A REPRESENTATION OF REGULAR SUBSEQUENCES OF RECURRENT SEQUENCES

Yaroslav Latushkin
Institute of Mathematics and Mechanics, S-Kovalevskaya st. 16, Ekaterinburg, Russia 620219
e-mail: yarlat@mail.ru

Vladimir Ushakov

Institute of Mathematics and Mechanics, S-Kovalevskaya st. 16, Ekaterinburg, Russia 620219
e-mail: ushak@imm.uran.ru
(Submitted August 2002-Final Revision August 2004)

Abstract

This paper is devoted to analysis of subsequences of general recurrent sequences. Let $\left\{u_{n}\right\}_{n=0}^{\infty}$ be a recurrent sequence of order m. We consider subsequences $v_{n}=u_{s n+j}$ where s is a natural number, j is a non-negative integer. Hereinafter we call these sequences 'regular subsequences'. Our goal is to calculate the general representation for these subsequences and to create the simple algorithm for its calculation which does not use the roots of the corresponding characteristic equation. Also, the general formula of representation for 'regular' subsequences is presented. An algorithm for calculation of 'regular' subsequences is given. We propose also an algorithm for calculating elements of the sequence equal to the sum of $n^{t h}$ powers of the roots of characteristic equation, e.g. for elements, $U_{n+5 k}=L_{k} U_{n+4 k}+\frac{1}{2}\left(L_{2 k}-\left(L_{k}\right)^{2}\right) U_{n+3 k}+$ $\frac{1}{2}\left(C_{5}\right)^{k}\left(L_{2 k}-\left(L_{k}\right)^{2}\right) U_{n+2 k}-\left(C_{5}\right)^{k} L_{-k} U_{n+k}+\left(C_{5}\right)^{k} U_{n}$. This paper is a generalization of the result by Prof. F. T. Howard.

INTRODUCTION

A recurrent sequence of order m can be defined as a sequence

$$
u_{0}, u_{1}, \ldots, u_{n}, \ldots
$$

with $m-1$ arbitrary real (complex) numbers and for $k \geq 0$:

$$
\begin{equation*}
u_{m+k}=C_{1} u_{m+k-1}+C_{2} u_{m+k-2}+\ldots+C_{m} u_{k} \tag{1}
\end{equation*}
$$

The numbers C_{1}, \ldots, C_{m} are arbitrary real numbers and $C_{m} \neq 0$. For the sequences (1) depending on $2 m$ parameters we use the notation:

$$
W_{n}\left(u_{0}, u_{1}, \ldots, u_{m-1}, C_{1}, C_{2}, \ldots, C_{m}\right)
$$

The corresponding characteristic equation for the sequence (1) is defined by the formula:

$$
\begin{equation*}
x^{m}-C_{1} x^{m-1}-\ldots-C_{m}=0 . \tag{2}
\end{equation*}
$$

Let x_{1}, \ldots, x_{m} be the complex roots (including multiple roots) of equation (2).

Definition: Let $\left\{L_{n}\right\}_{n=0}^{\infty}, L_{n}=x_{1}^{n}+x_{2}^{n}+\ldots+x_{m}^{n}$, be the recurrent sequence of order m. This sequence depends on parameters $\left(C_{1}, C_{2}, \ldots, C_{m}\right)$. We call this sequence L-sequence for parameters $\left(C_{1}, C_{2}, \ldots, C_{m}\right)$.

Let us prove that $\left\{L_{n}\right\}_{n=0}^{\infty}$ is a sequence from the set $W_{n}\left(u_{0}, u_{1}, \ldots, u_{m-1}, C_{1}, C_{2}, \ldots, C_{m}\right)$. Let us consider sequences of the following form:

$$
v_{k}^{(1)}=\left\{\left(x_{1}\right)^{k}\right\}_{k=0}^{\infty}, v_{k}^{(2)}=\left\{\left(x_{2}\right)^{k}\right\}_{k=0}^{\infty}, \ldots, v_{k}^{(m)}=\left\{\left(x_{m}\right)^{k}\right\}_{k=0}^{\infty}
$$

It is clear that these sequences are the recurrent sequences from the set $W_{n}\left(u_{0}, u_{1}, \ldots, u_{m-1}, C_{1}\right.$, $\left.C_{2}, \ldots, C_{m}\right)$, since x_{1}, \ldots, x_{m} are the roots of the characteristic equation. Hence, the sum of these sequences, i.e. the sequence $\left\{L_{n}\right\}_{n=0}^{\infty}$, is the recurrent sequence from the set $W_{n}\left(u_{0}, u_{1}, \ldots, u_{m-1}, C_{1}, C_{2}, \ldots, C_{m}\right)$.

Thus, for each set of parameters $\left(C_{1}, C_{2}, \ldots, C_{m}\right)$, there exists the unique L-sequence. In particular, the L-sequence with parameters $C_{1}=C_{2}=1 ; m=2$ coincides with the well-known Lucas sequence.
Definition: Let $\left\{u_{n}\right\}_{n=0}^{\infty}$ be a recurrent sequence from the set $W_{n}\left(u_{0}, u_{1}, \ldots, u_{m-1}, C_{1}, C_{2}, \ldots\right.$, C_{m}). We say that a subsequence $\left\{v_{n}\right\}_{n=0}^{\infty}$ of sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ is called regular subsequence of $\left\{u_{n}\right\}_{n=0}^{\infty}$ if there exists a natural number s and a nonnegative integer j such that for every nonnegative integer k the following formula holds:

$$
\begin{equation*}
v_{k}=u_{s k+j} \tag{3}
\end{equation*}
$$

We prove below that a regular subsequence of order m is a recurrent sequence of order m. That is, there exist real numbers $U_{1}, . ., U_{m}$ such that for every nonnegative integer k the following relations take place:

$$
\begin{equation*}
v_{k+m}=U_{1} v_{k+m-1}+U_{2} v_{k+m-2}+\ldots+U_{m} v_{k} \tag{4}
\end{equation*}
$$

The main result of this paper is an algorithm for calculating these coefficients $U_{1}, . ., U_{m}$. It is known that the calculation of roots of a linear equation is a cumbersome problem. Basing on properties of L-sequences we propose an alternative algorithm for calculating coefficients $U_{1}, . ., U_{m}$. This algorithm significantly reduces the complexity of calculations.

