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atk, )bk - g, p - q) = %{a(k, bk =g, p-q +ak -qg,p - bk, ¢}

Lk\(p\ )= 2., i+l q.P-9 7 Lp-q
B 5(0)(6{) 2, ZIJ!(J DD 1il8i8c, 5 + SiaySs )2}
1 im0 j=

(3.4)

where M is the greater of g and (p - q) and £; is Lucas' sequence, given by

2, =8,y + %,., and & =2, &) =1.
Also, if @ and b are roots of the equation y? - y - 1 = 0, the lefthand side of equation (3.3)
should be [3]

- q
-3 i'F,,,5(g, 1)
i=1

from equation (3.2), F; being the Fibonacci sequence. Then

q MoM-i
. . 1 RIS S - -
(3.5) z ;7’!Fi+1‘s(q’ i) = -3 (P) 2: Z LI G+ 1)!2.;(5‘7‘.’.9{?”7 + Sf+j5;7 9,

i=0 7730 j=o

which is the required identity.

CONCLUSION

We have defined Y, difference equations as generalizations of the periodic difference
equations. This is a much wider class of difference equations than the periodic ones, but
does not contain all difference equations. We extended Minkowski's operational calculus to
deal with a large class (but not all) Y, difference equations. This is of interest in itself
as a means of solving more difference equations than Minkowski's calculus enabled us to. It is
also of interest inasmuch as it provides an independent means of solving periodic difference
equations and thereby discovering new identities between combinations of various sequences.
Thus, it can also be regarded as being of interest in number theory.

ACKNOWLEDGMENT

The authors wish to thank Professor M. A. Rashid for several enlightening discussions.

REFERENCES

L. Brand. Differential and Difference Equations. New York: John Wiley & Sons, 1966.
J. Riordan. Combinatorial Identities. New York: John Wiley & Sons, 1968.

3. R. J. Weinshank and V. E. Hoggatt, Jr. 'On Solving Cn4;; = Cn41 + Cn + n™ by Expansions
and Operators." The Fibonaceil Quarterly 8 (1970):39-48.

N =

36 36 343 3¢
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ABSTRACT

A method for getting the particular solution of pseudo-periodic difference equations, by
using a discrete periodic function has been given. Some identities, equalities, and inequali-
ties have been derived by using the above-mentioned discrete functionm.

1. INTRODUCTION

Periodic difference equations have been previously solved [1] by the use of Minkowski's
operational calculus. The type of equations solved by this method are

(1']-) P(E)f(x) = (aly a2’ c ey an)n’
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where P(E) is a polynomial function of E with constant coefficients, »n is the period, and the
a;'s are constants. An obvious extension of this would be to make the a 's functions of the
variable x. Since the resulting equations would no longer be periodic, we call them pseudo-
periodic.

To solve pseudo-periodic cifference equations, we define a discrete function h(x, m),

h(x, m) = 1 when m/z
(1.2)

0 when mfzx

It can easily be seen that h(x, m) satisfies the following properties:
1) (@, m} = h(z, m)  for all integers j > 0;
m=-1
(2) hix + 4, m) = 1;
j=0
(3) h(x, m)h(xz, m,) = h(x, m), m being the L.C.M. of my; and m,;
L) h(x +mk, m) = hizx, m) for all integers k > 0;

(5) h(nx, m) = h(x, m), n and m being relatively prime.

We shall use these properties to evaluate the expression

f(x) = 1 Qgg]k h(x, my), a # 1,

(E’"l’"z - a’"x"'z) my

where [%] is the bracket function, being the largest integer less than or equal to %. This

can be used to solve any pseudo-periodic difference equation, in principle. All pseudo-
periodic difference equations being periodic difference equations we can, of course, solve
periodic difference equations, as well, by this method.

The plan of work is as follows. In Section 2 we solve equation (1.3). As an example of
this method, we have solved a previously solved difference equation

(Z - a)(E - D)f(x) = xk,

where a and b are the roots of the equation y2 -y -1=0. This yields an identity involving

Fibonacci numbers and Sterling's numbers of the first and second kind.

