THE POWERFULL 1979

CHARLES W. TRIGG San Diego, California

(A)
$$1979 = 990^2 - 989^2$$

(B)
$$1979 = 3^2 + 11^2 + 43^2 = 3^2 + 17^2 + 41^2$$

= $2^2 + 5^2 + 7^2 + 11^2 + 13^2 + 17^2 + 19^2 + 31^2$

(C)
$$1979 = 5^2 + 27^2 + 35^2$$

 $= 7^2 + 29^2 + 33^2$
 $= 1^2 + 4^2 + 21^2 + 39^2$
 $= 3^2 + 5^2 + 24^2 + 37^2$
 $= 3^2 + 7^2 + 25^2 + 36^2$
 $= 1^2 + 3^2 + 6^2 + 13^2 + 42^2$
 $= 1^2 + 4^2 + 5^2 + 16^2 + 41^2$
 $= 2^2 + 7^2 + 17^2 + 26^2 + 31^2$
 $= 1^2 + 2^2 + 3^2 + 5^2 + 28^2 + 34^2$
 $= 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 22^2 + 38^2$
 $= 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 18^2 + 40^2$
 $= 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 30^2 + 32^2$
 $= 1^2 + 2^2 + 6^2 + 8^2 + 10^2 + 19^2 + 20^2 + 22^2 + 23^2$

These expressions, that involve the squares of all positive integers < 44, are just a few examples chosen from the multitude of partitions of 1979 into squares.

 $= 3^{2} + 4^{2} + 6^{2} + 7^{2} + 8^{2} + 9^{2} + 11^{2} + 12^{2} + 13^{2} + 14^{2} + 15^{2} + 16^{2} + 17^{2} + 18^{2}$

$$(\mathcal{D}) \quad 1979 = 2^3 + 3^3 + 6^3 + 12^3$$

$$= 1^1 + 13^2 + 8^3 + 6^4 + 1^5$$

$$= 2^0 + 2^1 + 2^3 + 2^4 + 2^5 + 2^7 + 2^8 + 2^9 + 2^{10}$$

$$= 2^{11} - 2^6 - 2^2 - 2^0$$

$$= -3^0 + 3^2 + 3^3 - 3^5 + 3^7$$

$$= 1^3 + 9^3 + 7^3 + 9^3 + 1^1 + 9^2 + 7^1 + 9^2 + 1 \cdot 9 \cdot 7/9$$

AN OBSERVATION CONCERNING WHITFORD'S "BINET'S FORMULA GENERALIZED"

M. G. MONZINGO
Southern Methodist University, Dallas, TX 75275

In [1], Whitford generalizes the Fibonacci sequence by modifying the defining equations of the Fibonacci sequence by letting

$$G_n = \frac{\left[(1 + \sqrt{p})/2 \right]^n - \left[(1 - \sqrt{p})/2 \right]^n}{\sqrt{p}} \qquad (n \ge 1).$$

This leads to a sequence whose defining equations are $G_1 = G_2 = 1$,

$$G_{n+2} = G_{n+1} + [(p-1)/4]G_n \qquad (n \ge 1).$$

One can also use Whitford's Generalization of Binet's formula to obtain a generalization of the Lucas sequence. From [2], $L_n = \alpha^n + \beta^n$ $(n \ge 1)$, where $\alpha = (1 + \sqrt{5})/2$ and $\beta = (1 - \sqrt{5})/2$. By using Whitford's α and β , the Lucas sequence can be generalized by a sequence H_n , where

$$H_n = [(1 + \sqrt{p})/2]^n + [(1 - \sqrt{p})/2]^n \qquad (n \ge 1).$$

Now, since α and β satisfy $x^2 - x - [(p-1)/4] = 0$,

$$\begin{split} H_{n+2} &= \alpha^{n+2} + \beta^{n+2} = \alpha^n(\alpha^2) + \beta^n(\beta^2) = \alpha^n(\alpha + [(p-1]/4]) + \beta^n(\beta + [(p-1)/4]) \\ &= \alpha^{n+1} + \beta^{n+1} + [(p-1)/4](\alpha^n + \beta^n) = H_{n+1} + [(p-1)/4]H_n. \end{split}$$

Furthermore, $H_1 = (1 + \sqrt{p})/2 + (1 - \sqrt{p})/2 = 1$ and

$$H_2 = [(1 + \sqrt{p})/2]^2 + [(1 - \sqrt{p})/2]^2 = (p + 1)/2.$$

Thus, the analog of Whitford's generalization of the Fibonacci sequence is the generalization of the Lucas sequence,

$$H_1 = 1$$
, $H_2 = (p + 1)/2$, $H_{n+2} = H_{n+1} + [(p - 1)/4]H_n$ $(n \ge 1)$.

Note that, of course, the Lucas sequence corresponds to the case p = 5.

The following table, analogous to Whitford's gives the first ten terms of the sequences corresponding to the first five positive integers of the form 4k + 1.

p	<u>P - 1</u>	G_1	G ₂	G ₃	Gц	G 5	G ₆	G ₇	G_8	G ₉	G ₁₀
1 5	0	1 1	1 3	1 4	1 7	1 11	1 18	1 29	1 47	1 76	1 123
9 13 17	2 3 4	1 1 1	5 7 9	7 10 13	17 31 49	31 61 101	65 154 297	127 337 701	257 799 1889	511 1810 4693	1025 4207 12249

The following are some of the identities satisfied by the sequences H_n and G_n .

(1)
$$\lim_{n \to \infty} \frac{H_{n+1}}{H_n} = (1 + \sqrt{p})/2,$$

$$G_{2n} = G_n H_n,$$

(3)
$$H_n^2 = H_{2n} + 2[(1-p)/4]^n,$$

(4)
$$H_n = G_{n+1} + [(p-1)/4]G_{n-1},$$

(5)
$$pG_n^2 = H_{2n} - 2[(1-p)/4]^n.$$

The major change in the generalized identities occurs where $\alpha\beta$ = -1 appears in the Fibonacci/Lucas identities, with $\alpha\beta$ = (1-p)/4 in their generalizations.

REFERENCES

- 1. A. K. Whitford. "Binet's Formula Generalized." The Fibonacci Quarterly 15 (1977):21.
- 2. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969.

ON THE DISTRIBUTION OF QUADRATIC RESIDUES

M. G. MONZINGO

Southern Methodist University, Dallas, TX 75275

For p an odd prime, each of the integers 1, 2, ..., p-1 is either a quadratic residue or a quadratic nonresidue. In [1], Andrews proves that the number of pairs of consecutive quadratic residues, the number of pairs of consecutive quadratic nonresidues, etc., are the values listed in Table 1. This note is a further investigation of the distribution of the quadratic residues and quadratic nonresidues which will include new proofs of the results in Table 1.

The integers $1, 2, \ldots, p-1$ can be partitioned into disjoint cells, in an alternate fashion, according to whether they are consecutive quadratic residues or quadratic nonresidues.