N A A A A A A J

TABLE 2. Values of B'(n,-1)

n B'(n,-1)
-1 1
0 0
1 1
2 1
3 4
4 11
5 41
6 162

7 715

Apparently the Bell triangle cannot be extended further because B(-1,0) = B_, which is
undefined, by equation (1). Epstein [3] drops the term 0"/0! in equation (1) without explan-
ation and therefore gets By = 1 - 1/e, in contradiction with Williams [5], Bell [1], and
Rota [4].

The Bell numbers have combinatoric significance in that B, is the number of ways of
factoring a product of n distinct primes. Whether the rest of the numbers in the Bell tri-
angle have any such significance remains to be seen.

REFERENCES
1. E. T. Bell. "Exponential Numbers.'" American Math. Monthly 41 (1934):411-419.
2. Martin Cohn, et al. 'On the Number of Partitionings of a Set of n Distinct Objects."

Americar. Math. Monthly 69 (1962):782-785.

3. Leo Epstein. "A Function Related to the Series e® ." J. Math. and Physics 18 (1939):
153-173.

4. Gian-Carlo Rota. '"The Number of Partitions of a Set.'" American Math. Monthly 71
(1964) :498-504.

5. G. T. Williams. "Numbers Generated by the Function e® "' ." American Math. Monthly
52 (1945):323-327.

THE EQUATIONS 22 - 3y? =-2 AND 22 - 6x* = -5

MANORANJ I THAM VELUPPILLAI
Royal Holloway College, Egham, Surrey, England

The four numbers 2, 4, 12, 420 have the property that the product of any two increased
by 1 is a perfect square. The object of this paper is to prove that no positive integer can
replace 420.

Any integer N which can replace 420 while preserving this property must satisfy the
equations

2V +1=2x% 4V +1=y%, 128+ 1 = 2%,

Eliminating N, we have

z2 - 3y? = -2 and 2% - 6x® = -5.
Now, the equation 22 - 3y2 = -2 can be written in the form
(L u? - 3?2 =1
where u = 22 + 1, v = zy.
Substituting for 22 in z? - 6x? = -5, we have
(2) X2 = 6u + 24

where X = 6x.

Hence, to solve the equations of the title, it is sufficient to solve (1) and (2) simul-
taneously.

Now, all the positive integral solutions of (1) are given by the formula:
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(3) Uy + V3V, = (2 +V3)"
By (3), we have
I I
Uy 2 and v, = o3

where a = 2 + V3 and B = 2 - V3.

We have the following equations and congruences:

I InX X0

hY

(4) u.p = un, (5) v.n = vp,
(6) Upsn = UpU, + 3VpUx, ] (7)) Vpan = Upy + Uply,
(8) wupy = 2ub - 1, (9) Vap = 2Unln,
(10) u3p = uUnp * fl(un); (11) v3y = vn * F2(up),
(12) Usy = Up ° f3(un), (13) Vsy = Un *® f:.,(un),
(14) uq, = uy * Fs(u,), (15) v,;, = vy * felun),
(16) u’Bn = un * fl(un) ‘f7(un), (17) vgn = vn ° fz(un) * fe(un):
(18) uys, = U, * Fi(up) * Fa(uy) « foluy) (19) Vi5p = Vs * Fo(u,) 'fg(un) * Fro Uy,
(20) uUp42p = U, (mod v,), (21) uUns42p = -u, (mod u,),
where
Fi(un) = buy - 3, Folun) = bub - 1,
Fsuy) = 16uh - 20u? + 5, Fouy) = 16up - 12uf + 1
fs(uy) = 64ul - 112u} + 56u% - 7, fe(un) = 64uS - 80uy + 24u? - 1,
fr(un) = 64uy - 96u}, + 36uj - 3, fo(un) = 64ul - 96uy, + 36u - 1,
Foluy) = 256ud - 448uS + 224ul - 32u% + 1, Fro () = 256ub - 576ul + 416uy, ~ 96u% + 1.
We now have the following table of values:
n Uy, v,
0 1 0
1 2 1
2 7 4
3 26 15
4 97 56
5 362 209
6 1351 780
7 5042 2911
8 18817 10864
9 70226 40545
10 262087 151316
11 978122 564719
12 3650401 2107560
13 13623482 7865521

We note that both 2z and y are odd and hence u is even and v is odd. Hence, we have to con-

sider only the odd values of n. '
The proof is now accomplished in eleven stages:

(1) (2) is impossible if » = 3 (mod 6).
For, uy = 0 (mod 13) and then X? = -2 (mod 13) and since (-2]13) = -1, (2) is
impossible.

(ii) (2) is impossible if n = 5 (mod 10).
For, using (20), u, = uy (mod v,) = 362 (mod 209) = -1 (mod 11). But then X* =7
(mod 11) and (7|11) = -1 and hence (2) is impossible.

(iii) (2) 1is impossible if n = %5 (mod 14).
For, U, = uss (mod v7) = us (mod vy), using (4). Now, 7l|v7, us = 7 (mod 71) and
then X? = -5 (mod 71). Since (-5|71) = -1, (2) is impossible.