In Section 3 we give some equalities and inequalities involving bracket functions that can

be derived by using the discrete function A(x, m).

2. SOLUTION OF PSEUDO-PERIODIC DIFFERENCE EQUATIONS

We shall first find the particular solution of the difference equation
x k
(1.2) : Af(z) = (E) h(z, m).

Any polynomial with different periods can be constructed from terms of the type of the
righthand side of (2.1) with different values of kX and m. We can thus construct artibtary
functions and solve an linear, first-order pseudo-periodic difference equation.

Consider the action of the difference operator on the kth Bernoulli polynomial [1, 2]

with the afgument [x ; 1] + 1,

AB ([x_'_.l] + 1) =§(k + 1>(1 + B)k-i+1[-'2 - 1]i
k+1 m y 7 m )

=0

where B” = B, is the rth Bernoulli number. Using property (2) of k(x, m) and equation (3.2)
given in the next section, we get

ABk+l<[xm;1] + 1> = ]z:z(_l)k-in(k -: 1>B’<'i“jil(-l)j+l(§)(%)i_jh(x’ m,

putting j = ©Z - r, changing the order of summation, and then putting 7 = s +~», .

AB’H’]h([E%-l:l * 1> =i k-zr:+l(_1)k"'(§ ::- 1]"’><S -1: r)Bk-a-r-o-l(%)rh(x, m) .

r=0 8=1
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Now (ii;)(szy’):(p:l)(,(_zJ,l)
and k;zlek_e_{,+1(k - 2 + 1) = (1 + B)k-r+1 - pk-r+1
ABk-!-l([x ;] 1] + 1) = ;(—l)k—r(k : l)(%y‘ {(l i B)k-r+1 _ Bk-r+l}h(x, m)

(k + 1) (%)kh(x, m)

(2.2) () k—-l:_lBk+l<[£";7_}’] + 1) + e

It can be seen that if

A"lf(x) = F(x) +¢

sr([2)- () -

1=0

-y (22)
2.3 i ([5]) - el - [E) B

Now we shall consider the difference equation (1.3). To solve this, put f(x) in the
form

(2.4) e <3 Z ([ ]) he 4 g, ma).

=0 =0

then (2.2) gives

[
1
-
—
I8
—
-
l

By operating on both sides of (2.4) with (F™ ™2 - g™™2) and comparing with (1.3), we see
that

R
oc 1 - g™mm
-1 A s -
- i-
(2.5) a;, = -a“;}aso(i _ S)(mzn)
a,; =0 for j#0
Denoting ¢,;, by a;, we get
K k-1 k
(2.6) (™72 - a”’m’)Za,i[—@] hz, m,) = [ﬂ} hizs m,)-
iTo L ™ }
Assume that for some { = j
(mgn)jk(j)
(2.7) Gr5=a; = ————2_ rl(a, )" .
ve r=0
Then (2.5) gives
Qi1 : k-gq iv1 (K Z r+laq
— = _Z< 4 l)(mzn)" ( )Zr!(aoo) S,
00 P A 7570

o9
”

whoaraoe

. -7

;T:l = \(17 “ g I l>(m n)"”( )Lr‘(a )T < —(mzn)j“(j + I)Z Z( ) '(aoo)p+l.5;

0

q:
-(; £ )T Y e+ Da, s
g+ 1) PZ%P p a2, Sp+1 181

are Sterling's numbers of the second kind [2]. Substituting from (2.7)



5 (155 - o+ sl
q=0

i1 _ ( k Sl P+loi+l
- j+Jmﬁ) ;;p+ﬂﬂ%ﬂ siil.

R NP

Now, j + 1 being positive, S'i+1 = 0. Hence

(m, n)“*lK(J+1)J+1

Q41 T (G +. D! Z(t + 1)'(*00)

Thus, if (2.7) is true for j, it is also true for (j + 1). It is easily seen that it is
true for j = 1. Hence, it is true for all j. Putting (2.7) into (2.6), we obtain

t+lq.7+l.

