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The purpose of this article is to exhibit some properties of certain binomial coeffi-
cients that are generated in Theorem 1 below. We display the integers in a triangular form
and show that their occurrence within that structure follows a regular pattern.

We make use of the kth difference AZf(x) of a function, this difference being defined by

2@ = fe+ k) - (¥)fle + k- DAL+ -+ CDFF@),
where h is a positive real number.

Although the following theorem is a special case of [1l, Theorem 2], we present an inde-
pendent proof that is more appropriate to the present context.
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Theorem 1: Let x,, T,, ..., &3 and Yq, Yy, +++5 Ymx be two sets of real numbers such that
To <1 < oot STy Yo Y1 S eve < Ypks Xy = Ypgs =0, 1, .o, k,and y, -y, , =k,
2=1,2, ..., mk. Then
(m-1)k
k
¢b Manf@g) = 2. 0 8hF(s),
=0
where the coefficients a,, @,, ..., Q(n-1)x are positive, symmetrical [that is, a; = Cm - 1yk -1 °
27=0,1, ... (m - 1)k], and have sum equal to mk. More specifically,
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where (m ~ L)k =mg + r, 0 < r <m.
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Proof: In [2, Theorem 6, p. 150] it is proved that for any positive integer n,

n-1 n-1 n-1 X .
Aj;f(x) =.Z Z E Ahf[x + (4,4 oon + ik)g]»

1, =0 1,=0 i, =0

from which we readily deduce that

m-1 m-1 m-1
MEF) = 20 Do e D Bifla 4+ (B + e+ BR].

i, =0 i,=0 iy =0
We now observe that 0, is equal to the number of ways in which p can be expressed as a
sum ¢, + *++ + 2, where 0 < 7, <m -1, ¢t =1, 2, ..., k. Consequently, ap, is equal to the
coefficient of x? in the expansion
(m-1)k
(2) :E: 0z = (L+x+x%+ - + 27 Dk = (1 -amk@ - 2)7k,
r=0
It is now clear from (2) that the a; are positive, symmetrical and have the form specified.
That their sum is m* follows by putting = 1 in the left-hand side of (2).
When k = 3, for example, we display the coefficients a; in the following triangular
array:

m
1 1
2 1 3 3 1
3 1 3 6 7 6 3 1
(3) 4 1 3 6 10 12 12 10 6 3 1
5 1 3 6 10 15 18 19 18 15 10 6 3 1
6 1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1
7 1 3 6 10 15 21 28 33 36 37 36 33 28 21 15 10 6 3 1
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We now make some observations in relation to the coefficients in (3). First, as pre-
dicted by Theorem 1, the sum of the integers in row r is equal to r®. Second, each integer
in the above table is either a multiple of 3 or leaves a remainder of +1 when divided by 3.
Furthermore, for any particular row, the first entry, namely 1, and every third successive
entry, are exactly those integers which leave remainder +1 when divided by 3. We summarize

this discussion in the following theorem.

Theorem 2: Each integer in arrangement (3) is either a multiple of 3 or leaves a remainder
of +1 on division by 3. If we label the integers in any one row as o,, 0;, ..., then

0; =1 (mod 3) when 7 = 0 (mod 3), and a; = 0 (mod 3) when © # 0 (mod 3). Consequently, in
row m, there are m coefficients which leave remainder +1 on division by 3, and 2(m - 1) which
are a multiple of 3.

Proog: The form of the coefficients o; is specified in Theorem 1. Since 3 is a prime number,
the remainders after division by 3 are completely determined by the term

(i+k—l) - (i+2) G+ 1)E +2)
k-1 2 2 :
If £ # 0 (mod 3), then 7 is of the form 3m - 1 or 3m - 2, where m is a positive integer.

In either case, it is easy to see that (4 + l{;l +2) is divisible by 3. 1If, on the other

hand, Z = 0 (mod 3), then we can write ¢ = 3m, and

E+1D)E+2) _ Gm+1)(GBm+ 2)
2 2 :
Consequently,
9m(m + 1)

-1 = 5

(Bm + 1)(3m + 2)
2

and this is easily seen to be divisible by 3.
We can generalize the results of Theorem 2 as follows:

Theosrem 3: Let k be a prime number. Then each coefficient a; of Theorem 1 is either a
multiple of k, or leaves a remainder of +1 on division by k. In any one row, o; = 1 (mod k)
when 7 Z 0 (mod k), and a; = 0 (mod k) when 7 # 0 (mod k). Consequently, in row m there are
m coefficients which leave remainder +1 on division by k, and (m - 1)(k - 1) which are a
multiple of k.

The proof is similar to that of Theorem 2, and will not be included.
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PYTHAGOREAN TRIANGLES AND MULTIPLE ANGLES
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In a paper dealing with Pythagorean triangles, Gruhn [1] asked how many pairs of primi-
tive Pythagorean triangles exist in which the sine of one of the acute angles of the second
triangle equals the sine of twice either of the acute angles of the first triangle. This
question may be generalized to determining pairs of primitive Pythagorean triangles where an
acute angle of the second is N times an acute angle of the first (here N can take on any
positive integer value). In addition, it may be asked whether any relationship exists among
the generators of such primitive Pythagorean triangles.

It is necessary to review first some known results from number theory and trigonometry.
A Pythagorean triangle is a right triangle whose sides are positive 1ntegers. Such triangles
will be designated by the triple (x,y,2) which satisfies the equation x? + y = 22, In the
case where x and y are relatively prime, the triangle is said to be primitive. Formulas for
the sides of primitive Pythagorean triangles in terms of generators m and n are (see [2]):
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