(iv) (2) is impossible if n = %3 (mod 20).

For, using (21), u, = 4.3 = *u; (mod u,,) and then X> = 180 or -132 (mod 7 + 37441).

Now, since (180|7) = -1 and (-132|37441) = -1, (2) is impossible.
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(2) is impossible if »n = #3, %11, %13 (mod 28).

For, when n = #11 (mod 28), using (4) and (20) we have u, = wu;; (mod v,,). Now,
2521|vy, and u;, = -26 (mod 2521). But then X% = -132 (mod 2521) and since
(-132{2521) = -1, this is impossible.

When n = *3, #13 (mod 28), using (4) and (21) we have, u = *u , *uj; (mod u,,).
Now, 7, 337, 3079|z,¢1,4 and u3, u;; =5 (mod 7), uy = 26 (mod 337) and u,; = 1986
(mod 3079).

Hence, X? = 24 + 6uy, X* = 24 + 6u,; are impossible modulo 7, X? = 24 - 6u, is
impossible modulo 337, and X? = 24 - 6u,, is impossible modulo 3079.

(2) is impossible if » = #11, *13 (mod 30).

For, u, = uyy, u;3 (mod v;5). Now 29|v,s and u;; = 10 (mod 29) and u,, = 7 (mod 29).
Hence, X* = -3 (mod 29) and X* = 8 (mod 29) and since (-3|29) = -1, (81 29) = -1,
both are impossible.

(2) is impossible if n = #13 (mod 42).

For, u, = u,;; (mod v,,) and then X2 = 24 + 6u,; (mod vy,). Now 2017|v,, and
X% = 1991 (mod 2017), and since (1991]2017) = -1, (2) is impossible.

(2) is impossible if n = *21 (mod 70). For, U, = Uy, (mod 035).
Vis = Vqes = U5(8ug = bug - bug + 1) (8us + bus - bug - 1)
= v, ¢ v, * 9243361 - 5352481.
Also, u,, = u,(4u’ - 3)
x? = 24 + 6u,(4u3 - 3) (mod 5352481)
-305121648 (mod 5352481).

N -305121648) i ( 2 )“( 3 )(6356701) _ (1004220) _ ( 797 )
ow, 5352481 ) = \5352481/ \5352481/\5352481/ ~ \5352481/ ~ \5352481

}J;) 1%3) (113> (29) o

Hence, (viii) is impossible.

(2) is impossible if n = %29, *31 (mod 90).

For, u, = uzq, Uy (mod V,s). Now 83609|v,s and u,g = 2uz, - 3V3 = 2uy, (4uli, - 3) -
3010(4u10 - 1) = 9253 (mod 83609). Hence, X2 = 55542 (mod 83609) and since
(55542[83609) -1, (2) is 1mp0351b1e

Also, 17|U“5 and uz; = 2uUzg + 3v3¢9 = 5 (mod 17) and hence X% = 3 (mod 17). Since
(3]17) = -1, (2) is impossible.

(2) is impossible if n = *1 (mod 252), n # *1.

For, we can write n = *1 + 63k(22 + 1), where £ is an integer and k = 2t, t > 2.
Then, U, = *uUsj4p3x = £3Vgq (mod usak)

Now, Uggp = Vg.qx = Uy (mod uyy) = v (32u} - 32u% + 6) [mod fy(u,)]

And, Vggx = VUy.gx = ~Vgy (mod ug ) = -2v, (4u3 - 1) [mod FoGu)]
Hence, X° = 24 + 180, (32u} - 32u% + 6) [mod f,(u;)]
=24 7 36vk(4ui - 1) [mod f,(u,)]
First, consider X2 = 24 + lSvk(32u2 - 32ui + 6) [mod fs(uy)].
24 + 18v, (32uY - 32u2 + 6) <%4 + 180, (288v" + 9602 + 6)

f5 (“k)

[1}]

nn

1+

Now,
1728v5 + 720v; + 72v% + 1

[ 2 2
144vy + 36v% - 8v) + 1
3

(43205 + 144v) + 90, + 2)

<~36v: + 2402 + 60, + 2

1448

2
T 36v, - 8y, + 1

(continued)
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22807 + 19

$(36v) + 24v% + 6v, + 2)[\$(36v] + 2603 + 6vy + 2)

36v) + 24v% + 6y + 2
19

n

=)

24 - 18v,(32u} - 32u} + 6) 36v; - 24v% + 6v, - 2
fs(uk) 19

Similarly,

Next, consider x2 24 F 36vk(4ui - 1) [mod f,(u)].