()15

(2.8) f) = Z Z (mzn)( ) ]k—i(l r+1z‘("r’ m) .

im0 rm=0 - a”')’"z)

As an example of the method given above, consider the pseudo-periodic difference equation
(2.9) (E - a)(E - b)f(x) = xkh(z, m),

writing the particular solution of (2.9) as Py (x)

(2.10) P (x) = (E - a)"'(E - b) 'z*h(x, m)
n m . - I3 . k k
= {Z ZEM-La'L-lEm-JbJ-l {Z Za(k’ q)b(k -q,p - q)xk’q s
i=1 g=1 ) \p=0 g=0
where .
q @5,
atk, q) = mq(k) _
q !‘-0(1 - am)r+1
(2.11)

CORE:M

Notice that (2.10) must hold with g and b interchanged, since (2.9) is symmetric in g and b.
Thus, we shall interchange and take the sum. For m = 1, we get

alk, bk - q, p - @) = 3{atk, Pbk - ¢, p - @ + bk, Pak - 4, p - O}

- ( )( ){Z Z( NG+ D) (- 1)‘”“’12 (55 cf+§+ Sisf-q}'

[=0i=0
Where M is the greater of P and P - g and {#;} is Lucas' sequence [2]

L T B P L, =2, &, = 1.
Also, if ¢ and b are the roots of the equation yz -y -1=0, the L.H.S. of (2.12)

should be [3]
Z() EICHEY

(2.12)

from (2.10). Thus,

q -3
(2.13) Z(i)!F S(a, 7) —-—( >Z E( 1)7-+ +1(J\1( + 4 )!l (quL+J +S:7+JSJP q)
=0

i=0 =0
3. SOME RESULTS OBTAINED BY USING %(x, m)
It is easy to see that:
. 1 m-1 1
(3.1) [;:l=E{x—m+l+;jh(x+j+l,m));
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(3.2) [” = l] Z( 1)4“( )(E ) “h, m).

J=1

Putting k = 1 in (3.2) and then using (3.1), we get
1§ =
-J X = — —
(3.3) A R(z, m) Wlx m+ZJﬂ(x+J, m)}+c

The bracket function inequality

[x+y:|_ [%1* [%]

mn

on using (3.1), gives the inequality

milph(x+y+l mn) >m{2rh<[] [%]+r+l, m>—l}

(3.4) r=0
n-1

+ 2:{h(x +r+1,m+hy+r+1, m)} + 1

r=0

Similarly, the bracket function equality

2)- [ [

on using (3.1), gives the equality

mn
x+ 1+ E: Jhx + 4 + 1, rm)
(3.5) i=0

1]
3

]
A
P N NS,
] r 1
: X8
-
+
—
+
= 3
" [\/L
(Y
=

Now consider

n-k nk+l + oy + -1 nk+1
Zh(nx+y+r,m)=lAlh(nx+y+r,m) =|mJ o :]
r=1 r=1 m r=1
_ [n(x + k) + uJ _ [nx + U] = (gk - 1)[4£;i_ﬂJ
m m: m
ne + 1 &
(3.6) [ﬂ‘r ﬂ] = Zh(mx +y+r,m+ec.
" E¥ - 1 =
r=1]1

Putting k = 1, we get

1
[Eg_tgﬂ] = A7} 2: hine + y + », m) + c.

m
r=1

If n and m are relatively prime, there will exist two integers, g and b, such that
an + bm =1,

[w] =271 Y h(nx + (y + ) (an + bm), m) + c.

m
r=1
Using property (4) of h(x, m),

[M]:A"Zk(x+a(y+r),m)+c=Z[‘T+(y+r)a_l:|+c.

m m
r=1 r=1
Determine ¢ by putting x = 0 in the above equation:

C=[g] _i{a(a+r) —1]

m m
r=1
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(3.7 [%ﬁ] =rz:':l|:.r + Qi;r)a - 1] _Ii:l [.gy_“_'_%)_?_'l] + [%] .

