Again, yq + p?q® = t? for some integer t. Solving for y,

- ;/;2 - pZZZ
q

But y is positive, hence ¢ = s + pq for some integer s > 1. Substituting ¢

into (12) yields

(12) y

.

(13) y = sls + 2pq)
q -

Since q is a product of distinct primes, ¢ must divide s, i.e., s = ng for some
integer n > 1. Substituting s into (13) yields the desired formula for y,

(14) y = ng(n + 2p),
and substituting (14) for y in (11) yields
x = 2pg(n + p).
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ON PRIMITIVE WEIRD NUMBERS

SEPPO PAJUNEN
Tampere University of Technology, Tampere, Finland

1. INTRODUCTION

Let n be a positive integer. Denote by 0(n) the sum of divisors of n. It is called n
perfect if o(n) = 2n, abundant if o(n) > 2n, and deficient if o(n) < 2n. Further, n is defined
to be pseudoperfect if it is the sum of some of its proper divisors that all are distinct (d is
a proper divisor of n, if d/n and d < n).

An integer n is called weird if » is abundant but not pseudoperfect. It is primitive
abundant if it is abundant but all its proper divisors are deficient. If 7n is primitive abun-
dant but not pseudoperfect, it is called primitive weird.

It is not known [1] if there are infinitely many primitive weird numbers or any odd weird
numbers. A list of weird and primitive weird numbers not exceeding 10° is given in [1]. How-
ever, there is a misprint in [1] on page 618: instead of 539774 one should read 539744.

In this note we let n specially be of the form

N n=2%q (@a>1,p<gq,p and g odd primes),
and give necessary and sufficient conditions under which n is primitive weird.

know this cannot be found in the literature. As an application, we list some primitive weird

numbers exceeding 106,
Throughout this note, let p and g be odd primes and p < q.
We use the following notations:

S=Za:2\’=2°‘*1—1, st=3 2
v=0

)

As far as we

(the sum being taken over some of the indices V);

_<- 20+1 - 1);

In
3

5, =3 2% =@ - 1p, 55=5,-m (0

= (29%1 - 1)g, S} =5,-ng (0<n<2% - 1)

A
n
™
"
Q

|

= (2% - 1)pgs Spq = Spg - kpg (0 Sk £ 2% - 1),

9!
T
Q
]
N,
<
s
Q
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Theorem 1: The integer n in (1) is primitive weird iff

- DE+1

(2) %"t 4+ 1 <p<qgc<
p - (2% - 1)

is true and
(3) pg =S, + S, +S' for some m,n
is false.

Theonem 2: Assume that the primes p and g are of the forms

p=2% 4z, 1<zx<2¢tt -3

P - 7 . .
= — < <
q 7 1° 1 <727 <x and T an integer
such that
2%*p 4 2°*p 4 x - 1
z+2 ~927 z+1 -

Then the integer n in (1) is primitive weird.

2. APPLICATIONS

Theorem 2 gives, e.g., the following primitive weird numbers n = 2%°pq.

2¢ p q n
2 5 7 70
4 11 19 836
8 17 127 17272
19 71 10792
61 9272
23 43 7912
29 31 7192
16 37 191 113072
41 127 83312
43 107 73616
32 67 1021 2189024
971 2081824
887 1901728
71 541 1229152
523 1188256
79 311 786208
83 257 682592
97 179 555616
101 167 539744
109 149 519712
64 131 4159 34869056

4093 34315712
3733 31297472

3373 28279232

137 1657 14528576
139 1471 13086016
1469 12979264

1447 12872512

149 853 8134208
839 8000704

151 773 7470272
157 659 6621632
167 521 5568448
179 433 4960448
191 379 4632896
239 271 4145216
251 257 4128448
128 257 30197 993360512

29683 976451968

(continued)
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2° p q n

25057 824275072

24029 790457984

263 8317 279983488
8087 272240768

7561 254533504

128 269 4861 167373952
4649 160074368

271 4217 146279296
277 3109 110232704
283 2557 92624768
307 1499 58904704
1493 58668928

1487 58433152

311 1399 55691392
317 1303 52870528
337 1039 44818304
409 677 35442304
499 521 33277312
256 521 25997 3467375872
25841 3446569216

25633 3418827008

24851 3314526976

24799 3307591424

523 22271 2981819648
21617 2894256896

20963 2806694144

20789 2783397632

547 7703 1078666496
7673 1074465536

557 6163 878794496
6151 877083392

256 563 5521 795730688
569 5003 728756992
4993 727300352

4973 724387072

5717 4441 655988992
4423 653330176

587 3931 590719232
3923 589517056

593 3673 557590784
3659 555465472

599 3457 530110208
619 2917 462239488
631 2687 434047232
2671 431462656

661 2251 380905216
683 2029 354766592
769 1523 299823872
811 1381 286717696
839 1307 280722688
911 1163 271230208
919 1151 270788864
937 1123 269376256
947 1109 268857088
1013 1031 267367168

3. PROOF OF THEOREM 1
The divisors of n in (1) are:
2%, 2%p, 2¥¢, 2pq (Vv =0, 1, ..., ®).
We note that divisors 2V are always deficient. All the divisors 2%p and 2Yg are deficient iff

(4) p> 2%+ 1.
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For such p, n is abundant iff .
@ -DE+1
p - (20+1_ 1)

(5) q =

Last we see that all the divisors 2%pg, where v < a and p satisfies (4), are deficient. This
shows that »n is primitive abundant iff (2) holds.
It is clear that [if the condition (4) holds]

S'<8<p<q-1,

SO .
2pq - 8" >2q -p=(29-p>@+qp>5,+5 285 +5
or
(6) Sy + Sq + 8' < 2pq.
Since

k =
Spq £ Spqg =1 - Pqs
we see from (6) that n is pseudoperfect iff (3) holds.