In particular, for $m=3$:

$$
U_{n+3 k}=L_{k} U_{n+2 k}-\left(C_{3}\right)^{k} L_{-k} U_{n+k}+\left(C_{3}\right)^{k} U_{n}
$$

This result was proved by Prof. F. T. Howard (see [4]).
For $m=4$:

$$
\begin{gathered}
U_{n+4 k}=L_{k} U_{n+3 k}+\frac{1}{2}\left(L_{2 k}-\right. \\
\left.-\left(L_{k}\right)^{2}\right) U_{n+2 k}+\left(-C_{4}\right)^{k} L_{-k} U_{n+k}-\left(-C_{4}\right)^{k} U_{n}
\end{gathered}
$$

For $m=5$:

$$
\begin{gathered}
U_{n+5 k}=L_{k} U_{n+4 k}+\frac{1}{2}\left(L_{2 k}-\left(L_{k}\right)^{2}\right) U_{n+3 k}+ \\
+\frac{1}{2}\left(C_{5}\right)^{k}\left(L_{2 k}-\left(L_{k}\right)^{2}\right) U_{n+2 k}-\left(C_{5}\right)^{k} L_{-k} U_{n+k}+\left(C_{5}\right)^{k} U_{n}
\end{gathered}
$$

Etc.

SOME PROPERTIES OF L-SEQUENCES

Lemma 1: For any integer $1 \leq i<n$ the following formula is valid:

$$
\begin{equation*}
L_{i+1}=C_{1} L_{i}+C_{2} L_{i-1}+\ldots+C_{i} L_{1}+(i+1) C_{i+1} \tag{5}
\end{equation*}
$$

In particular,

$$
\begin{aligned}
& L_{0}=m \\
& L_{1}=C_{1} \\
& L_{2}=C_{1} L_{2}+2 C_{2} \\
& \ldots \\
& L_{n}=C_{1} L_{n-1}+C_{2} L_{n-2}+\ldots+n C_{n} ;
\end{aligned}
$$

Thus, one can calculate all elements of L-sequence directly from parameters $\left(C_{1}, C_{2}, \ldots, C_{m}\right)$. It is not necessary to know values of roots x_{1}, \ldots, x_{m} of characteristic equation.

Proof: First, let us represent the numbers $\left(C_{1}, C_{2}, \ldots, C_{m}\right)$ using x_{1}, \ldots, x_{m}.
Consider next transformations:

$$
\begin{gathered}
x^{m}-C_{1} x^{m-1}-\ldots-C_{m} x^{0}=\left(x-x_{1}\right) \cdot\left(x-x_{2}\right) \cdot \ldots \cdot\left(x-x_{m}\right)= \\
=x^{m}-\left(x_{1}+x_{2}+\ldots+x_{m}\right) x^{m-1}+\left(x_{1} x_{2}+x_{1} x_{3}+\ldots+\right. \\
\left.\quad+x_{m-1} x_{m}\right) x^{m-2}-\left(x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+\ldots+\right. \\
\left.x_{m-2} x_{m-1} x_{n}\right) x^{m-3}+\ldots-(-1)^{m+1}\left(x_{1} x_{2} x_{3} \ldots x_{m}\right) x^{0}
\end{gathered}
$$

Hence, the following relations take place:

$$
\begin{align*}
& C_{1}=x_{1}+x_{2}+\ldots+x_{m} \\
& C_{2}=-\left(x_{1} x_{2}+x_{1} x_{3}+\ldots+x_{m-1} x_{n}\right)= \\
& \sum_{j=1}^{m-1} \sum_{k=j+1}^{m} x_{j} x_{k} \\
& C_{3}=x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+\ldots+x_{m-2} x_{m-1} x_{n}= \\
& \sum_{j=1}^{m-2} \sum_{k=j+1}^{m-1} \sum_{l=k+1}^{m} x_{j} x_{k} x_{l} \tag{6}\\
& C_{h}=(-1)^{h+1} \cdot \sum_{p_{1}=1}^{m-h+1} \cdot \sum_{p_{2}=p_{1}+1}^{m-h+2} \times \\
& \ldots \cdot \sum_{p_{h}=p_{h-1}+1}^{m} x_{p_{1}} x_{p_{2}} \ldots x_{p_{h}} \\
& C_{m}=(-1)^{m+1} x_{1} x_{2} x_{3} \ldots x_{m} .
\end{align*}
$$

Now, let us calculate $C_{1} L_{t}$:

$$
C_{1} L_{t}=\left(x_{1}+x_{2}+\ldots+x_{m}\right)\left(x_{1}^{t}+x_{2}^{t}+\ldots+x_{m}^{t}\right)
$$

First, we open the left bracket:

$$
\begin{gathered}
=x_{1}\left(x_{1}^{t}+x_{2}^{t}+\ldots+x_{m}^{t}\right)+x_{2}\left(x_{1}^{t}+x_{2}^{t}+\ldots+x_{m}^{t}\right)+\ldots+ \\
+x_{m}\left(x_{1}^{t}+x_{2}^{t}+\ldots+x_{m}^{t}\right)
\end{gathered}
$$

Let us group together terms containing the highest power $x_{i}^{t+1}, i=1, \ldots, m$. We have:

$$
\begin{gathered}
=\left(x_{1}^{t+1}+x_{2}^{t+1}+\ldots+x_{m}^{t+1}\right)+x_{1}\left(x_{2}^{t}+x_{3}^{t}+\ldots+x_{m}^{t}\right)+ \\
+x_{2}\left(x_{1}^{t}+x_{3}^{t}+\ldots+x_{m}^{t}\right)+\ldots+x_{m}\left(x_{1}^{t}+x_{2}^{t}+\ldots+x_{m-1}^{t}\right)
\end{gathered}
$$

The expression in the first bracket is equal to L_{t+1}. Let us regroup the remaining terms as follows:

$$
\begin{gathered}
=L_{t+1}+x_{1}^{t}\left(x_{2}+x_{3}+x_{4}+\ldots+x_{m}\right)+x_{2}^{t}\left(x_{1}+x_{3}+x_{4}+\ldots+x_{m}\right)+ \\
+\ldots+x_{m}^{t}\left(x_{1}+x_{2}+x_{3}+\ldots+x_{m-1}\right)
\end{gathered}
$$

Note, that $x_{i}^{t}=x_{i}^{t-1} x_{i}, 1 \leq i \leq m$. Let us put x_{i} into the inner brackets. Hence, we obtain:

$$
\begin{aligned}
= & L_{t+1}+x_{1}^{t-1}\left(x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+\ldots+x_{1} x_{m}\right)+ \\
& +x_{2}^{t-1}\left(x_{1} x_{2}+x_{3} x_{2}+x_{4} x_{2}+\ldots+x_{m} x_{2}\right)+\ldots+ \\
& +x_{m}^{t-1}\left(x_{m} x_{1}+x_{m} x_{2}+x_{m} x_{3}+\ldots+x_{m} x_{m-1}\right)
\end{aligned}
$$

Let us introduce the following notations.
By the symbol $\varphi_{k}(i), 1 \leq i \leq m$, we denote the sum of terms in the right hand side of relation (6) for coefficient C_{i} which do not contain element x_{k}. By the symbol $\varphi_{k}^{*}(i)$ we denote the sum of remaining terms, $\varphi_{k}^{*}(i)=C_{i}-\varphi_{k}(i)$.

