useful to obtain some n-tuples that produce various values in V,.

Lemma 1: C,(2, 0, 1, 1, 1, ..., 1) = n?.

Proog: By adding every row to the first row and every column to the first column in the
determinant form of C,(2, 0, 1, 1, 1, ..., 1) one has

2

n n o n n...n
n 2 0 1...1
n 1 2 0...1

C,(2, 0, 1, 1, 1, ..., 1) =

n 1 1 1 ... 2

.

One can then factor n from both the first column and the first row. One then adds the nega-
tive of the first row to each of the succeeding rows to obtain an upper triangular determin-
ant all of whose diagonal elements are 1. Thus, C,(2, 0, 1, 1, 1, ..., 1) = n?.

By Theorem 1, with a = j - 1, one has the following.

Theorem 3: Co(d + 1, § = 1, s ds s +ens 3) = dn’.

Lemma 2: Let A(n, r) = Cp,(1, 1, ..., 1, 0, ..., 0) where the first r elements of the (, are
one and the rest are zero. One has, if ged(n, r) > 1, then A(n, r) = 0, and if ged(n, ») =1,
then A(n, ») = r.

Proo4: From (1.1) one has

n-1 r n-1 .
B _ . _ 1 - exp(2mhri/n)
A(n, r) = h[;lg(g_:lexp[Zﬂh(k 1)1/71]) =r hl:[1<1 ~exp (ITRLIT)
If ged(n, r) = § > 1, then when % = n/j (which is < » - 1) one has 1 - exp(2mhri/n) = 0 and
A(n, ) = 0. If ged(n, r) =1, then letting 6 = exp(2mi/n) one has

n-1
A, r) =r]] [(1 - 6")/( - 8M)].
h=1

Suppose ®"" = 1. Then Ar = 0 (mod n) and as ged(n, r) = 1, one has h £ 0 (mod n) which has
no solutions when 1 < % < n - 1. Suppose 877 = 68X, Then jr = kr (mod n) and as gcd(n, r)
=1, one has § = k (mod n). The only solution to this when 1 < j <n-1landl <k <n-1
is j = k. Thus the n - 1 terms (1 - ©%""), 1 < h < n - 1, are all different and nonzero. As
there are only n - 1 different nonzero terms of the form (1 - 8%), one has that these n - 1
terms are the same as the n - 1 terms (1 - 8%) with 1 <k <7n - 1. Thus, if ged(n, r) =1,
then A(n, r) = r.
By Theorem 1, one has the following.

Theonem 4: Let A(n, r, j) = Cp(xy, ..., &,) where z; through x, equal j + 1 and Z,4; through
x, equal j. One has, if ged(n, r) > 1, then A(n, r, j) = 0 and if gcd(n, r) = 1, then
An, r, j) =nj + r.

2. THE CASE ¥ = P, AN 0ODD PRIME

Consider Cp(xys Tys +ves xp) where p is an odd prime. Also let the x; be integers from
now on. Let the corresponding matrix be (a;;) where a;; =z, when § - 72 + 1 = k (mod p).

Lemma 3: Co(xys vees xp) Zxy +x, + --+ + 2z, (mod p).

14
Proog: Consider any term I akjkin the expansion of the determinant. Consider all terms
k=1

p
I1 Ay i for all integers j > 0 where subscripts are taken mod p. This method divides all
k=1

terms in the expansion of the determinant into equivalence classes. If the initial term
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equals xf, then the class consists of just one member. In any other case, the class consists
of p members of equal values in terms of the z;'s. In addition, the sign of the permutation
corresponding to the product is the same for each member of a class. This follows by induc-
tion, since

[(Zy = 2,0, = 5) «on (G, = $,)(E, = )] * [(G, - ) (i, - i) () = £)]

oo [(ip - ip-l)(il - 'b.p-l)] ¢ [(7:1 - ip)]

(“DP(Z, = 4) (= 1) eer (Bp = 201 ¢ [(£g = 23) vee (Gp = 201 wvv [Gp = 5 1)]

[ = 20)(Tg = 2)) von (Gp = 2)] vvn [(Gp = 2, )]

since p is odd. Thus in the expansion of the determinant, all of the p terms have the same
sign and the same value. This implies that

(2.1) Cp(Xys wous Tp) E.'x:f+a:2p+---+:z:§,J (mod p).

