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A CLASS OF DIOPHANTINE EQUATIONS™

S. P. MOHANTY
Indian Institute of Technology, Kanpur, India 208016

ABSTRACT

In this paper, we prove a theorem: If K= 5 (mod 8) and f # 23t-1 (mod 2%%) for all
positive integers t, then c(3a?b + kb3) + d(a® + 3kab?) = 16f has no solutions in integers
ab # 0 if ¢ and d are both odd integers. Then it is shown how this theorem enables us to
solve the diophantine equations y> - k =%, K = 5 (mod 8). In the end, we give solutions
for k = 109, 116, 125, 133, 149, 157, 165, 173, 180, and 181.

The Mordell equation y? - k = x?®, the simplest of all nontrivial diophantine equations
of degree greater than 2, has interested mathematicians for more than three centuries, and has
played an important role in the development of Number Theory.

We already know the complete solutions for y? - k = z®, |k| < 100. The author in his
doctroal dissertation (UCLA, 1971) has treated the range 100 < k < 200. The present paper
treats 10 particular cases in the above range.

First we prove two lemmas to prove the theorem.

Theorem 1: If Kk =5 (mod 8), f # 2%~ (mod 23%) for all positive integers t, then

c(3a2b + kb¥) + d(a® + 3kab?) = 16f has no solution in integers ab # 0 if ¢ and d are both
odd integers.

Lemma 1: Let kK = 5 (mod 8) and ¢ and d be odd integers. Then e(3a®b + kb3) + d(a® + 3kab?)
= 0 has only solution a = 0 and b = 0 in integers.

Proof: Suppose a # 0, b # 0 is a solution of
(1) e(3a’b + kb®) + d(a® + 3kab?®) =0
in integers. (a = 0 implies b = 0, and conversely.) We see from (1) that a # b an

(mod 2). Then 3a?b + kb® = b(3a® + kb?) = 0 (mod 8) and a® + 3kab® = a(a® + 3kb?)

(mod 8), since X = 5 (mod 8).
Hence, ¢(3a®b + kb?) + d(a® + 3kab?) = (3a®b + kb®) + (a® + 3kab?®) (mod 16) as both c

and d are odd integers. Then, from (1), we deduce that

=b

1"

a
0

(2) (3a%b + kb®) + (a® + 3kab?) = 0 (mod 16).
But
(3) a® + 3a®b + kb3 + 3kab? = (@ + B)® + (k - 1)b%*(a + b) + 2(k - 1)ab2.

Inserting a + b = 2r and k = 82 + 5 in (3), we obtain
a® + 3a®b + kb® + 3kab? = 8r(r® + b?) + 8ab® (mod 16)

= 8 (mod 16) when both a and b are odd;
= 0 or 8 (mod 16) when both a and b are even.

Then (2) implies that a and b are both even. Since a # b, suppose a = 2 mPand b = 29 where

m and »n are odd integers.
Now (a,b) is a solution of (1) implies that (a,,b,) is a solution of

e(3alb, + kb3) + d(ad + 3ka,b}) =0,

*AMS (MOS) subject classifications (1970) Primary 10B10. The preparation of this paper
was partly supported by NSF grant G.P. 23113.
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where a, = 2F7'm and by = 297 n. Arguing as before, we have both a, and b, even. If
(i) p < g, then a, =m, bp = 29Pp;
(ii) D = q» then aF =m, bp = n;

2P‘qm’ b; =n.

In all these cases we see that g, and b,y are not both even. So we have a contradiction.

L}

(iii) p > g, then g,

Lemma 2: Suppose kK = 5 (mod 8) and ¢ and d are odd integers. Then the necessary condition

for the equation c(3a’b + kb®) + d(a® + 3kab?) = 16f to be solvable in integers is

f=2%"1 (mod 2%) or £ =0 (mod 2%%).
Proo4: In the proof of Lemma 1 we have shown that
e(3a®b + kb3) + d(a® + 3kab?®) = 8 (mod 16) when o and b are odd,

0 or 8 (mod 16) when a and b are even.

