A PRIMER FOR THE FIBONACCI NUMBERS: PART X
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ON THE REPRESENTATION OF INTEGERS

The representation of integers is a topic that has been implicit in our
mathematics education from our earliest years due to the fact that we employ
a positional system of notation. A number such as 35864 in base ten assumes
the existence of a sequence 1, 10, 100, 1000, 10000, ... , running from right
to left. The digits multiplied by the members of the sequence taken in order

give the indicated integer. 1In this case, the representation means
3010000 + 51000 + 8¢100 + 610 + 4 ,

Another way of thinking of these multipliers is this: they are the number
of times various members of the sequence are being used.

It is instructive to see that such a sequence used as a base for
representing integers arises naturally. Suppose we allow multipliers O, 1,
or 2. We wish to have a sequence that will enable us to represent all the
positive ihtegers and furthermore we want this sequence with the multipliers
to do this uniquely; that is, for each integer there is one and only one
representation by means of the seguence and the multipliers. Clearly, the
first member of the sequence will have to be 1; otherwise, we could never
represent the first integer 1. With this, we can represent O, 1, or 2.
Hence, the next integer we need is 3. The following table shows how at each

step we are able to represent additional integers and likewise what is the

next integer that is needed.

Sequence Representations added
1 0, 1, 2
3 3, 4y, 5, 6, 7, 8
9 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, «.., 26
27 27, 28, 29, «.es 79, 80
81 81, 82, 83, ..., 241, 2u42

Note that, as far as we have gone, the representation is unique.

we have unique representation when the sequence goes to 3n and that this

+
representation extends to Bn

go from 3n+l
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Assume that

1. l. Adding 3n+1 to the sequence enables us to

to 2'3§+1 + 3n¢1 « 1 in a unique manner, but this sum is 3n+2 - 1.
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Thus, the base three representation of integers using the sequence 1, 3, 9,
27, 81, ... arises naturally in the case of allowed multipliers O, 1, 2, and
the requirements of complete and unique representation.

Perhaps the most interesting case of representation is that in which
the allowed multipliers are O, 1. We build up the sequence that goes with

these multipliers giving complete and unique representation.

Sequence Representations added
1 1
2 2y, 3
b by 5, 6, 7
8 8, 9, 10, 11, 12, 13, 14, 15
16 16, 17, 18, ..., 30, 31
32 32, 33, 34, ..., 62, 63

Thus far the representation is unique. If we have unique and complete
representation when the largest term of the sequence is 2% and the representa-

n+l 1, then on adding 2n+1 to the sequence, we extend

complete and unigue representation to 2n+1 + 2n+1 -1=2 - 1.

Another way of thinking of representation when the multipliers are O and

1l is this: We have a sequence where integers are represented by distinct

tion extends to 2
n+2

members of the sequence. Thus the base two integer 110111010 says that the

number in question is the sum of 28, 27, 25, 24, 23, and 2.

The powers of two along with 1 enable us to represent all integers uniguely

by combining different powers of two.
INCOMPLETE AND NON-UNIQUE SEQUENCES

Let us return to the representation with multipliers O, 1, and 2.
Clearly, if instead of taking 1, 3, 9, 27, 81, ...y, we take some larger
numbers such as 1, 3, 10, 28, 82, 244, ..., it will not be possible to

represént all integers.

Sequence Representations added
1l 1, 2
3 3, 4, 5, 6, 7, 8
10 10-18, 20-28
28 28-36, 38-46, 48-36, 56-64, 66-74, 76-8L
82 82-90, 92-100, etc.

Below 100, the numbers that cannot be represented are 9, 19, 37, 47, 65, 75,
and 91. On the other hand, 28, 56, 82, 83, and 84 have two representationms.
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Suppose that instead of making the numbers of the sequence slightly
larger we make them a bit smaller. Let us take the sequence 1, 3, 8, 26, 80,

242, ¢.., as before:

Sequence Representations added
-1 1, 2
3 3, 4y 54 6,7, 8
8 8-16, 16-24
26 26-34, 3442, 42-50, 52-60, 60-68, 68-76
8o 80-88, 88-96, 96-104, 106-11h4, 1ll4-122, 122-130,

132-140, 140-148, 148-156, 160 etc.

