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TRIANGULAR ARRAYS ASSOCIATED WITH SOME PARTITIONS

D. G. ROGERS
The University of Western Australia, Nedlands, W. Australia 6009

A partition of a positive integer n by a set of integers S is set S' = {s;} (1 < 7 < r)
of integers s; drawn from S such that

(D n=isi.
i=1

The general problem for pattitions is to discuss the number of partitions of »n by S, a number
that depends, in each particular problem, on the restrictions that are placed on the repre-
sentation (1); for example, r may not be fixed, S’ may or may not contain repetitiomns, or the
order of the terms in (1) may or may not matter according to the question at issue. A typical,
but difficult, problem is that of unrestricted partitions: what is the number p(n) of parti-
tions of n by S when S is the set of all positive integers, repetitions are allowed, and neither
the number of terms nor their order in (1) matters? (See [2, pp. 273-296] for an introduction
to the theory of partitions as well as an account of some results concerning p(n).)

A much simpler problem for which the answer is known is: what is the number b(n,k) of
partitions of (n + 1) by S when S is the set of all positive integers, » = k + 1, repetitions
are allowed, and the order of the terms in (1) matters? The number in question, as may easily
be seen, is just a binomial coefficient

2 b(n,k) = (2), n>k>0.

The associated triangular array {b(n,k)} (n > k > 0) is the familiar Pascal triangle and,
among many identities for the b(n,k), we have

n-k+1
(3) b(n,k) = 2: b(n -m, k- 1), n>k>1.
m=1
Introducing the generating functions
B (x) = b(r,k)z" % B(x) = By(x) = 9 a",
n=k n=0
we have, at least formally,
%) Bi(x) = [B@1*", k>1
) (1 - z)B(z) = 1.

Hale [1] has recently enquired about partitions using Kk ones rather than partitions into
k parts: what is the number f(n,k) of partitions of n by S when S is the set of all integers,
r is arbitrary, repetitions are allowed, the order of terms matters, and s; = 1 for exactly
k values of 7, 1 £ 7 < r? Carson and Oates, in reply [3], have given a formula analogous to

(3), namely,

n-k
6) F,k) = fn -1, k-1 +) fn-m k), n>k+22>3,
m=2
noting also that, for n > 2, the f(n, 0) are the Fibonacci numbers, since
N f(r, 0) = fn - 1, 0) + f(n - 2, 0), n > 3,
with |

£, 0) =0; f(2, 0) =1,
Since, as Hale [1] noted,
fln,m) =1; fn, n-1) =0, »n>1,

the associated triangular array {f(n,k)} (n > k > 0; n > 1) is completely determined by (6, 7).
To prove (7), note that either the first (and only) term s; in (1) is n or form some m,
2<m<n, 8, =m, and then the remaining terms {s;} (2 < Z < »r) form a partition of (n - m)

by S. Hence
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n-1
1+ fin-m, 0), n>3

me2

(8) fn, 0

n-2
=1+) fin-1-m 0) + f(n -2, 0), n>4
me2
=f(n-1,0) + f(n -2, 0), n>4
where the last equation also holds for n = 3. The proof of (6) is similar to that of (8),
except that now s, = 1 is possible, giving the additional term f(n - 1, k - 1). Notice that
taking C
€)] f(0, 0) =1

both gives an apex to the triangular array {f(n,k)} and eases the above proofs, allowing (7)
to be extended to n = 2. Moreover, taking f(n,k) = 0 for kK < 0 or X > n, allows (6) to be
extended to n > k + 2 > 2 with (8) as a special case.

An alternative approach, complementing this additive theory, is by way of convolutive or
multiplicative identities analogous to (4). By way of illustration, consider f(n, 1), so that
exactly one of the s; in (1) is equal to 1. Now either s, = 1 and {s;} (2 <7 < r) is a par-
tition of (n ~ 1) by S, or for some ©, 1 < Z < r, s; =1, and then for somem, 2 <m<n -1,
{s;} (1 < J < 1) is a partition of m by S, while {3j} (1 << <r) is a partition of (n - m - 1)
by S; or s, =1 and {8;} (1 £ 7 < ») is a partition of (n - 1) by S. Since these cases are
exclusive and exhaustive,

n-1
fr, 1) = f(n =1, 00 + 3 f(m, 0) (n-m=1,0) + f(n=-1,0), n>3

or, making use of (9), m=? '
(10) fn, 1) =Y f(n, Oftn -m -1, 0, n2 2.
m=]1

Similarly, by considering the least ¢ (1 £ © < r) for which s; = 1 in (1), we have for k > 1
fn,k) = fn -1, k-1 + 71, OOfn -2, k-1) + ++o + f(n-k, 0)Ff(k -1, k - 1),
n>k+1

n-k
an = fim, Of(n-m=-1, k- 1), | n>kz1
m=0
.On introducing the generating functions

F (x) = Zf(n,k)x"'k; F(x) = Fy(x),
nek

we have, from (10, 11),
Fi(x) = Fy(x)F,(x) = [F(x)]?