According to these definitions we can rewrite the last identity in the following way:

$$
C_{1} L_{t}=L_{t+1}+x_{1}^{t} \varphi_{1}(1)+x_{2}^{t} \varphi_{2}(1)+\ldots+x_{m}^{t} \varphi_{m}(1)
$$

or:

$$
C_{1} L_{t}=L_{t+1}+\sum_{k=1}^{m} x_{k}^{t} \varphi_{k}(1)
$$

Let us indicate the following properties of functions φ_{k} and φ_{k}^{*} :
a) $x_{k} \varphi_{k}(i)$ is the sum of terms from the right hand side of relation (6) for coefficient C_{i} which contain x_{k};
b) all terms of the sum $x_{k} \varphi_{k}(i)$ are different;
c) each term of the C_{i+1} representation by formula (6), which include x_{k}, exists in $x_{k} \varphi_{k}(i)$, and conversely.
d) the following relation is valid:

$$
\begin{equation*}
x_{k} \varphi_{k}(i)=-\varphi_{k}^{*}(i+1) \tag{7}
\end{equation*}
$$

for every $1 \leq k \leq m$ and $1 \leq i<m$.
According to the formula (7) we fulfill the following transformations:

$$
\begin{aligned}
& \sum_{k=1}^{m} x_{k}^{s} \varphi_{k}(i)=-\sum_{k=1}^{m} x_{k}^{s-1} \varphi_{k}^{*}(i+1)=\sum_{k=1}^{m} x_{k}^{s-1}\left(-C_{i+1}+\varphi_{k}(i+1)\right)= \\
= & -C_{i+1} \sum_{k=1}^{m} x_{k}^{s-1}+\sum_{k=1}^{m} x_{k}^{s-1} \varphi_{k}(i+1)=-C_{i+1} L_{s-1}+\sum_{k=1}^{m} x_{k}^{s-1} \varphi_{k}(i+1) .
\end{aligned}
$$

Hence, the following equality holds:

$$
\sum_{k=1}^{m} x_{k}^{s} \varphi_{k}(l)=-C_{i+1} L_{s-1}+\sum_{k=1}^{m} x_{k}^{s-1} \varphi_{k}(i+1)
$$

Continuing transformations we obtain:

$$
\begin{aligned}
C_{1} L_{t} & =L_{t+1}+\sum_{k=1}^{m} x_{k}^{t} \varphi_{k}(1)=L_{t+1}-C_{2} L_{t-1}+\sum_{k=1}^{m} x_{k}^{t-1} \varphi_{k}(2)=\ldots= \\
& =L_{t+1}-C_{2} L_{t-1}-C_{3} L_{t-2}-\ldots-C_{t} L_{1}+\sum_{k=1}^{m} x_{k} \varphi_{k}(t)= \\
& =L_{t+1}-C_{2} L_{t-1}-C_{3} L_{t-2}-\ldots-C_{t} L_{1}-\sum_{k=1}^{m} \varphi_{k}^{*}(t+1) .
\end{aligned}
$$

I.e.

$$
\begin{equation*}
C_{1} L_{t}=L_{t+1}-C_{2} L_{t-1}-C_{3} L_{t-2}-\ldots-C_{t} L_{1}-\sum_{k=1}^{m} \varphi_{k}^{*}(t+1) \tag{8}
\end{equation*}
$$

Now, let us calculate the sum $\sum_{i=1}^{m} \varphi_{k}^{*}(t+1)$.
Let us note that:
a) by definition, $\varphi_{k}^{*}(t+1)$ is the sum of terms from the right hand side of relation (6) for coefficient C_{t+1}. Each term contains x_{k};
b) Each term from right hand side of equation (6) for coefficient C_{t+1} is included into the $\operatorname{sum} \sum_{k=1}^{m} \varphi_{k}^{*}(t+1)$ exactly $t+1$ times.

Let us explain these properties more precisely. According to (6) we have:

$$
C_{t+1}=(-1)^{t} \cdot \sum_{p_{1}=1}^{m-(t+1)+1} \cdot \sum_{p_{2}=p_{1}+1}^{m-(t+1)+2} \cdot \ldots \cdot \sum_{p_{(t+1)}=p_{(t+1)-1}+1}^{m} x_{p_{1}} x_{p_{2}} \ldots x_{p_{(t+1)}} .
$$

Let us fix the set of numbers $\left(p_{1}, p_{2}, \ldots, p_{t+1}\right)$, where $1 \leq p_{1}<p_{2}<\ldots<p_{t+1} \leq m$, and consider the corresponding term $x_{p_{1}} x_{p_{2}} \ldots x_{p_{t+1}}$. This term is included exactly one time into the sum $\varphi_{p_{1}}^{*}(t+1)$, exactly one time into the sum $\varphi_{p_{2}}^{*}(t+1), \ldots$, and exactly one time into the sum $\varphi_{p_{t+1}}^{*}(t+1)$, totally $t+1$ times. And this term is not included in sums $\varphi_{k}^{*}(t+1)$ such that $k \notin\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$.

Hence, running through all sets of numbers $\left(p_{1}, p_{2}, p_{t+1}\right), 1 \leq p_{s} \leq m, 1 \leq s \leq t+1$ we get the following relation:

$$
\begin{equation*}
\sum_{k=1}^{m} \varphi_{k}^{*}(t+1)=(t+1) C_{t+1} \tag{9}
\end{equation*}
$$

Substituting (9) into (8) we obtain the necessary relation (5).
Lemma 1 is proved.

