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TWO FAMILIES OF TWELFTH-ORDER MAGIC SQUARES

CHARLES W. TRIGG
2404 Loring Street, San Diego, CA 92109

A family of 24,769,797,950,537,728 twelfth-order magic squares can be generated from the
basic 9-digit third-order magic square (1) of Figure 1 and the 880 basic fourth-order magic
squares.

First, add 9 to each element of square (1) to form square (2) in Figure 1, and repeat
the operation until the fifteen derived squares of Figure 1 have been formed. Each of these
squares is magic and remains magic in eight orientations: the square itself, its rotatioms
through 90°, 180°, and 270°, and the mirror images of these four.

(1) (2) (3) (4)
8 1 6 17 10 15 26 19 24 35 28 33
3 5 7 12 14 16 21 23 25 30 32 34
4 9 2 13 18 11 22 27 20 31 36 29
(5) (6) (7) (8)
44 37 42 53 46 51 62 55 60 71 64 69
39 41 43 48 50 52 57 59 61 66 68 70
40 45 38 49 54 47 58 63 56 62 72 65
(9) (10) (11) (12)
80 73 78 89 82 87 98 91 96 107 100 105
75 77 79 84 86 88 93 95 97 102 104 106
76 81 74 85 90 83 9 99 92 103 108 101
(13) (14) (15) (16)
116 109 114 125 118 123 134 127 132 143 136 141
111 113 115 120 122 124 129 131 133 138 140 142
112 117 110 121 126 119 130 135 128 139 144 137

FIGURE 1. Sixteen 3-by-3 Magic Sgquares

To construct twelfth-order magic squares,.divide a 12-by-12 grid into sixteen 3-by-3
grids, thus forming a 4-by-4 grid of grids. Label this 4-by-4 grid with the elements of one
of the basic fourth-order magic squares, such as the familiar pandiagonal square:
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In each small 3-by-3 grid place the 3-by-3 square, in any of its eight orientations, that has
the same identification number as the grid. In forming the twelfth-order square in Figure 2,
a different orientation has been given to each of the 3-by-3 squares in the first two rows of
the 4-by-4 grid. The same procedure has been followed in filling th last two rows. Indeed,
the orientations are such that the square in Figure 2 is pandiagonal. (In a pandiagonal
square, the elements in every row, column, and diagonal, broken and unbroken, have the same
sum.) Its magic constant is 870.

8 1 6 121 120 125 29 36 31 132 133 128

3 5 7 126 122 118 34 32 30 127 131 135

4 9 2 119 124 123 33 28 35 134 129 130
69 64 71 98 93 94 40 45 38 83 88 87
79 68 66 91 95 99 39 41 43 90 86 82
65 72 67 9 97 92 44 37 42 85 84 89
116 109 114 13 12 17 137 144 139 24 25 20
111 113 115 18 14 10 142 140 138 19 23 27
112 117 110 11 16 15 141 136 143 26 21 22
105 100 107 62 57 58 76 81 74 47 52 51
106 104 102 55 59 63 75 77 79 54 50 46
101 108 103 60 61 56 80 73 78 49 48 53

FIGURE 2. A Pandiagonal 12-by-12 Magic Sgquare

Since each of the 880 fourth-order basic magic squares can be used as a foundation
(labelling) square, and each small grid can be filled in eight ways, 81€(880) or
247 69797 95053 77280 distinct twelfth-order magic squares (exclusive of rotations and
reflections) can be constructed in this manner from the first 144 positive integers.

A larger family of twelfth-order magic squares can be constructed by first taking any
nine fourth-order magic squares (repetition permitted) from the 880 squares listed by Benson
and Jacoby [1]. In Figure 3, the squares have been ordered by their upper left elements.

The first square in Figure 3 is square (1) in Figure 4. To each element of the second
square add 16 to form square (2), to each element of square three add 2 * 16 to form square
(3), and continue the process until the addition of 8 * 16 to the elements of the ninth
square forms square (9).