N T [

Putting y = 0, m=pqg +p + 1 and 7 =qu + 1 in (3.7) we obtain the equation

[ggg+1)x]=’”i‘[x+r(q+1)-1] _""”[r(g“) -1 |
pq +p +1 pq +p + 1 Z pq+p+1

r=]1

and it is easily checked that pg + 1 and pq + p + 1 are relatively prime. Breaking the sum-

mation into the ¢ summations with ranges r = 1, p; r = p+1l, «eos 20, w3 7 =p(@-1) + 1,
«e.s pq; and the term for r = pg + 1, we can write the expression as a double sum, and obtain
the equation )

(pq + Dz ZE [.r+(pj+i+1)(q+1)-‘1] [(pj+i+1)(q+1)—1 + x
pqg +p +1 pg+p +1 B pq +p + 1 pq+p+1}

j=01=0

Taking multiples of (pg + p + 1) out of the numerators of the two bracket functions, we obtain

[ESTOES o) o CERCEE SRR, R U

J=0 =0

Reversing the order of summation of j we notice that ¢ - j is replaced by § + 1. Now the
maximum value of (¢ + 1)2 + J + 1 is pg + p - 1, which is less than pg + p + 1. Thus, the
second bracket expression is always zero. Changing the range of summation of j from 0 to g - 1
to 1 to g, we obtain

(pqg + Dz =qp‘1[x+(q+1)i+j:| x
[pq+p+1] 22 pg+p+1 +[pq+p+1]'

j=1i=0

Now adding and subtracting the expression for J = 0, we get

[<gg+1>x]=z":§[x+ <q+1>i+j]_"§‘:1[g:__g_tl>_i]+[_._nc_]
pq +p+ 1] 54 pq+p+1 4 pq +p+1 pg+p+ 1]

Notice that the last bracket expression cancels the bracket expression in the second term on
the L.H.S. for © = 0. Also, we can replace the summation over < and j by a summation over %,
where the range of ¢t is 0 to pq + p - 1. We can thus write

(3.8) [M]Jf’[_ﬁ e RN FES RS
. pgtp+1 & leg +p + 1 4 pqg +p + 1 pg+p +1]°

1=1

To reduce this further, consider the inverse difference operator acting on the equation
for property (2) of h(x, m) and the fact that
A Mh(z + G, m) = [&Lgn;l] +o
we obtain the equation m-1
x =z[ﬁ_;_-_l]+ o.
io "
Evaluating ¢ by putting £ = 0 and absorbing into the summation, we obtain the result that

m=-1 .~

_ T+ J
(3.9) z=y |22 ]
J=0
Putting (3.9) into (3.8), we obtain the identity
(pg + 1)z Elz+ (g+ 1)%
(3.10) [—2‘7—] + ——9——-—] - z.
pgtptl ;_pq+p+1

Similarly, we get the equation

S

iml =1
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'

where P - -y - r)(mw(”) - 1)
r 7n >

$(n) being the number of natural numbers less than or equal to n which are relatively prime
with respect to n (i.e., Euler's ¢-function). Then putting y = 0 and replacing x by n*, we

-5 5[

r=1 rel

n-1ln*+ P z n-11 P
. -1 R I A -
(3.12) S 2:{—7;—J-—[m]+x§:[m}i>a
r=1 r=1]1
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APPENDIX
Let 1
Pk(x) =——-xk’
E? -E -1

then

K
B, (x) = Z( 1Ak = Z Frn 8D S, 5y =9,

i=0 j=0

where z @ =x@ - 1)@ - 2) ... (x = + 1), the falling factorial, where Sf are Sterling's

numbers of the second kind, and F; are Fibonacci numbers, Fy =1=F , F =F . +F .

_Z Z(J)(‘L) 1+1S;(x(d—i)

1=0 j=1

) _ (i) k (k-i—')
Z;) Z_;(k 2 1*’15(& i e
i=0 j=

Put 7 + 5 = 2. Then min(2) = 0 and max() =

oo P (@)

. - _ _ (2) k-2
S B @ ZZU< B+ D PF (56 gL pm*Y
i=0 =0
= - ( k 5
Z Z Z(k L+ D E S 6 ) Sk -4y
=0 £=0 j=0
where S .1, ) are Sterling's numbers of the first kind.