THEOREM ABOUT REGULAR SUBSEQUENCE

Let us define u_{n} as recurrent sequence of order $m\left(C_{m} \neq 0\right)$:

$$
\begin{equation*}
u_{n}=W_{n}\left(u_{0}, \ldots, u_{m-1}, C_{1}, \ldots, C_{m}\right) \tag{10}
\end{equation*}
$$

The representation of sequence is following:

$$
u_{k+m}=C_{1} u_{k+m-1}+C_{2} u_{k+m-3}+\ldots+C_{m} u_{k}
$$

The characteristic equation for this sequence is:

$$
x^{m}-C_{1} x^{m-1}-\ldots-C_{m}=0
$$

Let x_{1}, \ldots, x_{i} be the different complex roots of this equation and r_{1}, \ldots, r_{i} be their multiplicities $\left(r_{1}+\ldots+r_{i}=m\right)$.

We use the following well-known lemma.
Lemma 2: Let us define m sequences:

$$
\begin{align*}
& \left\{\left(x_{1}\right)^{n}\right\}_{n=1}^{\infty},\left\{n\left(x_{1}\right)^{n}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{1}-1}\left(x_{1}\right)^{n}\right\}_{n=1}^{\infty} \\
& \left\{\left(x_{2}\right)^{n}\right\}_{n=1}^{\infty},\left\{n\left(x_{2}\right)^{n}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{2}-1}\left(x_{2}\right)^{n}\right\}_{n=1}^{\infty}, \ldots, \tag{11}\\
& \left\{\left(x_{i}\right)^{n}\right\}_{n=1}^{\infty},\left\{n\left(x_{i}\right)^{n}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{i}-1}\left(x_{i}\right)^{n}\right\}_{n=1}^{\infty}
\end{align*}
$$

There exist complex numbers $\left(a_{1}, \ldots, a_{m}\right)$ such that the recurrent sequence u_{n} can be decomposed to a linear combination of numbers $\left(a_{1}, \ldots, a_{m}\right)$ and sequences (11). This linear combination is unique.

Now let us examine the regular subsequence

$$
\begin{equation*}
v_{k}=u_{s k+j} \tag{12}
\end{equation*}
$$

of sequence $\left\{u_{n}\right\}$. Here s is a natural number, and j is a nonnegative integer.

Now, let us define y_{1}, \ldots, y_{m} as roots of equation

$$
y^{m}-C_{1} y^{m-1}-\ldots-C_{m}=0
$$

including multiple roots, i.e.

$$
\begin{equation*}
y^{m}-C_{1} y^{m-1}-\ldots-C_{m}=\left(y-y_{1}\right) \cdot\left(y-y_{2}\right) \cdot \ldots \cdot\left(y-y_{m}\right) \tag{13}
\end{equation*}
$$

Let us define the numbers:

$$
\begin{align*}
& U_{1}=\left(y_{1}\right)^{s}+\left(y_{2}\right)^{s}+\ldots+\left(y_{m}\right)^{s} \\
& U_{2}=(-1) \cdot\left[\left(y_{1} y_{2}\right)^{s}+\left(y_{1} y_{3}\right)^{s}+\ldots+\left(y_{1} y_{m}\right)^{s}+\right. \\
& \left.+\left(y_{2} y_{3}\right)^{s}+\ldots+\left(y_{m-1} y_{m}\right)^{s}\right] \\
& U_{3}=\left(y_{1} y_{2} y_{3}\right)^{s}+\left(y_{1} y_{2} y_{4}\right)^{s}+\ldots+\left(y_{1} y_{2} y_{m}\right)^{s}+ \tag{14}\\
& +\left(y_{1} y_{3} y_{4}\right)^{s}+\ldots+\left(y_{m-2} y_{m-1} y_{m}\right)^{s} \\
& \ldots \\
& U_{m}=(-1)^{m+1}\left(y_{1} y_{2} \ldots y_{m}\right)^{s} .
\end{align*}
$$

Theorem 1 (Theorem about regular subsequences): Let $\left\{u_{k}\right\}$ and $\left\{v_{k}\right\}$ and numbers $U_{1}, U_{2}, \ldots, U_{m}$ be defined by (10), (12) and (14). Then the sequence $\left\{v_{n}\right\}$ is a recurrent sequence of order m_{1}, where m_{1} is a natural number, $m_{1} \leq m$ and the next equality is valid:
$v_{m+k}=U_{1} v_{m+k-1}+U_{2} v_{m+k-2}+\ldots+U_{m} v_{k}$
Proof: According to Lemma 2, the sequence u_{n} is a linear combination of complex numbers $\left(a_{1}, \ldots, a_{m}\right)$ and sequences:

$$
\begin{aligned}
& \left\{\left(x_{1}\right)^{n}\right\}_{n=1}^{\infty},\left\{n\left(x_{1}\right)^{n}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{1}-1}\left(x_{1}\right)^{n}\right\}_{n=1}^{\infty} \\
& \left\{\left(x_{2}\right)^{n}\right\}_{n=1}^{\infty},\left\{n\left(x_{2}\right)^{n}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{2}-1}\left(x_{2}\right)^{n}\right\}_{n=1}^{\infty}, \ldots, \\
& \left\{\left(x_{i}\right)^{n}\right\}_{n=1}^{\infty},\left\{n\left(x_{i}\right)^{n}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{i}-1}\left(x_{i}\right)^{n}\right\}_{n=1}^{\infty}
\end{aligned}
$$

By definition of the subsequence $\left\{v_{k}\right\}$, there exist complex numbers b_{1}, \ldots, b_{m} such that the sequence $\left\{v_{k}\right\}$ can be represented as a linear combination of these numbers and sequences:

$$
\begin{aligned}
& \left\{\left(x_{1}\right)^{s n+j}\right\}_{n=1}^{\infty},\left\{n\left(x_{1}\right)^{s n+j}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{1}-1}\left(x_{1}\right)^{s n+j}\right\}_{n=1}^{\infty} \\
& \left\{\left(x_{2}\right)^{s n+j}\right\}_{n=1}^{\infty},\left\{n\left(x_{2}\right)^{s n+j}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{2}-1}\left(x_{2}\right)^{s n+j}\right\}_{n=1}^{\infty}, \ldots, \\
& \left\{\left(x_{i}\right)^{s n+j}\right\}_{n=1}^{\infty},\left\{n\left(x_{i}\right)^{s n+j}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{i}-1}\left(x_{i}\right)^{s n+j}\right\}_{n=1}^{\infty}
\end{aligned}
$$