_ Fo(x) =F _, @F (x) =F_, @F(x), k2>1,
and it follows that
(12) Fo(x) = [F@@)1**, k> 1.

From (12), which is the analogue of (4), further identities may be obtained in turn, for
example,
R (x) = F,(®)F,_, (&), 0<s<k.

Moreover, by (7, 9), F(x) satisfies the functional equation [cf. (5)],
(13) (1 -2 -2%)F(x) =1 -z

Similar results hold if we now take S to be the set of the first £ positive integers
(2 > 2) rather than the set of all integers. Thus, let b;(n,k) be the number of partitions
of n+ 1 by S where Sy = {£} (1 <7 <2; &> 2), r=k+ 1, repetitions are allowed in (1)
and the order of the terms in (1) matters; and let f,(n,k) be the number of partitions of n

by S;, r is arbitrary, repetitions are allowed, order matters, and kX of the s; are equal to
1. We further make the conventions that

by(n,k) = 0=F (n,k), k<O0ork>n,
fz(oﬁo) =1,
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then the results for the triangular arrays {b,(n,k)}, {f, (n,kK)} (n > k > 0) are truncated
versions of those for the case of unrestricted S and may be summarized as follows, the proofs
also being similar to those above.

First, we have the additive recurrence relations [cf. (3, 6)],

3
Zbi(n—m,k—l), n>k

(148) bl(n’k) = _>_ 1)
m=1
(14b) by, (n,0) = 1, 0<n<2y; =0, n>2L,
and
L

(15a) fonk) = fn -1, k-1 +Y fin=-m ), nxkx0,

. m=2
(15b) £, (0,0) = 1; f,(1,0) = 0.

Secondly, writing

By, (@) = z:kbl(n,k)x"'k; Fy (@) = Z:kfz(n’k)x"-k’

]

By (x) = By, (£); Fy(x) = Fy , (),

we have [cf. (4, 12)]

(16) By, (@)
with, from (14b, 15, k = 0)

By @1 Fp , (@ = [P @ 1", k>,

(17) (1 = x)By (x)

"

£
1+ zh <1 - Z::c'")z«“£ (z) = 1.
2

Moreover, since

b, (n,k) = b(n,k), n-%<k<mn,

fp k) = f(n,k), n-4<kx<n,
we have, in a natural way (see [2, p. 275]) the limiting results
(18) %g&Jm=aungﬂQ“m=am.

Not all partition problems have the multiplicative structure exhibited in (4, 12, 16).
For example, returning to the problem of unrestricted partitions mentioned at the beginning,
let p(n,k) be the number of partitions of 7 by S when S is the set of all positive integers,
repetitions are allowed, neither the number of terms nor their order in (1) matters, and kK
of the s; in (1) are equal to 1, and let

B () =) p(n,Kz""¥ P(z) = Py(a).
n=k

Then, without determining P(x), it is at least straightforward to show that
(19) P, (x) = P(x).

Shapiro [4] has asked whether there is an arithmetic of triangular arrays where a simple
function of the generating function of the first column yields the generating function of the
other columns as in (4, 12, 16) and indeed also (19). For example, given a sequence {a,}

(n > 0), we may define a triangular array {t.,x} by

n-k

(20a) Tnik = Zantn-l,k-l+m’
m=0

(20b) to,o =a,,

and

(20c) thx =0, k<O0ork>n.
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and then if

(21a) T @) = ) taxt kK T) = Ty (@),
n=k
(21b) T (2) = [T(x)1¥*.

Conversely, given a triangular array satisfying (21), we may recover a sequence {a,} (n > 0)
via (20). What are the sequences arising in this way in the partition problems considered
above [see (4, 12, 16)]? -
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BREAK-UP OF INTEGERS AND BRACKET FUNCTIONS IN TERMS OF BRACKET FUNCTIONS
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ABSTRACT

We have presented a general formula for the break-up of integers into bracket functins,
and some formulas for the break-up of bracket functions into other bracket functioms.

hkk
It is interesting to find break-ups of variable integers into a sum of bracket functionms

involving the integer we want to break up and other integers. Two well-known examples of this
are

m-1 .
(1) x = Z[m—;—t-] integers m > 0;
1=0
@+ D], g [z+ 28
(2) x = [ 2p + 1 ] * EEZ[EE—I—T] integers p > 0.

Here we shall find a general break-up of the variable integer into bracket functions involving
two other integers (equation 12). The above-mentioned break-ups are special cases of this
more general formula.

To derive the general formula, we shall need to use the A-function (defined in [1])
defined by

. ,m) =1 if
(3) h(z, m) if m/z
=0 if me

It is easily seen that it satisfies the following properties (which we shall use later);
(4) {h(z, M)}’ = h(x, m) integers j > 0;

m
5) Do+, m =1

i=1
(6) h(z, m)h(x, m)) = h(z, m) where m = (my, my);
@) h(x + mk, m) = h(x, m) integers k;
(8) h(nx, m) = hix, m) 1if <n,md= 1.

Now, considering the difference operator, A, acting on the bracket function {x ; 1]:
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