120 117 123 122 13 8 12 1 87 82 94 91
121 124 118 119 3 10 6 15 81 92 88 93
114 115 125 128 2 11 7 14 9 8 89 84
127 126 116 113 16 5 9 4 9 95 83 86
47 46 34 35 69 66 79 76 105 98 111 104
33 36 48 45 74 80 \ 65 71 110 99 102 107
40 37‘ 41 44 75 77 68 70 100 109 108 101
42 43 39 38 72 67 78 73 103 112 97. 106
52 61 55 58 135 143 138 130 29 17 20 32
54 59 49 64 132 134 139 141 22 26 23 27
57 56 62 51 142 140 133 131 28 24 25 21
63 50 60 53 137 129 136 144 19 31 30 18

FIGURE 5. A 12-by-12 Magic Sgquare

Together the two families contain 817(110) (8- 110°% + 1) distinct twelfth-order magic

squares. .
This technique can be employed to produce two families of Anth order magic squares from

magic squares of the kth and nth orders. If k = n, there is one family. Such is the family
of 134,217,728 ninth-order magic squares [2].
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COIN TOSSING AND THE r-BONACCI NUMBERS

CARL P. McCARTY
La Salle College, Philadelphia, PA 19141

In this paper we find the probability that a fair coin tossed n times will contain a run
of at least r consecutive heads.

Let X, = {z,x, ... xy/x;€ {hst}, 2 =1, 2, ..., n} be the set of 2" equi-probable outcomes
and Y, be the subset of X, each of whose elements contains a run of at least r consecutive
heads. Also, let a(r,n) be the cardinality of Y5. We can construct Y: by noting that each of
its elements must fall into one of the following two categories:

(D) HA,_»
(2) WitHAn_j_1-p

where H is the first run of r consecutive heads to appear when reading from left to right,
A; is an i{-string of any combination of heads and tails,
W; is a j-string of heads and tails not containing H, and
t is a singleton tail.

Since there are 29 - g(r,j) ways in which W; can occur, the total number of elements of
type (2) is

r

[29 - a(e,f) 1277971 %

n-

1_
130 J=0
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Summing over all possibilities for (1) and (2) we obtain

n-1l-r

a(e,n) = 2777+ Z (29 - a(r,§))12"" 971"

n-l-r

(3) = 2"""[1 + (n-r)/2 - Z a(r,j)/2j+1:l.

j=r
L]
The next three lemmas exhibit some relationships among the a(r,n).

Lemma 1: 1f n > r, then

) n-1
a(r,n) = 2"-r+ Z a(r‘,j).

Je=n-r

Proog: Clearly a(k,k) = 1 for all k > 0. If we rewrite (3) and assume the lemma true for
n - 1, we have

n-2-r
alr,n) = 2 2"'1"1[1 + m=-1-2)/2- Z a(r,j)/Z"”] + 2" g -1 - 1)/2
jer
=2a(r,;m -1) + 2" V" g(r;mn-1-1)
-1 = 1
=a(r,m - 1) +<2" 7T+ Z a(r, )y + 2" T - a(r,m -1 - 1)
j=n-1l-r
n-1
=27+ Y alr,g)s
j=n-r

thus, the lemma holds for n and the proof follows by inductiom. - )
The next lemma relates a(r,n) to the r-Bonacci numbers F(") where F; 1, Fpp * = 2m=2
form=2, ..., 2+ 1, and F;® =F@ + ... 4+ FO, form = 1+ 2, r+3 cee

Lemma 2: If » < n, then

n-r+l .
Z F;r) 2n—1'+1-—;1.
J=1

(4) a(r,n)

Proof: We know that a(r,r) =1 = Fl(r), which proves the case n = r. For n > r, assume that
forz=r,r+1, ..., n -1, .

1-r+l -
o _ r i=-r+l1-4
a(r,i) = Z; P2 i
then J
n-1
a(r.m) = 2" T+ Z a(r,z)
imn-r
n-1 i-r+l
_ an-r (r) pi-r+1-j
S B S e
imn-r{ j=1

n-r J
j=lli=j-r+1

which reduces to (4) and the proof is completed by induction.

The last lemma, proved by Swamy [4], is a generalization of a problem posed by Carlitz
[3].

m
. (r)y ,m-4 _ om+r+l (r)
Lemma 3: E F; 2 =2 = Friperr
=1

We are now in a position to calculate the desired probability.
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Theofem: The probability that n tosses of a fair coin will contain a run of at least r con-

secutive heads, r < n, is given by 1 - Fﬁfi/Z".

Proof: Apply Lemma 3 to (4) withm=n - r + 1.
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COMBINATORIAL IDENTITIES DERIVED FROM UNITS

SUSAN C. SEEDER
Grinnell College, Grinnell, IA 50112
ABSTRACT
We shall derive two combinatorial identities by considering units in infinite classes of
cubic fields. This is a comparatively new application of units.
0. INTRODUCTION
We shall begin by stating a result of Bernstein and Hasse [2] concerning systems of units
in infinitely many fields.
Theorem: Let P(x) be a polynomial of degree n > 2 with the form
P(z) = (x -Dy)(x=-Dy) v.. (®x-D,_y) -d,d>1,D,,de 2, Dy =D; (mod d),
Dy -D;, >2dn-1), (=1, ..., nm=1), Dy >D;, > ... >D,_,.
Then P(x) has exactly »n distinct real roots; P(x) is irreducible over @; and if w is the
largest root of P(x), then

w - D,;)"
e; = —F (=0, ..., n=1)

are different units of Q(w). Furthermore, any n - 1 of these units form a system of inde-
pendent units.

1. COMBINATORIAL IDENTITIES FROM UNITS

Consider the cubic polynomials P(x) = (x - Dy)(x - D,)(x - D,) - 1; D; as above. First
we work with the case D, = 0; later we will eliminate this condition. Now it is clear that
itself is a unit in QW) with N(w) = 1. We proceed by expressing the integral powers of w.
For any integer n > 0, let

(1.1) W = Ty o+ Y0 + Z,w° (%) sYn »3n € 2).
Calculating directly and taking into account that w? =1 - Bw + Aw? where 4 = D, + D, and
B = DyD,, we have

whtl = 2, + (Tn - Bzn)w + (Yn + Azn)007

(1.2 wh*? = (y, + Ax,) + (s, - By, - ABz,)w + (x, - Bz, + Ay, + A%z,)v%;
so that

(1.3) Tpil = 3,3 Yuy1 = Tn ~ BTyi15 Zpyy = Tpoy - Br, + Ax, .

From (1.1) and (1.3), we obtain

(1.4) wh =z, + (@, - Bx,)w + (x,_, - Br,_; + Ax,)w?
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