Hence, there exist complex numbers $\left(d_{1}, \ldots, d_{m}\right)$ such that the sequence v_{k} can be represented as a linear combination of numbers $\left(d_{1}, \ldots, d_{m}\right)$ and sequences:

$$
\begin{aligned}
& \left\{\left(x_{1}\right)^{s n}\right\}_{n=1}^{\infty},\left\{n\left(x_{1}\right)^{s n}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{1}-1}\left(x_{1}\right)^{s n}\right\}_{n=1}^{\infty} \\
& \left\{\left(x_{2}\right)^{s n}\right\}_{n=1}^{\infty},\left\{n\left(x_{2}\right)^{s n}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{2}-1}\left(x_{2}\right)^{s n}\right\}_{n=1}^{\infty}, \ldots \\
& \left\{\left(x_{i}\right)^{s n}\right\}_{n=1}^{\infty},\left\{n\left(x_{i}\right)^{s n}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{i}-1}\left(x_{i}\right)^{s n}\right\}_{n=1}^{\infty}
\end{aligned}
$$

Now, consider the next expression:

$$
F(x)=\left(x-x_{1}^{s}\right)^{r_{1}} \cdot\left(x-x_{2}^{s}\right)^{r_{2}} \cdot \ldots \cdot\left(x-x_{i}^{s}\right)^{r_{i}} .
$$

Let us make the following transformation:

$$
\begin{align*}
& F(x)=\left(x-x_{1}^{s}\right)^{r_{1}} \cdot\left(x-x_{2}^{s}\right)^{r_{2}} \cdot \ldots \cdot\left(x-x_{i}^{s}\right)^{r_{i}}= \\
& =\left(x-y_{1}^{s}\right) \cdot\left(x-y_{2}^{s}\right) \cdot \ldots \cdot\left(x-y_{m}^{s}\right)= \\
& =x^{m}-\left(y_{1}^{s}+\ldots+y_{m}^{s}\right) x^{m-1}+\left(\left(y_{1} y_{2}\right)^{s}+\ldots+\right. \tag{15}\\
& \left.+\left(y_{m-1} y_{m}\right)^{s}\right) x^{m-2}+\ldots+(-1)^{m+1}\left(y_{1} y_{2} \ldots y_{m}\right)^{s}= \\
& =x^{m}-U_{1} x^{m-1}-\ldots-U_{m} x^{0} .
\end{align*}
$$

Let us consider the following equation

$$
F(x)=x^{m}-U_{1} x^{m-1}-\ldots-U_{m} x^{0}=0 .
$$

Note that some numbers in the set $\left(x_{1}^{s}, x_{2}^{s}, \ldots, x_{i}^{s}\right)$ may not be different.
Now let us apply Lemma 2 to the recurrent sequences: $W_{n}\left(v_{0}, v_{1}, \ldots, v_{m-1}, U_{1}, U_{2}, \ldots, U_{m}\right)$. The following statements are evident:
the multiplicity of root x_{1}^{s} is greater or equal to r_{1};
the multiplicity of root x_{2}^{s} is greater or equal to r_{2};
the multiplicity of root x_{i}^{s} is greater or equal to r_{i}.
Hence, by Lemma 2 the sequence
$W_{n}\left(v_{0}, v_{1}, \ldots, v_{m-1}, U_{1}, U_{2}, \ldots, U_{m}\right)$ is a linear combination of sequences:

$$
\begin{align*}
& \left\{\left(x_{1}\right)^{s n}\right\}_{n=1}^{\infty},\left\{n\left(x_{1}\right)^{s n}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{1}-1}\left(x_{1}\right)^{s n}\right\}_{n=1}^{\infty}, \\
& \left\{\left(x_{2}\right)^{s n}\right\}_{n=1}^{\infty},\left\{n\left(x_{2}\right)^{s n}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{2}-1}\left(x_{2}\right)^{s n}\right\}_{n=1}^{\infty}, \tag{16}\\
& \ldots \\
& \left\{\left(x_{i}\right)^{s n}\right\}_{n=1}^{\infty},\left\{n\left(x_{i}\right)^{s n}\right\}_{n=1}^{\infty}, \ldots,\left\{n^{r_{i}-1}\left(x_{i}\right)^{s n}\right\}_{n=1}^{\infty} .
\end{align*}
$$

Note that in the case when some terms in the set $\left(x_{1}^{s}, x_{2}^{s}, \ldots, x_{i}^{s}\right)$ are not different the number of different sequences in (16) is less than m. In this case we have $m_{1}<m$ (see statement of the theorem 1). In case when these terms are different the following equality holds $m_{1}=m$.

So, we obtain that $\left\{v_{n}\right\}$ is a linear combination of sequences from (16). Hence, $\left\{v_{n}\right\}$ can be represented by the following formula:

$$
v_{m+k}=U_{1} v_{m+k-1}+U_{2} v_{m+k-2}+\ldots+U_{m} v_{k}
$$

The Theorem 1 is proved.
One can mention that it is difficult to calculate U_{i} using roots of characteristic equation in the case $m>3$. In this case we need to find roots of linear equation of order m, and this problem is rather cumbersome.

In the next paragraph we show how to calculate coefficients U_{i} using L-sequences.
Property 1: Let C_{m} and U_{m} be defined by (10) and (14). The next statement is valid.

If m and s are both even integer numbers then:

$$
U_{m}=-\left(C_{m}\right)^{s}
$$

otherwise

$$
U_{m}=C_{m}^{s}
$$

Proof: By definition we have:

$$
\begin{gathered}
U_{m}=(-1)^{m+1}\left(y_{1} y_{2} \ldots y_{m}\right)^{s}= \\
\left.=(-1)^{m+1}\left((-1)^{m+1}\left[(-1)^{m+1}\left(y_{1} y_{2} \ldots y_{m}\right)\right]\right)^{s}\right)= \\
\left.=(-1)^{m+1}\left((-1)^{m+1} C_{m}\right)^{s}\right)=(-1)^{s m+s+m+1}\left(C_{m}\right)^{s}
\end{gathered}
$$

If s and m are both even then $s m+s+m+1$ is odd; otherwise $s m+s+m+1$ is even. Property 1 is proved.
Property 2: Let C_{m} and U_{m} be defined by (10) and (14). The next statement is valid.
If m is odd then

$$
U_{m}=C_{m}^{s}
$$

and if m is even then

$$
U_{m}=-\left(-C_{m}\right)^{s}
$$

Proof: Let us consider the next case: m is even and s is odd. In this case

$$
U_{m}=-\left(-C_{m}\right)^{s}=-(-1)^{s} \cdot\left(C_{m}\right)^{s}=\left(C_{m}\right)^{s}
$$

In other cases this statement is valid according to the Property 1.
Property 2 is proved.
Remark: In [6] Prof. P.T. Young proved that for each integer k : $1 \leq k \leq m-1$ the following identity holds:

$$
U_{k}=\sum_{i=1}^{m}(-1)^{k-1} D_{s}^{(k)}\left(C_{1}, C_{2}, \ldots, C_{m}, 0\right)
$$

where $D_{s}^{(k)}$ are the generalized Dickson polynomials defined by eq. (2.6) in [6]. Theorem 1 in [6] is an analogue of the Theorem 1 in this paper.

