Theorem: Let {w,} be an integral linear recurrence of order m > 2. If no ratio of distinct
roots of P,(x) is a root of unity, then {w,} has infinitely many distinct prime divisors.

Here is how to prove it. Consider the recurrence .equation for w,. Following Gel'fond
[1] (or other books on difference equations), the general solution can be expressed as

w, = %(Pl(x)af + «++ + P, (x)aZ)

where &;, ..., @, are the roots of P,(x), P;(x) a polynomial of degree equal to the multi-
plicity of w; minus 1 and with algebraic integer coefficients, and D a nonzero determinant
of algebraic integers (hence an algebraic integer as well). It easily follows that the con-
ditions for Pélya's theorem are satisfied and {w,} must have infinitely many distinct prime
divisors.
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WHAT A DIFFERENCE A DIFFERENCE MAKES!
JERRY T. SULLIVAN

Two men are leaving the office when one remarks that both his wife and boy are cele-
brating their birthdays that night. The other wonders if it is his youngest son. 'Yes,"
says the first, "but he's not so little anymore. His age, multiplied by my wife's age, is
equal to the square of the difference of their ages plus one year." This problem, similar
to an earlier one in The Fibonaceci Quarterly [1], provides some surprising and amusing
mathematical twists.

On the premise that many mothers are between 25 and 35 years of age, and also that a
typical boy is about 10 years old, pairs of ages such as 10 and 30, 11 and 35, etc., can be
tested. After a few trials, an answer is seen to be 13 and 34. Further thought shows that
the problem can be handled algebraically. If the age of the wife is W and that of the boy
is B, then

(1) WB = (W-B)? + 1.
The wife's age can be solved as a function of the boy's age:
(2) W= [3B % (5B® - 4)*]/2.

Substituting B = 13 into equation (2) and using the positive square root gives the known
answer W = 34. However, using the negative square root gives the answer W = 5. It is an

unusual wife who is younger than her son, but the numbers 13 and 5 also satisfy equation (1).

Using the number 5 in equation (2) and choosing the negative root gives the numbers 5 and 2
as another solution. Proceeding in this fashion results in the sequence

(3) 1, 2, 5, 13, 34, 89, ...,

where each successive pair of numbers satisfies equation (1). The number 1 has the unusual

property of giving the solutions 1 and 2 when substituted into equation (2). It does not give

a solution lower than itself.

The above sequence is every other number of the usual Fibonaccl sequence. Calling the
initial age in the sequence A, the next 4,, etc., equation (1) may be rewritten as a
difference equation,

(4) Ayarfy = Uyyy - A% + 1
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Equation (4) is a nonlinear difference euqtion, which fortunately can be simplified. First

rewrite equation (4) as
2 2 _
Ayoy = 34y Ay + 4y = -1,

This must also hold for the next number pair so that
2
Aysz = 3An424

Cancelling like terms and rearranging gives
(Apsp = Ayl (Ayyo = 34541 + 4y) = 0.

Setting the term in brackets equal to O would result in a repeating solution to equation (4),
which would not generate the correct age sequence. The correct simplification of equation
(4) is the linear difference equation

(5) Ayyo = 3Ay4 + Ay = 0.
Equation (5) is solved by assuming that Ay = RY, Substitution results in
RYR?* - 3R + 1) = 0.

2 _ g2 2
N1 T Aysr = Ayar - Ay 4y + 4y

There are two roots which satisfy the quadratic equation,
R, = (3+V5)/2 and R_ = 1/R,.
The solution to the difference equation (5) is
Ay = ar" + bRV,
and choosing the constants g and b so that A; = 1 and A; = 2 finally results in
(6) 4, = (B/R + DRV + (1/R + 1)R7",

The curious property that 4, = 1 seemed to be a natural boundary for the problem, and
is mirrored in the solution. Suppose there were lower solutions A_,, A_,, etc. Replacing
N by -N in equation (6) leads to

_ R -N ( 1 N ( R N-1 ( 1 -(N-1) _
A‘”_(R+1>R +R+1>R'R+1>R +R+1>R =4y_1

so that all of the supposed lower solutions are actually equal to a higher ome. Lastly, to
actually compute 4y from equation (6) is not as formidable as it first appears. It is not
necessary to compute large integer powers of R = (3 + V/5)/2, but merely to use the rules

R? =3r -1
R* = R(R*) =3R* -R=8R -3
R* = R(R®) = 8R* - R = 21R - 8
etc.
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