and .
o) -n-p, =n-(p - 2°%Yy < n.

Write (13) into the form

t-1
@ -DJlE, +1) - 22
i=1
(14) p. = . .
i 15 +1 tt
2 Ip, - @*** - DI, +D
i=1 i=1

We see that p, from (14) also satisfies (12) and this remains valid if we replace 2°*1 in (13)
and (14), e.g., by any constant A > 2°*! provided that p, > A.

We can now present an algorithm for computing arbitrary long (great) primitive weird num-
bers n satisfying (10) and (14) if they exist.

For given a choose first the prime p, > (4 >)2°*! and then p, from (14). If this is not a
prime, choose p, an arbitrary prime > p, and calculate p; from (14). If this is not a prime,
choose p, an arbitrary prime > p,, and so on. The algorithm ends when we obtain a prime p, from
(14).
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FIBONACCI CONCEPT: EXTENSION TO REAL ROOTS OF POLYNOMIAL EQUATIONS

KESAR SINGH
Indian Statistical Institute, Calcutta-35, India

It was in November 1973 when Professor T. A. Davis was conducting a biocensus that he
introduced me to the well-known Fibonacci numbers. He told me that certain limbs of a normal

human body are in the Golden Ratio, viz. 1.618... . I observed that the reciprocal of the
Golden Ratio (0.618...) is nothing but a root of the quadratic equation

(1) 2 +zx=1

or

(2) 2 +x-1=0

which is formed by equating the three ratios of human limbs (each ratio, in fact, is equal
to the Golden Ratio).

As is well known, this root 0.618 of (1) is the fixed ratio of the successive terms
(ignoring some of the initial terms) of the Fibonacci sequence. I considered the sequence
{Ur} defined as follows:

(3) Up =1, V=1, 2, 3; Up = Up_y + Un_p + Un_35 ¥y 2.

Up_1
Using a computer program, I found that after 21 terms of the sequence, the ratios { Z }
r

become constant up to the 9th decimal place and is 0.543689013, which is found to be a
root of the polynomial equation (cubic),

(4) 23 + 22 4+ 2= 1.
Now, consider the sequences defined, analogously, as follows:
Sequence (Definitions):
i) U, =1,v,=1,2, 3
(i) U, =1,V¥,=1,2, 3, 4, 5; U, =U

+ Ur_z + U + U;-h’ Vr Z_S;

r-3

r por T Uy ¥ Up g ¥ Un_y +Upgs ¥V 2 65
(vii) U, =1, VY, =1, 2, 3, ..., 105 U, =Up_y + Up_p, + *+* + Up_y45 Vo > 11.

U,_
The approximate limit points (which do exist) of sequences of ratios { Z = as obtained by

r
computer, are 0.518790064, 0.508660392, 0.504138258, 0.502017055, 0.500994178, 0.500493118, and
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0.500245462, respectively. We see that the nature of these sequences of ratios is also simi-
lar. These fixed ratios are the roots of the following polynomials (q) where g can be any
one of the symbols i, ii, iii, ..., vii.

1) 2zt +x2*+z2 +z=1

(1) 28 +z* + 2 +x2 +x =1

10 8

(vii) 2 + 2 + 2P+ o+ 2P 42 =1

[I also observed that these ratios are tending to 0.5 (=%) as » becomes larger and larger,
where 7 is the number of prefixed terms, each equal to unity, and also is the number of terms
on R.H.S. of recurrence relations used in the definitions of the sequences {U,}.] This can
be explained mathematically on the ground that '

V', 1\ (1)” 1
(E) + <5> + e + 2 + 2 + 1 as n > o,
I observed this link only up to n = 10. For » = 1, it is obvious; also, for n = 2, it is
easily seen to be valid. Intuitively, it can be stated that this fact is valid for all infinite

n.
Then I considered the sequence:

(5) Up =1, Vo =1, 2; Up = 2Up_y + 3Up_y, ¥, > 3.

I studied the ratios of the consecutive terms of this sequence and I found that the ratio
tends to a root (= 0.3333...) of the equation

(6) 3z? + 2x = 1.

Now consider the cubic equation

(7) 23 + 22 +x =1,

and form the sequence {U,} as follows:

(8) Up = 1,¥, =1, 2, 33 Up = Up_y +U,_, + 2U,_5, ¥V > 4.