L. PROOF OF THEOREM 2

On the basis of our choice of p and q, the condition (2) is satisfied. Write (3) in the
form

n mo+ng+ (2% - g+ (x+1)g=(2°*" - D@ +4q) +S'.
This implies
(8) ng=Q* -1 -1-mp+1<+8'.

Write, for brevity,
M=20+1_1—T'

If m> M+ 1, the right side of (8) is < -p + ¢ + §' < -1 < 0, while the left side is
always > 0.
In the case m = M, (8) is equivalent to ng = S' + i, which cannot hold for any n, because
0<S"+171<q.
Finally we have the case m < M. Equation (8) trivially fails for n = 0. If n > 1, we see
that
ng>M-mp+1i+S5'

if g > (M + 1)p, and this is true for

2u+1p _ 7:
127z ¥2 -
5. REMARK
An integer
t
(10) n = Zu.nlpi (20+1 < pl € ves < pt)
i=
is abundant, and all its proper divisors are deficient, if
a+1 t a+l
(11) 2_._<]_+_1._>> H(l.;._l_)z_z___
ga+l _ 4 P, i=1 pi e+l _ 1
or
t-1 t-1
(2041 - 1) rl(pi +1) (28+1 _ 1) r](pi + 1)
(12) =1 < D < i i=1
a+l 1\t-1 =t ' a1’y a+l T
2 (1+5—)npi —(2“*1-1)H(pi+1) 2 npi—(Z —1)H(pi + 1)
/=1 i=1 i=l i=1
We see that n is not pseudoperfect if

(13) o(n) - 2n = 2°%1,
because

a
on) - n - E: Y =n+1>n
V=0
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and .
o) -n-p, =n-(p - 2°%Yy < n.

Write (13) into the form

t-1
@ -DJlE, +1) - 22
i=1
(14) p. = . .
i 15 +1 tt
2 Ip, - @*** - DI, +D
i=1 i=1

We see that p, from (14) also satisfies (12) and this remains valid if we replace 2°*1 in (13)
and (14), e.g., by any constant A > 2°*! provided that p, > A.

We can now present an algorithm for computing arbitrary long (great) primitive weird num-
bers n satisfying (10) and (14) if they exist.

For given a choose first the prime p, > (4 >)2°*! and then p, from (14). If this is not a
prime, choose p, an arbitrary prime > p, and calculate p; from (14). If this is not a prime,
choose p, an arbitrary prime > p,, and so on. The algorithm ends when we obtain a prime p, from
(14).
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FIBONACCI CONCEPT: EXTENSION TO REAL ROOTS OF POLYNOMIAL EQUATIONS

KESAR SINGH
Indian Statistical Institute, Calcutta-35, India

It was in November 1973 when Professor T. A. Davis was conducting a biocensus that he
introduced me to the well-known Fibonacci numbers. He told me that certain limbs of a normal

human body are in the Golden Ratio, viz. 1.618... . I observed that the reciprocal of the
Golden Ratio (0.618...) is nothing but a root of the quadratic equation

(1) 2 +zx=1

or

(2) 2 +x-1=0

which is formed by equating the three ratios of human limbs (each ratio, in fact, is equal
to the Golden Ratio).

As is well known, this root 0.618 of (1) is the fixed ratio of the successive terms
(ignoring some of the initial terms) of the Fibonacci sequence. I considered the sequence
{Ur} defined as follows:

(3) Up =1, V=1, 2, 3; Up = Up_y + Un_p + Un_35 ¥y 2.

Up_1
Using a computer program, I found that after 21 terms of the sequence, the ratios { Z }
r

become constant up to the 9th decimal place and is 0.543689013, which is found to be a
root of the polynomial equation (cubic),

(4) 23 + 22 4+ 2= 1.
Now, consider the sequences defined, analogously, as follows:
Sequence (Definitions):
i) U, =1,v,=1,2, 3
(i) U, =1,V¥,=1,2, 3, 4, 5; U, =U

+ Ur_z + U + U;-h’ Vr Z_S;

r-3

r por T Uy ¥ Up g ¥ Un_y +Upgs ¥V 2 65
(vii) U, =1, VY, =1, 2, 3, ..., 105 U, =Up_y + Up_p, + *+* + Up_y45 Vo > 11.

U,_
The approximate limit points (which do exist) of sequences of ratios { Z = as obtained by

r
computer, are 0.518790064, 0.508660392, 0.504138258, 0.502017055, 0.500994178, 0.500493118, and
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