Using Fermat's Theorem, (2.1) implies

(2.2) Cp(xl, ...,xp)'_—'x1+:c2+---+xp (mod p).

One now has the following result.

Theorem 5: If Cp(xy, ..., Xp) is divisible by p, it is divisible by p®.

p
Proo§: 1If Cp(xy, ..., xp) is divisible by p, then (2.2) tells us that ) x; is divisible by

p. Also 7 j=1
1 x, x4 . Zp
1 x, =z Tp-q
P
1 =z x e Tpo
Cp(xys vovs Tp) =(ij> roh “p2
=1 . . ..
1 x; = Xy
|4 P p
PooT 2T e D%
J=1 j=1 Jj=1
p 1 Ty T, . Ty
={ 2 =i)| 1 Tp T Tp-2
J=1 . .
1 X4 x, . x,
14
Thus, if ij is divisible by p, one can factor an additional p from each entry of the
J=1

first row of the last determinant and Cp (xl, . xp) is divisible by pz. This proves the
theorem. :
Now by using Theorems 3 and 4, one sees that Vp consists of the integers m satisfying

either p | m or p* | m.

3. THE CASE NV = 2P

Consider CZp (:cl, .y :z:zp) where p is an odd prime. By the Corollary to Theorem 2, one

has
(3.1) Czp(xl, cees :z:zp) =Cp(Yys «ovs Yp) * Cp(Bys vnvy 2p)
where y, = x; + x,,; and z; = (—l)j'l(xj - Zp4j). One now has the following.

Theonem 6: 1If Cp,(xy, ..., T,p) is divisible by p, it is divisible by p’.
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Proof: If p| Czp(xl, v xzp), then p| Co(yys ---» yp) or p| Cp(zys +uns zp). But then
p? | Coyys +ovs Yp) or P°| Cplzys wvvs 3p) and PP | Cpp(xys onns Zp).

Theonem 7: If Czp(xl, vees xzp) is divisible by 2, it is divisible by 4.

Proo4: One has that x; + xp4; is of the same parity as *(x; - Zp+;). Since the calculation
of a determinant involves only addition, subtraction, and multiplication, this implies that
Cp(yys «--» Yp) and Cp(2;, ..., 2p) are both odd or are both even. Hence, their product
Cop(Xys vvs xzp) is either odd or a multiple of 4.

2 We next turn to some particular results. Let
(3.2) B(2p, r) = Czp(xl, e xzp) =Cp(Yys «ovs Yp) ° Cp(zys «ovs 3p)
where yy =1 =y 15 Yy SYs = " T Yr =2 Yy, =0 =Yp =0, 2, =1 =2,
By = vcr = Bp = Z ., = ccc =3p =0, and Ty = (Y 00 35,002, 3, = @y - 2,02

where the subscripts on the y's and z's are taken mod p. Note that since p is odd,

Y; =x; + Tps; and 25 = (—lﬂj'l)(xj - Zp.+;). Also, the x's are integers since y; = 3; (mod
2). One has the following result.

Lemma 4: B(2p, r) =4r for 1 <r <p - 1.

p-1 r
Proog: Cp(yl, . yp) = [] (1 + ZEexp[Z‘nh(k - Di/p]l + exp[2ﬂhri/p]>
h=0 k=2

"

p-1 . .
(1 + 3xp[2mhi/p]) (1 - exp 2mhri/pl)
thll{ (T - expl2miilp]) }

Now
p-1
(3.3) Cp(l, 1, 0, 0, ..., 0) =2 =2 rl(l + exp[2mhi/p]l).
Hence, p-1 el
. _ 4 1 - exp[2mhri/p] _
(3-4) Cp(yls L] yp) = Zrhl:l]_ 1 - exp[z."hi/p] - ZA(p’ P)-

Aslgrgp—l,yﬁpzﬁ=lsoﬂmrﬁ=ram0(%,.”,%)=2n Now
p-1
Cp(zys «ovs 3p) = IT (1 + expl[2nhri/p]).
h=0

But the p terms 1 + exp[2mhri/p] are all different, as p and r are relatively prime. Hence,
they equal the p terms 1 + exp[2mhi/p] in the expansion of Cp(1, 1, 0, 0O, ..., 0) and one has

-1

P
(3.5) Cp(2ys vvvs 2 ) =;,” (1 + exp[2mhi/p]) = Cp(l, 1, 0, 0, ..., 0) = 2.
=0

Thus, B(2p, ») = 2r = 2 = 4r.
By letting B(2p, r, j) be the CZp obtained from B(2p, r) by increasing each x;, by J,
one has the following.