To construct the twelfth-order magic squares, divide a 12-by-12 grid into nine 4-by-4
grids, thus forming a 3-by-3 grid of grids. Label this 3-by-3 grid with the corresponding
elements of the basic third-order magic square (1) in Figure 1. In each 4-by-4 grid place
the derived square from Figure 4, in any of its eight orientations, that has the same iden-
tification number as the gird. The result is the twelfth-order magic square in Figure 5.

Since any of the 880 fourth-order magic squares can be the basic square for a 4~by-4
grid, and the corresponding derived square can be inserted into the grid in 8 ways, (880 - 8)°
or 4 24770 09370 18688 57788 98944 x 10° twelfth-order squares (exclusive of rotations and
reflections) can be constructed in this way from the first 144 positive integers.
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15 14 4
6 7 9
10 11 5
3 2 16
6 9 15
11 8 2
1 14 12
16 3 5
4 14 9
13 3 2
12 6. 15
5 11 8
FIGURE 3.

(1)
15 14 4
6 7 9
10 11 5
3 2 16

(4)
54 57 63
59 56 50
49 62 60
64 51 53

(7)
100 110 105
109 99 98
108 102 111
101 107 104

FIGURE 4.

14

15

10

11

15

Nine

18
30
31

19

69
74
75

72

120
121
114

127

5 11
9 7
8 10
12 6
2 15
16 1
13 4
3 14
5 11
12 6
3 13
14 4

16

13

12

10

7

16

1

13

12

13

11

14

4

7

Basic 4-by-4 Magic Squares

(2)
21 27

25 23
24 26

28 22

(5)
66 79

80 65
77 68

67 78

(8)
117 123

124 118
115 125

126 116

32

20

17

29

76

71

70

73

122

119

128

113

35
45
44

38

86
84
93

91

137
142
132

135

2 14
16 4
9 5
7 11
3 15
S 5
8 12
14 2
1 8
12 5
6 11
15 10
(3)
34 46
48 36
41 37
39 43
(6)
83 95
89 85
88 92
94 82
(9)
129 136
140 133
134 139
143 138

Nine Derived 4-by-4 Magic Squares

15

10

10

16

16

13

47
33
40

42

90
96
81

87

144
131
141

130

129



120 117 123 122 13 8 12 1 87 82 94 91
121 124 118 119 3 10 6 15 81 92 88 93
114 115 125 128 2 11 7 14 9 8 89 84
127 126 116 113 16 5 9 4 9 95 83 86
47 46 34 35 69 66 79 76 105 98 111 104
33 36 48 45 74 80 \ 65 71 110 99 102 107
40 37‘ 41 44 75 77 68 70 100 109 108 101
42 43 39 38 72 67 78 73 103 112 97. 106
52 61 55 58 135 143 138 130 29 17 20 32
54 59 49 64 132 134 139 141 22 26 23 27
57 56 62 51 142 140 133 131 28 24 25 21
63 50 60 53 137 129 136 144 19 31 30 18

FIGURE 5. A 12-by-12 Magic Sgquare

Together the two families contain 817(110) (8- 110°% + 1) distinct twelfth-order magic

squares. .
This technique can be employed to produce two families of Anth order magic squares from

magic squares of the kth and nth orders. If k = n, there is one family. Such is the family
of 134,217,728 ninth-order magic squares [2].
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COIN TOSSING AND THE r-BONACCI NUMBERS

CARL P. McCARTY
La Salle College, Philadelphia, PA 19141

In this paper we find the probability that a fair coin tossed n times will contain a run
of at least r consecutive heads.

Let X, = {z,x, ... xy/x;€ {hst}, 2 =1, 2, ..., n} be the set of 2" equi-probable outcomes
and Y, be the subset of X, each of whose elements contains a run of at least r consecutive
heads. Also, let a(r,n) be the cardinality of Y5. We can construct Y: by noting that each of
its elements must fall into one of the following two categories:

(D) HA,_»
(2) WitHAn_j_1-p

where H is the first run of r consecutive heads to appear when reading from left to right,
A; is an i{-string of any combination of heads and tails,
W; is a j-string of heads and tails not containing H, and
t is a singleton tail.

Since there are 29 - g(r,j) ways in which W; can occur, the total number of elements of
type (2) is

r

[29 - a(e,f) 1277971 %

n-

1_
130 J=0
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