24 - 36v; (4uf - 1) 24 - 36v, (120} + 3) 1728v} + 864v; + 108v: + 1)

Now N = =
FrCu) 1728v% + 864vy + 1080 + 1 $(36v] + 9v, - 2)
3 3
[ 96vy + 2hv + 1\ (360 + 9y - 2
$(36v; + 9, - 2) 19
24 + 36v, (4u% - 1) 36v; + 9, + 2
Similarly, [P = (=) 15

The residues of v,, 36v} * 24vi t 6v, + 2 and 36v3 + 9V, * 2 modulo 19 are periodic and

the length of the period is 4. The following table gives these residues and the signs of

(24 + 18vy (32u} - 32u% + 6)|fs(uy)) and (24 7 36v, (4ul - 1)|f;(up).

k= 2° t =2 3 4 5 6
vy (mod 19) -1 -4 1 4 -1
360 + 24v% + 6v; + 2 (mod 19) 3 -4 -8 -3
36vy - 24v% + 6V - 2 (mod 19) 8 3 -3 4
36v; + 9v, + 2 (mod 19) -5 -1
36v3 + 9v, - 2 (mod 19) -9 -5 5 1
(24 + 18v, (32u} - 32ul + 6)|fs(uy)) +1 +1 -1 -1
(24 - 36v, (4u% = 1)|f, ) -1 -1 +1 +1
(26 - 18v, (32uy - 32ui + 6)|fs(uy)) -1 -1 +1 +1
(24 + 36v, (4u} - 1) |f, (up)) +1 +1 =1 -1

From the above table, we see that the congruences X%z 24 + 18vk(32ui - 32ui + 6)

[mod f5(ux)] and X% = 24 - 36uk(4u§ - 1) [mod f,(u;)] cannot hold simultaneously, and the

congruences X° = 24
[mod f;(ux)] cannot hold simultaneously.
Hence, (2) is impossible.

(xi) m = 27 (mod 60); n # %7 is impossible.

18v, (32u} - 32u? + 6) [mod fs(u,)] and X = 24 + 36v, (4ui - 1)

For, we can write n = +7 + 2,15k, where k = 2°, £ > 1 and & is an odd integer.

Then, by applying (21) & times, we have

U, = =u; (mod u,g) = =5042 (mod uy + f1(uy) = Fa(ur) * Folug))

Note that when

Hence, X? = 24 - 6.5042 = -30228 smod up * Frlu) * Faluy) = Folug)).
t =1, up, = -2 (mod 7) and then X* = 5 (mod 7) and (5|7) = -1.
When t > 2, we have
(=30228|uy) = (uy|11) (u;]229) = (=) (uy|229) when u; = -4 (mod 11)

(-30228f, () = (-)(f, (uy)[229);
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(-30228| 75 (i) = (=)(F3(uy)|229) when uy = ~4 (mod 11)

(F3(uy) 229) when u;, = -2 (mod 11);

L}

(-30228

Fau))) = ()(Fy(w,)]|229).

The residues of u,, fl(uk), Fy(u), and fq(u;) modulo 229 are periodic and the length of the
period is 9. The following table gives the values of these residues and the signs of
(-30228|u,), (-30228|f, (u;)), (-30228|f,(u;)) and (-30228|f5(uy)).

k = 2° t =2 3 4 5 6 7 8 9 10 11

Uy (mod 229) 97 39 64 -53 121 -31 89 40 -7 97
f1(u,) (mod 229) 77 127 122 12 -63 177 79 -15 193
f3(uy) (mod 229) 51 -4 -109 12 132 -93
fo(u,) (mod 229) 103 159 >8

when u; = -4 (mod 11)
(-30228 u,) -1 +1 -1 -1 -1 +1 +1 +1 +1
(-30228 f,(u,)) +1 +1 +1 -1 -1
(-30228 f3(uy)) -1 -1 +1
(-30228 fq(uy)) -1

when u, = -2 (mod 11)
(-30228 u,) +1 -1 +1 +1 +1 -1 -1 -1 -1
(-30228 £, (u,)) +1 +1 -1 +1
(-30228 f,(up)) +1 -1 +1
(-30228 fq(uy)) -1 -1

Hence, (2) is impossible.

Summarizing the results, we see that (1) and (2) can hold for #n odd, only for n = 1 and
n = 7, and these values do indeed satisfy with u = 2, v = 1, x = 1, and u = 5042, v = 2911,
x =29. x = 1 gives the trivial solution N = 0 and x = 29 gives the solution N = 420.

#33H%

GENERATION OF FIBONACCI NUMBERS BY DIGITAL FILTERS

SALAH M. YOUSIF
California State University, Sacramento, California

ABSTRACT

This paper presents some applications of Fibonacci numbers in system and communication
theory. Methods of generating Fibonacci sequences and codes by sequential binary filters
are given.

INTRODUCT ION

The role that Fibonacci numbers play in system theory is worthy of engineering investi-
gations. Fibonacci numbers find their way in algebraic coding theory in communications,
linear sequential circuits, and linear digital filters. Although some of these applications
are not direct realizations of Fibonacci numbers, they provide the conceptual framework for
the related model. For example, the concept of recurrence equation that generates the num-
bers is utilized to generate difference codes which are used in radar ranging by long-range
radars, such as satellite tracking radars and radars that are used for planet's ranging [2].
Another example of Fibonacci numbers is one used to generate a model for population growth in
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