Take the ratios of the consecutive terms of this sequence. The sequence of these ratios comes
out to be tending to 0.5, which is a root of the cubic equation.
Let us now slightly generalize the concept. Consider the polynomial equation

» azt+ a, x4 g, x4 e+ a2t gy = 1

where all a;'s are positive real constants and 7 is any positive integer. Construct a corre-
sponding sequence {Ur} as follows:

(10) Up=1,V¥, =1, 2,3, ..., n; U =aU,_, +a,U._, + " +qU._n, ¥Yo2mn+ 1.

Ur~1
Take the consecutive ratios of the terms of this sequence. The sequence { 7] } of ratios

comes out to be tending to a root of the polynomial equation (9).
Now consider the following polynomial

11) 2 - 2z =1
involving negative coefficients also. Construct the sequence as follows:
(12) Up =1, Vp =1, 25 Up = =2U,_y + Up_y-

Find the ratios of the consecutive terms of this sequence. These again tend to
-0.414213..., a root of this polynomial equation.

In case the roots of a quadratic equation are not real, the said sequence of ratios does
not converge. In some cases it fluctuates in a manner that is readily observed. 1In other
cases it is quite difficult to know the fluctuation pattern. I believe that there is some
mathematical relation between this fluctuation pattern of the sequence of the ratios and the
discrimanant of the quadratic equation when the constant term is made -1, by suitably dispos-
ing the coefficients. As an example, one can observe the quadratic equation

(13) -x? -z = 1.

Sometimes it happens that the sequence of the said ratios behaves in such a manner that
it is quite difficult to assess even whether it is converging to some constant or fluctuating
in some pattern. In such cases, with the help of a computer, one can assess the nature of the

167



sequence of the ratios observing fairly large numbers of terms of this sequence (say 200 and
300, etc.). For example, I could not see any pattern easily in the sequence of the said

ratios for the polynomial equation

(14) 203 4+ x2 - x = 1.

However, when the fluctuations pattern is readily observable, it is my belief that there is a
relation between the oscillating ratios and an imaginary root of the considered polynomial.

I could not get any case where the sequence of the said ratios converged to some con-
stant, say T,, when x, was not a root of the considered polynomial equation. This led me to

state the following:
' ""Given a polynomial equation of the type
(15) az® + ay, "+ e gy =1
(all a,'s are real and 7 any positive integer)."

We observe the sequence of the ratios of the successive terms of the sequence {Ur} defined
as follows:

(16) Up 1, ¥V, =1, 2, ..., n; U, = a,U + aylUp., + o0 +al,_,,s Vo 21+ 1.

1°r -1

Upoa
If the sequence { ; } converges to some fixed number x, (and I believe if there is a real root
r

it converges more often than not), then x, satisfies this polynomial equation.
This fact can be utilized to attempt to find out the roots of a polynomial equation

(o) Apz™ + Ay, 4 oo + 4z + 4y = 0,

where the A;'s are all real and n is a positive integer. The method is summarized as follows:

"If 4, = 0, clearly x = 0 satisfies (0). So zero is one root of (a). Divide, then, (a) by x

to get an equation of (n - 1)st degree, and again treat this new polynomial equation of degree

(n - 1) as (o). If 4, # 0, we can write (a) in the following form:

(17) a,x™ + a,_x"" '+ -+ + ayx = 1, where a; = -Zi.

Now form a sequence {U,} as in (16). A fixed quantity x,, to which the sequence { 2‘1} tends,
r

is one of the roots of (a). I am sure that it does tend, at least when all a;'s are positive.
Divide (@) by (x - x;) to obtain a polynomial equation of degree (n - 1). Again treat this new
polynomial equation as (17) and (if possible) obtain another root, and so on.

I believe that the whole phenomenon is not merely a magic of numbers; instead, there is
some mathematics behind this, though I could not get hold of it. Also, I could not find the
system by which the sequence of the ratios chooses one of the roots to converge to.

Lastly, I quote an interesting example. Call the set of unities used in defining the
sequence {Up} as "generators." 1In fact, this example will show the importance of generators.

"Consider the quadratic equation

222 -z -1=0
or
202 - x = 1.

(18)

Form {U,} as usual (i.e., taking 1,1 as generator) so as to get 1, 1, 1, 1, 1, 1, ..., which
gives us 1 as one of the roots of (18). Now form another sequence {U,} taking the coefficients
2 and -1 as generators to get 2, -1, 5, -7, 17, -31, 65, ..., which converges to - and,
interestingly, -% is another root of (18)."

I shall conclude this article by posing a problem regarding the Fibonacci sequence. Up to
the 36th term of the sequence (Fz¢ = 24, 157, 817 ...) none is a perfect number. It remains to
be solved whether any Fibonacci number is a perfect one. If not, then what is the mathematical
logic behind it?

kb dedt

168

YO )



