<u>Proof of Theorem 2</u>: Initially, consider the case where N is odd and $x_1 < y_1$. The remaining cases are proved in a similar manner. Using the addition formulas (4) for $\sin N\theta$ and $\cos N\theta$ and Lemma 1, the following values are obtained for the sides of T_N in terms of the generators of T_1 and T_{N-1} :

$$\begin{split} x_N &= 4m_{N-1}n_{N-1}m_1n_1 + m_{N-1}^2m_1^2 - m_{N-1}^2n_1^2 - n_{N-1}^2m_1^2 + n_{N-1}^2n_1^2 \\ y_N &= 2\left[m_1n_1\left(m_{N-1}^2 - n_{N-1}^2\right) - m_{N-1}n_{N-1}\left(m_1^2 - n_1^2\right)\right] \\ z_N &= m_{N-1}^2m_1^2 + m_{N-1}^2n_1^2 + n_{N-1}^2m_1^2 + n_{N-1}^2n_1^2 \end{split}$$

Consequently:

$$m_N = \sqrt{(z_N + x_N)/2} = m_1 m_{N-1} + n_1 n_{N-1}$$

$$n_N = \sqrt{(z_N - x_N)/2} = m_1 n_{N-1} - n_1 m_{N-1}$$

It is also to be noted that the sides of T_N serve as generators for T_{2N} where these exist. Thus, for instance, for T_1 = (5,12,13), the sides 5 and 12 serve as generators for T_2 = (119,120,169). Similarly, for T_2 = (1081,840,1369), the sides serve as generators for T_4 = (462961,1816080,1874161).

REFERENCES

- 1. E. W. Gruhn. "Parabolas and Pythagorean Triples." Math. Teacher (Dec. 1959):614-615.
- Waclaw Sierpinski. Pythagorean Triangles. The Scripta Mathematica Studies, #9.
 New York: Graduate School of Science, Yeshiva University, 1962, pp. 6-7.
- 3. Murray R. Spiegel. Mathematical Handbook. Schaum's Outline Series. New York: McGraw-Hill Book Company, 1968 (Formula 1, p. 17).
- 4. E. W. Hobson. A Treatise on Plane and Advanced Trigonometry. 7th ed. New York: Dover Publications, Inc., 1928 (Formulas 2 and 3, p. 52).
- 5. F. Vietae. Ad Logisticen speciosam, notae priores. Prop. 46-51. In Opera Mathematica, 1646, pp. 34-37.
- 6. D. Malament. "Letters to Editor." Math. Teacher (May 1960):380.
- 7. R. Beran. "Letters to Editor." Math. Teacher (Oct. 1960):466.

PROOF THAT THE AREA OF A PYTHAGOREAN TRIANGLE IS NEVER A SQUARE

CURTIS R. VOGEL Winnett, Montana

Prove that the area of an integral-sided (Pythagorean) triangle is never a square integer. In the diagrams provided below, the two triangles are equivalent. Thus, a=a, b=n, and c=(n+k), where a, b, n, and k as well as s are integers. A = the area of the triangles.

$$A = \frac{1}{2}(2s^{2}a)a = s^{2}a^{2}, \text{ which is a square}$$

$$a^{2} + b^{2} = c^{2}$$

$$a^{2} + (2s^{2}a)^{2} = c^{2}$$

$$a^{2} + 4s^{4}a^{2} = c^{2}$$

$$a^{2} + b^{2} = c^{2}$$
 $a^{2} + n^{2} = (n + k)^{2}; \quad a^{2} = 2kn + k^{2}$
 $(2kn + k^{2}) + n^{2} = (n + k)^{2}$

$$a^2 + b^2 = c^2$$
 (Pythagorean Theorem)
 $a^2 + n^2 = (n + k)^2$ (Pythagorean Theorem and equivalence of above diagrams)
 $a^2 = 2kn + k^2$
 $b = 2s^2a$ (from above diagrams)
 $b^2 = n^2 = 4s^4(a^2)$ (since $b = n$ and $b = 2s^2a$)
 $n^2 = 4s^4(2kn + k^2)$ (since $a^2 = 2kn + k^2$)
 $n^2 = 8ks^4n + 4k^2s^4$
 $n^2 - 8ks^4n - 4k^2s^4 = 0$

$$n = \frac{8ks^4 \pm \sqrt{64k^2s^8 - 4(-4k^2s^4)}}{2}$$

$$n = \frac{8ks^4 \pm \sqrt{16k^2s^4(4s^4 + 1)}}{2}$$

$$n = \frac{8ks^4 \pm 4ks^2\sqrt{4s^4 + 1}}{2}$$

$$n = \frac{8ks^4 \pm 4ks^2\sqrt{4s^4 + 1}}{2}$$

$$n = 4ks^4 + 2ks^2\sqrt{4s^4 + 1}$$

From the above, we obtain $a^2 = 2kn + k^2$, $b^2 = n^2$, $c^2 = (n + k)^2$.

If n is irrational for all integral values of a, b, c, n, and k, then a^2 , b^2 , and c^2 cannot all be squares. If a^2 , b^2 , and c^2 are not squares, then a, b, and c are not integers, and the triangle is not an integral-sided, or Pythagorean, triangle. n can be an integer only if $\sqrt{4s^4 + 1}$ is an integer, and $\sqrt{4s^4 + 1}$ is an integer only if $s^4 = 0$ —that is to say, if s = 0. From the diagrams, you can see that when s = 0, b = 0, and since the area of a triangle = $\frac{1}{2}ab$, this triangle has an area of 0.

Thus, dismissing the case when the area of the triangle is 0, the area of an integralsided right triangle is never a square number.

This proof centers around the assumption that for integers a, n, and k, $a^2 + n^2 = (n + k)^2$. For example, when a = 3, n = 4, and k = 1, $3^2 + 4^2 = (4 + 1)^2$.

The following result—obtained by using a similar approach against Fermat's Last Theorem, where $x^n + y^n \neq z^n$ for integers when n > 2—is presented for the interest of the reader. For n = 3, $a^3 + n^3 = (n + k)^3$. Thus,

$$\alpha^{3} = 3kn^{2} + 3k^{2}n + k^{3}$$

$$3kn^{2} + 3k^{2}n + k^{3} - \alpha^{3} = 0$$

$$n = \frac{-3k^{2} \pm \sqrt{9k^{4} - 4(3k)(k^{3} - \alpha^{3})}}{6}$$

$$n = \frac{-3k^{2} \pm \sqrt{12\alpha^{3}k - 3k^{4}}}{6k}$$

I am not sure whether or not this result is of any use, or if it can be generalized for powers greater than the third power, but I intend to pursue this line of reasoning.