ADDITIONAL PROPERTIES OF L-SEQUENCES AND REGULAR SUBSEQUENCES

Now, we apply the result of the Theorem 1 to L-sequences.
Let's use the notations of roots of characteristic equation $y_{1}, y_{2}, \ldots, y_{m}$ and numbers $U_{1}, U_{2}, \ldots, U_{m}$ from equalities (14) and (13) of the previous paragraph. We have shown that:

$$
\begin{equation*}
\left(x-y_{1}^{s}\right) \cdot\left(x-y_{2}^{s}\right) \cdot \ldots \cdot\left(x-y_{m}^{s}\right)=x^{m}-U_{1} x^{m-1}-\ldots-U_{m} x^{0} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(x-y_{1}\right) \cdot\left(x-y_{2}\right) \cdot \ldots \cdot\left(x-y_{m}\right)=x^{m}-C_{1} x^{m-1}-\ldots-C_{m} x^{0} . \tag{18}
\end{equation*}
$$

Let us denote by the symbol $\left\{L_{n}\right\}_{n=0}^{\infty}$ the L-sequence with parameters $\left(C_{1}, C_{2}, \ldots, C_{m}\right)$. From (18) and definition of L-sequence it follows:

$$
L_{n}=\left(y_{1}\right)^{n}+\left(y_{2}\right)^{n}+\ldots+\left(y_{m}\right)^{n} .
$$

Let us denote by the symbol $\left\{L_{n}^{(1)}\right\}_{n=0}^{\infty}$ the L-sequence with parameters $\left(U_{1}, U_{2}, \ldots, U_{m}\right)$. From (17) it follows:

$$
L_{n}^{(1)}=\left(y_{1}^{s}\right)^{n}+\left(y_{2}^{s}\right)^{n}+\ldots+\left(y_{m}^{s}\right)^{n}=\left(y_{1}\right)^{s n}+\left(y_{2}\right)^{s n}+\ldots+\left(y_{m}\right)^{s n} .
$$

Hence, for every natural number k the following equality is valid:

$$
\begin{equation*}
L_{k}^{(1)}=L_{s k} \tag{19}
\end{equation*}
$$

Using Lemma 1 let us prove the following statement.
Lemma 3: Let $\left\{L_{n}\right\}$ is the L-sequence with parameters $\left(C_{1}, C_{2}, \ldots, C_{m}\right)$ and $\left\{U_{n}\right\}$ be defined from (14). The following relation is valid for every integer number $0 \leq s<m$:

$$
\begin{equation*}
L_{k(s+1)}=U_{1} L_{k s}+U_{2} L_{k(s-1)}+\ldots+U_{s} L_{k}+(s+1) U_{s+1} . \tag{20}
\end{equation*}
$$

Proof: To prove Lemma 3 it is sufficient to replace $L_{s k}$ by $L_{k}^{(1)}$. This replacement is possible due to relation (19). Hence, Lemma 3 follows from the Lemma 1 since $\left\{L_{s k}\right\}_{n=0}^{\infty}$ is an L-sequence.

Let us suppose that terms of the sequence $\left\{L_{n}\right\}_{n=0}^{\infty}$ are given. Let us put numbers $s=0,1, \ldots, m$ into (20) in a consecutive way. By this way we obtain the following equalities:

$$
\begin{align*}
& U_{1}=L_{k} \\
& U_{2}=\frac{1}{2}\left(L_{2 k}-L_{k} U_{1}\right)=\frac{1}{2}\left(L_{2 k}-L_{k}^{2}\right) \\
& U_{3}=\frac{1}{3}\left(L_{3 k}-L_{k} U_{2}-L_{2 k} U_{1}\right)=\frac{1}{3}\left(L_{3 k}-2 L_{k} L_{2 k}+\left(L_{k}\right)^{3}\right. \tag{21}
\end{align*}
$$

So, Lemma 3 provides the method for calculating U_{1}, \ldots, U_{m} using only parameters C_{1}, \ldots, C_{m}.

Note that we can rewrite (21) in the alternative form:

$$
\begin{aligned}
& L_{k}=U_{1} \\
& L_{2 k}=L_{k}^{2}+2 U_{2} \\
& L_{3 k}=2 L_{k} L_{2 k}-\left(L_{k}\right)^{3}+3 U_{3}
\end{aligned}
$$

These equalities generalize the well-known relations of Lucas sequences.
Let us remind that the numbers $\left(U_{1}, U_{2}, \ldots, U_{m}\right)$ are defined by (14). Now let us define the adjoint numbers:

$$
\begin{align*}
& U_{-1}=\left(y_{1}\right)^{-s}+\left(y_{2}\right)^{-s}+\ldots+\left(y_{m}\right)^{-s} ; \\
& U_{-2}=(-1) \cdot\left[\left(y_{1} y_{2}\right)^{-s}+\left(y_{1} y_{3}\right)^{-s}+\ldots+\left(y_{1} y_{m}\right)^{-s}+\right. \\
& \left.+\left(y_{2} y_{3}\right)^{-s}+\ldots+\left(y_{m-1} y_{m}\right)^{-s}\right] ; \\
& U_{-3}=\left(y_{1} y_{2} y_{3}\right)^{-s}+\left(y_{1} y_{2} y_{4}\right)^{-s}+\ldots+\left(y_{1} y_{2} y_{m}\right)^{-s}+ \tag{22}\\
& +\left(y_{1} y_{3} y_{4}\right)^{-s}+\ldots+\left(y_{m-2} y_{m-1} y_{m}\right)^{-s} ; \\
& \ldots \\
& U_{-m}=(-1)^{m+1}\left(y_{1} y_{2} \ldots y_{m}\right)^{-s} .
\end{align*}
$$

By analogy with (15) the following relation takes place for numbers $U_{-1}, U_{-2}, \ldots, U_{-m}$:

$$
y^{m}-U_{-1} y^{m-1}-U_{-2} y^{m-2}-\ldots-U_{-m}=\left(y-x_{1}^{-i}\right) \cdot\left(y-x_{2}^{-i}\right) \cdot \ldots \cdot\left(y-x_{m}^{-i}\right) .
$$