Up to 160, the missing integers are 25, 51, 77, 78, 79, 105, 131, 157, 158,
and 159. Duplicated integers are 8, 16, 34, 42, 60, 68, 88, 95, 114, 122,
140, and 148,

The sequence 1, 3, 8, 23, 68, 203, ..., gives complete but not unique

representation.
Sequence Representations added
1 1, 2 |
3 3-8
8 8-16, 16-24
23 23-31, 31-39, 39-47, 46-Sk, 54-62, 62-70
68 68-76, 76-84, 84-92, 91-99, 99-107, 107-115,

114-122, 122-130, 130-138, 136-1kk, 14k-152, etc.

Up to 140 there is complete representation but duplicate representation for
the following: 8, 16, 23, 24, 31, 39, 46, 47, s4, 62, €8, 69, 70, 76, 8k,
91, 92, 99, 107, 114, 115, 122, 130, 136, 137, and 138,

FIBONACCI REPRESENTATIONS

Let us now consider the case in which the multipliers are O, 1 and the
basic sequence is the Fibonacci sequence 1,1, 2, 3, 5, 8 13, «.. . That
this sequence gives complete representation is not difficult to prove. In
fact, the representation is still complete if we eliminate the first 1 and
use the sequence 1, 2, 3, 5, 8, 13, «.. . In the table following, note
that the representation at each stage gives complete representation up to

and including Fn+2 - 2. Assume this to be so up to a certain ?n' Then upon

adjoining Fn+l to the sequence the representation will be complete to

Fn+l + F w2 " 2, which is much beyond Fn+2' the next term to be added. Thus

T TAmeer
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the representation is complete, but it is evidently not unigue.
Sequence Representations added
1 1l
2, 3

3 3""'05'6

5 5-8, 8-11

8 8-11,11-14, 13-16, 16-19
13 13-16, 16-19,18-21.21-24,21-24,2#-27,26-29,29-32

AN INTERESTING TEECREM

To get a new perspective on representation by this Fibonacci sequence
we write down the representations of the integers in their various possible

forms. (Read 10110 as 8 + 3 + 2 or 1:Fg + 0°F5 + 1oF, + 1~F3 + O-Fa)

INTEGER REPRESENTATIONS INTEGER REPRESENTATIONS
1 1 11 10100, 10011, 1111
10 12 10101
3 11, 100 13 11000, 110110, 100000
L 101 14 100001, 11001, 10111
5 110, 1000 15 100010, 11010
6 111, 1001 16 100100, 100011, 11100, 11011
? 1010 17 100101, 11101
8 1100, 1011, 10000 18 101000, 100110, 11110
9 10001, 1101 19 101001, 100111, 11111
10 10010, 1110 20 101010

Now the Fibonacci sequence has the property that the sum‘of two
consecutive members of the sequence gives the next member of the sequence.
Accordingly, one might argue, it is superfluous to have two successive
members of the sequence in a representation since they can be combined to
give the next member. If this is done, we arrive at representations in which
there are no two consecutive ones in the representation. Looking over the
list of integers that we have represented thus far, it appears that there is
just one such representation for each integer in this form.

Suppose we go at this from another direction. We are building up a
sequence that will represent the integers uniquely with multipliers O and 1.
However, we stipulate that no two consecutive members of the sequence may be

found in any representation. We form a table as before.
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Seqﬁence Representations added

1 1l

2
3 3, 4
5 5, 6, 7
8 8, 9, 10, 11, 12

13 13, 14, 15, 16, 17, 18, 19, 20

To this point the representation is unique and the sequence that is emerging
is the Fibonacci sequence 1, 2, 3, 5, 8, 13, ... . A4ssume that up to Fn

there is unique representation to Fn+ - 1l. On adding Fn+ to the sequence,

1 1l
we cannot use Fn in conjunction with it but only terms up to Fn-l' But by

supposition these may represent all integers up to Fn - 1 in a unique way.
Hence with Fn+l we can represent uniquely all integers from Fn+l to

F + Fn -1=F - 1. Hence the uniqueness and completeness of this

n+l n+2

type of representation are established, which is known as Zeckendorf's Theorem.

MORE ZEROES IN THE REPRESENTATION

A natural question to ask is: Would it be possible to require that there

be at least two zeroes between 1l's in the representation and obtain unique
representation? We can build up the sequence as before taking into account

this requirement.