Put j + 1 =m. Then min(m) = 0 and max(m) = F,
k k
-m

S P () ="Z Z Z(k' L+ ")(z)F S(k e+ )P k-1, k- m)x .

7=0 £=0 m=0

Now consider the coefficients of xX~-™ By reversing the order of summation of 1, we can
replace k¥ - § by 2. Also note that
@+ @ = (’Z’T "),

7
and also that

L+ 7 k
ZS(1+£) (i,k—m)( i )=(k-m>s(m,i)-
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Since the expression is zero for £ < k - s and for 1 > k - 7, .
ko k. X y
SR @ ==Y Z“(k " m)S(,,,,i)FHlx m (
1=0 m=0 {

"
M~
0~
P
I X
S——
=

3
\>

Q
oo
+
-

8

x*

1

3

e

A CLASS OF DIOPHANTINE EQUATIONS™

S. P. MOHANTY
Indian Institute of Technology, Kanpur, India 208016

ABSTRACT

In this paper, we prove a theorem: If K= 5 (mod 8) and f # 23t-1 (mod 2%%) for all
positive integers t, then c(3a?b + kb3) + d(a® + 3kab?) = 16f has no solutions in integers
ab # 0 if ¢ and d are both odd integers. Then it is shown how this theorem enables us to
solve the diophantine equations y> - k =%, K = 5 (mod 8). In the end, we give solutions
for k = 109, 116, 125, 133, 149, 157, 165, 173, 180, and 181.

The Mordell equation y? - k = x?®, the simplest of all nontrivial diophantine equations
of degree greater than 2, has interested mathematicians for more than three centuries, and has
played an important role in the development of Number Theory.

We already know the complete solutions for y? - k = z®, |k| < 100. The author in his
doctroal dissertation (UCLA, 1971) has treated the range 100 < k < 200. The present paper
treats 10 particular cases in the above range.

First we prove two lemmas to prove the theorem.

Theorem 1: If Kk =5 (mod 8), f # 2%~ (mod 23%) for all positive integers t, then

c(3a2b + kb¥) + d(a® + 3kab?) = 16f has no solution in integers ab # 0 if ¢ and d are both
odd integers.

Lemma 1: Let kK = 5 (mod 8) and ¢ and d be odd integers. Then e(3a®b + kb3) + d(a® + 3kab?)
= 0 has only solution a = 0 and b = 0 in integers.

Proof: Suppose a # 0, b # 0 is a solution of
(1) e(3a’b + kb®) + d(a® + 3kab?®) =0
in integers. (a = 0 implies b = 0, and conversely.) We see from (1) that a # b an

(mod 2). Then 3a?b + kb® = b(3a® + kb?) = 0 (mod 8) and a® + 3kab® = a(a® + 3kb?)

(mod 8), since X = 5 (mod 8).
Hence, ¢(3a®b + kb?) + d(a® + 3kab?) = (3a®b + kb®) + (a® + 3kab?®) (mod 16) as both c

and d are odd integers. Then, from (1), we deduce that

=b

1"

a
0

(2) (3a%b + kb®) + (a® + 3kab?) = 0 (mod 16).
But
(3) a® + 3a®b + kb3 + 3kab? = (@ + B)® + (k - 1)b%*(a + b) + 2(k - 1)ab2.

Inserting a + b = 2r and k = 82 + 5 in (3), we obtain
a® + 3a®b + kb® + 3kab? = 8r(r® + b?) + 8ab® (mod 16)

= 8 (mod 16) when both a and b are odd;
= 0 or 8 (mod 16) when both a and b are even.

Then (2) implies that a and b are both even. Since a # b, suppose a = 2 mPand b = 29 where

m and »n are odd integers.
Now (a,b) is a solution of (1) implies that (a,,b,) is a solution of

e(3alb, + kb3) + d(ad + 3ka,b}) =0,
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