Hence, the L-sequence for numbers $U_{-1}, U_{-2}, \ldots, U_{-m}$ is equal to $\left\{L_{-s k}\right\}$.
Thus, we can generalize Lemma 3 in the following form.
Lemma 4: Let L_{n} is the L-sequence with parameters ($C_{1}, C_{2}, \ldots, C_{m}$) and numbers U_{-1}, \ldots, U_{-m} be defined by (22). The following equality holds for every integer $1 \leq s<n$:

$$
\begin{align*}
& L_{-k(s+1)}=U_{-1} L_{-k s}+U_{-2} L_{-k(s-1)}+ \\
& +\ldots+U_{-s} L_{-k}+(s+1) U_{-(s+1)} \tag{23}
\end{align*}
$$

Let us prove the following statement.
Lemma 5: Let $U_{-m}, U_{-m+1}, \ldots, U_{-1}, U_{1}, \ldots, U_{m}$ be defined by (14) and (22). Then the following formula is valid for $1 \leq i<m$:

$$
\begin{equation*}
U_{m-i}=(-1) \cdot U_{m} U_{-i} . \tag{24}
\end{equation*}
$$

Proof: For proving of Lemma 5 let us make the following transformations using (14) and (22):

$$
\begin{aligned}
& U_{1}=\left(y_{1}\right)^{s}+\left(y_{2}\right)^{s}+\ldots+\left(y_{m}\right)^{s}= \\
& =\left(y_{1} y_{2} \ldots y_{m}\right)^{s}\left[\left(y_{1} y_{2} \ldots y_{m-1}\right)^{-s}+\left(y_{1} y_{2} \ldots y_{m-2} y_{m}\right)^{-s}+\right. \\
& \left.+\ldots+\left(y_{2} y_{3} \ldots y_{m}\right)^{-s}\right]= \\
& =U_{m} U_{-(m-1)}(-1)^{m}(-1)^{m+1}=(-1) U_{m} U_{-(m-1)} \\
& U_{2}=(-1) \cdot\left[\left(y_{1} y_{2}\right)^{s}+\left(y_{1} y_{3}\right)^{s}+\ldots+\left(y_{1} y_{m}\right)^{s}+\right. \\
& \left.+\left(y_{2} y_{3}\right)^{s}+\ldots+\left(y_{m-1} y_{m}\right)^{s}\right]= \\
& =(-1) \cdot\left(y_{1} y_{2} \ldots y_{m}\right)^{s}\left[\left(y_{1} y_{2} \ldots y_{m-2}\right)^{-s}+\left(y_{1} y_{2} \ldots y_{m-3} y_{m-1}\right)^{-s}+\right. \\
& \left.+\left(y_{1} y_{2} \ldots y_{m-3} y_{m}\right)^{-s}+\left(y_{1} y_{3} y_{4} \ldots y_{m-1}\right)^{-s}+\ldots+\left(y_{3} y_{3} \ldots y_{m}\right)^{s}\right]= \\
& =(-1) U_{m} U_{-(m-2)}(-1)^{m+1}(-1)^{m-1}=(-1) U_{m} U_{-(m-2)}
\end{aligned}
$$

$$
\begin{aligned}
& U_{m-1}=(-1)^{m}\left[\left(y_{1} y_{2} \ldots y_{m-1}\right)^{s}+\left(y_{1} y_{2} \ldots y_{m-2} y_{m}\right)^{s}+\ldots+\right. \\
& \left.+\left(y_{2} y_{3} \ldots y_{m}\right)^{s}\right]=(-1)^{m}\left(y_{1} y_{2} \ldots y_{m}\right)^{s}\left[\left(y_{1}\right)^{-s}+\left(y_{2}\right)^{-s}+\right. \\
& \left.+\ldots+\left(y_{m}\right)^{-s}\right]=(-1)^{m} U_{m} U_{-1}(-1)^{m+1}=(-1) U_{m} U_{-1} .
\end{aligned}
$$

Hence, in all cases the statement of Lemma 5 takes place.
Lemma 5 is proved.
According to Property 2 number U_{m} can be trivially found using parameter C_{m}.

A SIMPLIFIED METHOD FOR CALCULATING THE COEFFICIENTS U_{1}, \ldots, U_{m}

Let us pass to the main task of this paragraph.
Consider the following algorithm.
Let sequence $\left\{u_{n}\right\}$ be defined by (1). Suppose that parameters C_{1}, \ldots, C_{m} are already known. Let us define the recurrent sequence $\left\{v_{n}\right\}$ by (3)-(4). The goal of the algorithm is to find parameters U_{1}, \ldots, U_{m}.

Step 1. According to (5) we calculate terms of L-sequence $\left\{L_{n}\right\}$ for parameters C_{1}, \ldots, C_{m}.
Step 2. According to (20), (23), and (24) and Property 2 we calculate numbers U_{1}, \ldots, U_{m}.
In most cases we recommend to find $U_{1}, \ldots, U_{\left[\frac{m}{2}\right]}$ by $(20), U_{-1}, \ldots, U_{-\left[\frac{m}{2}\right]}$ - by (23), and the remaining numbers - by (24).

For example,
By equality (5) we have:

$$
\begin{aligned}
& U_{1}=L_{s} \\
& U_{2}=\frac{1}{2}\left(L_{2 s}-L_{s} U_{1}\right)=\frac{1}{2}\left(L_{2 s}-\left(L_{s}\right)^{2}\right) .
\end{aligned}
$$

By Property 2 we have:

$$
\begin{aligned}
& U_{m}=\left(C_{m}\right)^{s}-\text { in the case when } m \text { is odd; } \\
& U_{m}=-\left(-C_{m}\right)^{s}-\text { in the case when } m \text { is even. }
\end{aligned}
$$

By equality (24) we have:

$$
\begin{aligned}
& U_{m-1}=(-1) U_{m} \cdot U_{-1}=-\left(C_{m}\right)^{s} L_{-s}-\text { in the case when } m \text { is odd; } \\
& U_{m-1}=(-1) U_{m} \cdot U_{-1}=\left(-C_{m}\right)^{s} L_{-s} \text { - in the case when } m \text { is even; } \\
& U_{m-2}=(-1) \cdot U_{m} \cdot U_{-2}=-\frac{1}{2}\left(C_{m}\right)^{s}\left(L_{-2 s}-\left(L_{-s}\right)^{2}\right)
\end{aligned}
$$