Sequence Representations added
1 1
2
3 3
L 4, 5
6 6, 7, 8
9 9, 10, 11, 12
13 13, 14, 15, 16, 17, 18
19 19, 20, 21, 22, 23, 24, 25, 26, 27
28 28-40

Up to this point, the representation is complete and unique. We have a

sequence, but it would be difficult to operate with it unless we knew the way

it builds up according to some recursion relation. The relation appears as

Tn+l = Tn + Tn-z

TONeeC
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Now assume that up to Tn we have unique representation to ‘I'm_1 - 1, where
Tn+l is given by the recursion relation in terms of previous members of the
sequence. Then on adding Tn+l to the sequence we may not use Tn or Tn-l in
conjunction with it but only terms up to Tn-z’ But these give unique and
complete representation to Tn-l - 1. Hence upon adding Tn+1 to the sequence
we have extended unique and complete representation from Tn+l to
+ Tn-l -1 = Tn+2 - 1. Thus, the uniqueness and completemess are

estabiished in general.

Tn+1

The sequences required for unique and complete representation when
three, fqur, or more zeroes are required between 1l's in the representation

can be built up in the same way. Some are listed below.

Zeroes Sequence derived Recursion relation

3 ’ 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, Tn+l = Tn + Tn-}
36' 50’ 69’ 95’ 131’ 181’ 250’ cs e

b4 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 26, T = Tht Ty
34, 45, 60, 80, 106, 140, 185, ...

5 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, ‘ Tn+1 = Tn + ']'.'n-_5
27’ 34' L’}’ 55’ 71’ 92’ 119. Y

6 1, 2, 3, 4, 5, 6, 7» 8, 10, 13, 17, 22, Tn+l = Tn + Tn-6

28’ 359 43! 53' 66’ 83’ 1051 133’ o e

For k zeroes, the sequence is 1, 2, 3, 4, esey ky kK + 1, k + 2, which
enables us to get k + 3; then k + 4 which gives k + 5, k + 6; and so on.
Up to this point the representation is unique and complete; the recursion

relation beginning with k + 2 is Tn+1 = 'I‘n + Tn-k' Assume that the sequence
up to Tn gives unique and complete representation to Tn+l - 1. Then upon
adding Tn+1 the highest term we can use in conjunction with it is

which gives unique representation to Tn-k+1 -1 by hypothesis.

T =T

n+l-k-1l n-k
Hence upon adding Tn+1 we have unique representation from Tn+1 to

Tn+1 * Tn-k+l

-1=Tn+2-lo
'MULTIPLIERS O, 1, 2

We know that we obtain unique and complete representation using

multipliers O, 1, 2 when we have the geometric progression 1, 3, 9, 27, «..
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Can we find a unique and complete representation if we demand that there be
a zero between any two non-zero digits in the representation? Let us builad
this up as before.

Sequence Representations added
1 1, 2
3 3, 6
4 4, 5, 6, 8, 9, 10
7 7.8, 9, 10, 13, 14, 15, 16, 17, 20
11 11-14, 17, 15-17, 19-25, 28, 26-28, 30-32
18 18-21, 24, 22-24, 26-28, 25-28, 31-35, 38, 36-39,

b2, 40-b2, Lh4-4E, 43-46, 49-53, 56

It appears that the sequence is the Lucas numbers. The representation is

not unique. But a Lucas number Ln allows complete representation to the next
Lucas number Ln+1(and beyond) without any additional Lucas numbers being

represented. Assume that this is the case up to a certain n. Upon adding

Ln+l we may not use Ln' Going back to Ln-l and preceding terms we can

represent all integers up to Ln = 1 without being able to represent any Lucas

numbers Ln’ L e«s « Thus adding Ln+l allows the representation of numbers

n+l’

L

n+l

toan+l + Ln -1 = Ln+2 - 1, but does not give Ln+2 since this would

require Ln' If we use 2Ln+1 we would need Ln to get Ln+3’ but since we do
not have Ln it is not possible to arrive at this lucas number. To dispose
of Ln+h and higher Lucas numbers, we have to set a bound on the highest
number at which we may arrive. Starting with Ln-l and working‘backward, the
highest sum we can have is twice the sum of alternate terms beginning with
Ln-l' If n -1 is odd, this sunm is Z(Ln - 2), and if n - 1 is even, this
sum is Z(Ln = 1). 1In either case, the sum is less than 2Ln. Hence an upper
bound for terms when Ln+1 is added to the sequence is 2Ln+1 + 2Ln = 2Ln+2‘
But Ln+4 = 2Ln+2 + Ln+1 which is grg?ter than 2Ln+2' Hence it is not possible

to arrive at Ln+# or higher Lucas numbers,

This result was very encouraging and led to an investigation of cases
with multipliers O, 1, 2, 3; then O, 1, 2, 3, 4; etc., where we still require

one zero between non-zero digits. The first few terms looked interesting.