From

%) e(3a®b + kb?) + d(a® + 3kab?) = 16f

we see that g and b are even. Suppose a = 2a, and b = 2b;. Then we have
(5) e(3atb, + kb)) + d(ad + 3ka,b?) = 2f.

The necessary condition for (5) to be solvable in integers is f = 0 or 4 (mod 8), for in
(5) a; = b; (mod 2), i.e., f = 8f, or 4 + 8f,. Hence, the lemma is true for ¢t = 1. If
f %4 (mod 8) then f = 8f, and

") e(3aib, + kb)) + d(ai + 3ka,b?) = 16f;.
= 0 or 4 (mod 8), whence f = 0 or 32 (mod 64) and the proof follows by

Arguing as before, f
induction.

1

Proof of Theorem 1: By Lemma 2, the necessary condition for equation (4) to be solvable

in integers is either f = 2% "1 (mod 23%) or £ = 0 (mod 23%%). By hypothesis f # 2%""! (mod
2%%) for all positive integers t. Now f # O for f = 0 implies ¢ = b = 0. Then there exists
t, such that £ £ 0 (mod 2%%) for f = 0 (mod 2%) for all t implies f = 0. Again, by hypothe-
sis f % 23:1'j(mod 2%y, Hence the equation is insoluble in integers ab # 0. If f = 0, then
the equation has no solution in integers.

We need the following theorem, due to Hemer [1].

Theornem 2: 1f 2f has no prime factor which splits into two different prime ideals in the
field Q(/k), then all the integer solutions of the equation y2 - kf2 = 2% can be obtained by
solving the (3°*! + 1)/2 equations N(B;) (ty + k) = n * B; * o where (B;) (Z =1, 2, ...,
3¢) are the cubes of arbitrary ideals, one from each of the 3¢ classes ¢; with the property
cf = (1), o is an integer in Q%) and n = 1 or €, where € is the fundamental unit of Q(/k)
(or an arbitrary unit which is not a cube). Here e is the basis number for 3 in the group
of ideal classes.

If the class number % of Q(Yk) is not divisible by 3, we have ¢ = 0 and we get
ty + 'k =n - o’ where n=1or e, if k> land n =1 if X < 0 and n = /-1 and (1 + V/=3)/2
if k = -1 or -3, respectively. Again we have ¢ = 1 if the group of ideal classes is cyclic
and if 2 = 0 (mod 3).

Now consider

(6) y? - kf*=zx2

For 100 < k < 200, Xk square free, only @(¥142) has class number # = 0 (mod 3). If we take
f=1, k =5 (mod 8), then 2f = 2 does not split into two different primes in Q(/k). Hence,
by Theorem 2, all the integer solutions of (6) [f =1, k = 5 (mod 8)] can be obtained from

ty + /K = (———a+b‘/z>3

2
3
sy + VK = (c +2d/? )(a +2b/z>
where the fundamental unit n = c + d/k and £ + bk is an integer in the field.

2 2
Now ¢ = 4 (mod 2) and ¢ = b (mod 2) for Xk = 1 (mod 4). On equating irrational parts, we get,
respectively,
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(7 b(3a* + kb?) = 8,
and
(8) e(3a®b + kb®) + d(a® + 3kab?®) = 16.

Equation (7) can be completely solved for a given k. In particular, if kK = 5 (mod 8), k > 0,
k # 5, then (7) has no solution in integers. If ¢ and d are odd, then by Theorem 1, (8) has
no solution in integers. Whence (6) is not solvable in integers.