Theorem §: B(2p, v, j) = 4r + 4pj for 1 < r <p - 1.
Proog: B(2p, r, j) = 4r(2pj + 2r)/(2r) = 4r + 4pj by Theorem 1.

Lemma 5: When x, j 15 z, =0, z, =2, =--- = T, = 1, Tpyyp = 000 =%, = 0, one has
Czp(xl, e xzp) = p°.
Pnooﬁ: Czp(xl, cees xzp) = CP(Z, 0, 1,1, ..., 1) - Cp(O, 0,1, -1, 1, ..., -1, 1)

p%Cp(0, 0, 1, =1, 1, ..., =1, 1)
by Lemma 1. Letting 6 = exp(2mZ/p) one has

p-1 R _
(3.6) Cp(0, 0, 1, =1, 1,..., =1, 1) =1 « [] (82* - 6% 4 g% — ... _ g(P=2)h 4 glp -1y
h=1

p-l(ezh +eph) =p—l(1+62h)

=hll (1 + 6h) =1 (1 + 8%)
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— CP(la 0,

) 1. 0, 0, _2/2
C_D(l’ la 0, 09 09 ] O)/Z /2
Thus, C,, (), «.., 2,,) = p*.
The_o/lem 9: W'henxl=j+l, x2=j’ x3=xu=.-. =;L‘p+1—J+1, ;Cp+2"‘ =I2P=J’

one has Czp(xl, ey xzp)= (25 + l)pz.
Proog: Cop(xys «evs Typ) = p?(2pj + p)/p = (25 + 1)p*, by using Lemma 5 and Theorem 1.

Theorem 10: V,, = Hm:p}m} U {m:p? [ m}] N [{m:2fm} U {m:4 | m}].

Proo4: By Theorems 6 and 7, no other values are possible. The only possible values are the
integers not divisible by 2 or p [by using A(2p, r, J) with gecd(2p, r) = 1], the muitiples
of &4 that are not divisible by p (by using Theorem 8), the multiples of p? that are mot
divisible by 2 (by using Theorem 9), and the multiples of 4p2? (by using Thecrem 3). Thus,
V,, consists of the integers m satisfying either p/m or p? | m and also satisfying either

2)mor 4| m.
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POWERS OF MATRICES AND RECURRENCE RELATIONS

WILLIAM H. CORNISH
Flinders University, Bedford Park, South Australia 5042

0. INTRODUCTION

This article arose out of the desire to demonstrate an interesting and perhaps initially
surprising application of the theory of matrices to final year high school students. Thus,
we consider a matrix-theoretic approach to firstly the solution of two simultaneous first-
order recurrence relations and secondly to the solution of a single second-order recurrence
relation, together with the proofs of a few identities.

It is well known that the solution of an mth order linear homogeneous recurrence rela-
tion can be found by means of the theory of matrices. Indeed, Rosenbaum [4] gave an approach
which is based on the Jordan normal form; the reader should also see the recent article [5]
of Ryavec. The technique used in Section 1 of this paper is based upon the Cayley-Hamilton
theorem for 2 x 2 matrices and is particularly elementary. A novel feature of Section 2 is
the use of 2 x 2 matrices to obtain generalizations of a few well-known identities which
interrelate the Fibonacci and Lucas numbers.

1. POWERS OF 2 x 2 MATRICES

a . . . .
Let A = 11 12| be a 2 x 2 matrix whose entries are real, or even complex, numbers.

The characteristic polynomial of A is

A=ay Qi )
det (A - 4) = _ - =A% - (a;, +a,,) + (a,,a,, - a;,a,,)-
a3 Sy
It can be verified by direct computation that
2 ~ - =
A (a11 + azz)’4 + (all“za “12a21)I 0.

This is a special case of the famous Cayley-Hamilton theorem which says that if

[
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