el X X Xnki
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Multipliers 0, 1, 2, 3: 1, 4, 5, 9, 14, ...
Multipliers O, 1, 2, 3, k: : 1, 5, 6, 11, 17, ...
Multipliers O, 1, 2, 3, 4, 5: 1, 6, 75 13, 20, «.s

Unfortunately, in the sequence 1, 4, 5, .9, 14, ..., if we continue with the
terns 23, 37, 60, we find that 60 is already represented by 14 and lower
terms. In the sequence 1, 5, 6, 11, 17, 28, ..., the 28 is represented by
earlier terms. We have ruan into a DRY HOLE.

Next, keeping the multipliers O, 1, 2, the case of two zeroes between
non-zero digits was investigated. This led to the sequence 1, 3, 4, 5, 9,
13, 22, 31, 53, 75, 128, 181, ..., where there are two apparent laws of
formation, one for odd-numbered terms, and a second for even-numbered terms,

=17 + T

(1) T 2n 2n-1 ?

2n+l

(2) : T =T

2n+2 2n+l * TZn-l °

There are equivalent representations of these relations. 3By (1) and (2),

2T

(3 Tone1 = (Toney * Topoz) * Topoy = 2Tppn *

(&) Tonsa = (Top + Tong) *+ Topoy = Top * 2Tpny -

Since by (1) T, ; = Ty, ,q = T,y We have from (4) T,p .5 = 2T5 9 = Tops OF

(5) aT2n+1 = T2n+2 * TZn *

Therefore, by using (5) to express 2T, , in (&),

(6) Tone2 = 2Top + Ton-2 *

Hence, combining (3) and (6), there is one recursion relation for the entire

sequence,

(7 - Tn+1 = aTn-l + Tn-} *

The manner in which the sequence builds up is shown by the following table.
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Sequence Representations added

1 1, 2

3 3, 6

i 4, 8

5 5, 6, 7, 10, 11, 12

S 9-12, 15, 18.21, 24

15 13-16, 19, 17, 21, 26-29, 32, 30, 3L

22 22-25, 28,26,30, 27-25, 32-34, L4-47, 50,48,52, 49-51, 5456

To show that tho sequence will continue to be built up in this way we note
the following as a tasis for our induction:

(1) Addinz a term Tk covers all rerreseatations up to 1T, 1.

X+l

(2) Adding ancther term of the sequence does not give additional terms of
the rezresenting szquence.

(3) The largest term that can te represented by adding Tk is less than Tk+3’

Now, if the above is true to Tn' add the term Tn+1' We can use only terms to

Tn 2 and smaller in the sequence in conjunction with Tn+1' Such teras can

represent values up to Tn-l - l. Hence adding Tn+1 enables us to represent
a3 m - . v - s
values from LY Fo Tnfl + Tn-l 1, which gives Tn+2 lifn+ 1 is odd.

If n+1 is even, T

nel * Tn-l -1-= ZTn - 1, but using %terms up to Tn-Z

we czan represent values to 2Tn + Tn > - 1= Tn+2 - 1l. Hence all representa-

tions up to Tn+2 - 1 are covered,
Cn adding Tn+1 to the sequencs we do not obtain any other sequence terms,

m - mn F
+ T and Tn+3 = 2*a+l + Tn-l

is not available in conjunction with Tn+l' Similarly, if n + 1 is even,

. For Tn+2 =T if n+ 1 4is odd, and Tn-

n+l 1

T

- M m - m m
= T + T and Tn+3 = 2‘n+l + Tn-l where neither Tn nor Ln_l is

n+2 n+l n

available, Finally, Tp+4 iz larger than any term that can be formed using

T and smaller terzs.

n+l
CCHCLTSICH

A great deal of work has besn done on rerresentaticns of integers in

recent years. Much of this has appeared in the Fibonaceci Zuarterly which

has puvliched some two dozen articles totalling approximately 3C0 pages by
such zathematicians as Carlitz, Brown, Hcggatt, Ferns, Klarner, Daykin, and
others. The number of byways that may be investigated is great. It could

be the project of a lifetinme.
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