In particular, y? - k = 2% is without integer solutions for the following k's:

k =109, n = (261 + 25/109) /2
k =133, n = (173 + 15/133)/2
k =149, n = (61 + 5/149)/2
k = 157, n = (213 + 1%/157)/2
k =165, n = (13 + /165)/2
k =173, n = (13 + V/173)/2
k =181, n = (1305 + 97/181)/2
Below we consider three cases where f # 1.
Case 1:
(9) y? - 116 = z°

The equation can be written as y?> - 2% » 29 = z®, Here k = 29 = 5 (mod 8) and f = 2.
The fundamental unit of Q(v/29) is n = (5 + v29)/2 and h[Q(V29)] = 1. Since 2 remains a prime
in @(/29), by Theorem 2, all the solutions of (7) can be obtained from

3
(10) +y + 2/29 = (a—+2b—'/59—> ,

and .
(11) +y + 2/29 =

(24,725 (220’

On equating irrational parts, we have, respectively,

(12) b(3a® + 29p%) = 16,
and
(13) 5(3a’b + 29b%) + (a® + 3 + 29ab2) = 16 + 2.

(12) is easily seen to be insoluble in integers and (13) has no solution in integers by
Theorem 1.

Case Z:

(14) y? - 180 - z°

Here X = 5 and f = 6 in y® - kf? = x°. The fundamental wnit of Q(Y53) is n = (1 + V5)/2
=1

and h[Q(/5)] £ 0 (mod 3). Again 2f = 12 has 2 prime divisors 2 and 3. Since (2) = (2)

and (3) = (3) in Q(/5), we need examine the following two equations by Theorem 2.
/5\3

(15) sy + 6/5 = (E‘“—Zb‘i) ,

and
e 3

(16) ty + 6/§=<1 +2‘5>(a+2b‘/§) )

From (15) and (16), we obtain, respectively,

(17) b(3a® + 5b%) = 48,

and

(18) (@® + 3 * 5ab®) + (3a®b + 5b%) = 9.

From (17), we see that b = 0 (mod 3). Then b(3g? + 5b%) = 0 (mod 9), while 48 = 3 (mod 9).
Hence (17) has no solution in integers. Again (18) has no solution in integers by Theorem 1.

Case 3:
(19) y? - 125 = x*
By Theorem 2, we gat all the solutions of (19) from
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(20) 3a°k + 5b°% = 40,
and
(21) (@® + 15ab?) + (3a’b + 5b%) = 80.

It is easy to see that (20) has only one solution given by @ = 0 and b = 2. From this
solution we find = = (1/4)/(a® - 5b?) = -5 and hence y = 0. Since, by Theorem 1, (21) has
no solution in integers, we have exactly one integral solution for y2 - 125 = x3, namely

rx=-5,y=0.
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A DIVISIBILITY PROPERTY CONCERNING BINOMIAL COEFFICIENTS

JANOS SURANYI
University Estvos 1, H-1088 Budapest, Mizeum krt 6/8
I

The following observation was made by P. Erdds. The exponent of 2 in the canonical

decomposition?® of
(2"-{*1) <2n
/ - n-1
2" 2 )

is 3n for m» > 2. He conjectured that this is always true.? I succeeded in proving his
conjecture, which raised the analogous question for odd primes instead of 2.
For the solution of this problem, I can prove the following.

Theorem: The exponent of the prime number p in the canonical decomposition of the

difference
pn-rl pn
(p" ) B (p”"1>
is
(i) 3n for p = 2,
(ii) 3n+ 1 for p = 3,
(iii) at least 3n + 2 for p > 3.

More generally, I will investigate, for integers X, M divisible by p (X = kp, ¥ = mp),
the difference

A=4, &, M = (5) - <§)

By an algebraic transformation, we will be led to the following question: If p is a prime
and m(p - 1) is even, which power of p divides the sum

(mp -1)/2
r(mp - r)
m(p -1)/2 r=1
ptJ 9
i=Lpti Jmp - )

1.e., the decomposition into the product of powers of different prime numbers.

2pral commumication, July 1976.
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