- in the case when m is odd;

$$
U_{m-2}=(-1) \cdot U_{m} \cdot U_{-2}=\frac{1}{2}\left(-C_{m}\right)^{s}\left(L_{-2 s}-\left(L_{-s}\right)^{2}\right)
$$

- in the case when m is even;

Etc.
Let us examine the next cases:
Case 1. $m=2$:
$U_{1}=L_{s}$
$U_{2}=U_{m}=-\left(-C_{2}\right)^{s}$.
Hence,

$$
v_{k+2}=L_{s} v_{k+1}-\left(-C_{2}\right)^{s} v_{k} .
$$

The last relation is the well-known formula (see, for example, [2]).
Case 2. $m=3$:

$$
U_{1}=L_{s} ; U_{2}=U_{m-1}=-\left(C_{3}\right)^{s} L_{-s} ; U_{3}=U_{m}=\left(C_{3}\right)^{s} .
$$

Hence:

$$
v_{k+3}=L_{s} v_{k+2}-\left(C_{3}\right)^{s} L_{-s} v_{k+1}+\left(C_{3}\right)^{s} v_{k} .
$$

The last formula was obtained by Prof. F. T. Howard in [4]
Case 3. $m=4$:

$$
\begin{aligned}
& U_{1}=L_{s} ; \\
& U_{2}=\frac{1}{2}\left(L_{2 s}-\left(L_{s}\right)^{2}\right) ; \\
& U_{3}=U_{m-1}=\left(-C_{4}\right)^{s} L_{-s} ; \\
& U_{4}=U_{m}=-\left(-C_{4}\right)^{s} .
\end{aligned}
$$

Hence,

$$
v_{k+4}=L_{s} v_{k+3}+\frac{1}{2}\left(L_{2 s}-\left(L_{s}\right)^{2}\right) v_{k+2}+\left(-C_{4}\right)^{s} L_{-s} v_{k+1}-\left(-C_{4}\right)^{s} v_{k} .
$$

The author believes this result is new.
Case 4. $m=5$:

$$
\begin{aligned}
& U_{1}=L_{s} ; \\
& U_{2}=\frac{1}{2}\left(L_{2 s}-\left(L_{s}\right)^{2}\right) ; \\
& U_{3}=U_{m-2}=-\frac{1}{2}\left(C_{5}\right)^{s}\left(L_{-2 s}-\left(L_{-s}\right)^{2}\right) ; \\
& U_{4}=U_{m-1}=-\left(C_{5}\right)^{s} L_{-s} ; \\
& U_{5}=U_{m}=\left(C_{5}\right)^{s} .
\end{aligned}
$$

Hence,

$$
\begin{gathered}
v_{k+5}=L_{s} v_{k+4}+\frac{1}{2}\left(L_{2 s}-\left(L_{s}\right)^{2}\right) v_{k+3}- \\
-\frac{1}{2}\left(C_{5}\right)^{s}\left(L_{-2 s}-\left(L_{-s}\right)^{2}\right) v_{k+2}-\left(C_{5}\right)^{s} L_{-s} v_{k+1}+\left(C_{5}\right)^{s} v_{k} .
\end{gathered}
$$

Remark: Let us examine the following example

$$
u_{n+2}=4 u_{n} .
$$

In this case the corresponding L-sequence, let denote it L_{n}, is a sequence of the second order

$$
L_{n}=2^{n}+(-2)^{n} .
$$

The regular subsequence

$$
v_{n}=L_{2 n}
$$

is a sequence of the first order:

$$
v_{n}=4^{n} .
$$

We use here the order of terms of recurrent sequences like in Definition 1 in [4].
Finally, we examine the following example $m=4, C_{1}=1, C_{2}=3, C_{3}=4, C_{4}=2$. Hence,

$$
\begin{equation*}
u_{n+4}=3 u_{n+3}+5 u_{n+2}+7 u_{n+1}+2 u_{n} . \tag{25}
\end{equation*}
$$

Let $s=5$ and j be a natural number.
In this case we have:

$$
\begin{aligned}
& L_{0}=m=4 \\
& L_{1}=C_{1}=1 \\
& L_{2}=L_{1} C_{1}+2 C_{2}=1+2 \cdot 3=7 \\
& L_{3}=L_{1} C_{2}+L_{2} C_{1}+3 C_{3}=1 \cdot 3+7 \cdot 1+3 \cdot 4=22
\end{aligned}
$$

Hence, by (25) we can calculate the following values:

$$
\begin{aligned}
& L_{5}=151 \\
& L_{10}=23167 \\
& L_{15}=3526402
\end{aligned}
$$

According to Lemma 3 we can calculate the following values

$$
\begin{aligned}
& U_{1}=L_{5}=151 \\
& U_{2}=\left(L_{10}-L_{5} U_{1}\right) / 2=(23167-151 \cdot 151) / 2=183 \\
& U_{3}=\left(L_{15}-L_{10} U_{1}-L_{5} U_{2}\right) / 3= \\
& (3526402-23167 \cdot 151-151 \cdot 183) / 3=184
\end{aligned}
$$

According to Property 1 we obtain:

$$
U_{4}=2^{5}=32
$$

Hence,

$$
v_{k+4}=151 v_{k+3}+183 v_{k+2}+184 v_{k+1}+32 v_{k} .
$$

```
A REPRESENTATION OF REGULAR SUBSEQUENCES OF RECURRENT SEQUENCES
```

Thus, we obtain the following recurrent formula

$$
u_{k+20}=151 u_{k+15}+183 u_{k+10}+184 u_{k+5}+32 u_{k} .
$$

ACKNOWLEDGMENT

We would like to thank the referee for helpful remarks and suggestions that improved the presentation of the paper.

REFERENCES

[1] Helmut Hasse. Number Theory. Berlin: Springer-Verlag, 1980.
[2] A.F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3.3 (1965): 161.
[3] F.T. Howard. "Generalizations of a Fibonacci Identity." In Applications of Fibonacci Numbers 8. Ed. F. T. Howard. Dordrecht:Kluwer, 1999, pp. 201-11.
[4] F.T. Howard. "A Tribonacci Identity." The Fibonacci Quarterly 39.4 (2001): 352-358.
[5] N.N. Vorobiev. Fibonacci numbers. Moscow. -"Nauka" -1992 (in Russian).
[6] P.T. Young. "On Lacunary Recurrences." The Fibonacci Quarterly 41.1 (2003): 41-47.
AMS Classification Numbers: 11B39, 11B37

玉必

