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ABSTRACT

This paper is devoted to analysis of subsequences of general recurrent sequences. Let
{un}∞n=0 be a recurrent sequence of order m. We consider subsequences vn = usn+j where s
is a natural number, j is a non-negative integer. Hereinafter we call these sequences ‘regular
subsequences’. Our goal is to calculate the general representation for these subsequences and to
create the simple algorithm for its calculation which does not use the roots of the corresponding
characteristic equation. Also, the general formula of representation for ‘regular’ subsequences
is presented. An algorithm for calculation of ‘regular’ subsequences is given. We propose also
an algorithm for calculating elements of the sequence equal to the sum of nth powers of the
roots of characteristic equation, e.g. for elements , Un+5k = LkUn+4k + 1

2 (L2k−(Lk)2)Un+3k +
1
2 (C5)k(L2k − (Lk)2)Un+2k − (C5)kL−kUn+k + (C5)kUn. This paper is a generalization of the
result by Prof. F. T. Howard.

INTRODUCTION

A recurrent sequence of order m can be defined as a sequence

u0, u1, ..., un, ...

with m− 1 arbitrary real (complex) numbers and for k ≥ 0:

um+k = C1um+k−1 + C2um+k−2 + ... + Cmuk. (1)

The numbers C1, ..., Cm are arbitrary real numbers and Cm 6= 0. For the sequences (1)
depending on 2m parameters we use the notation:

Wn(u0, u1, ..., um−1, C1, C2, ..., Cm).

The corresponding characteristic equation for the sequence (1) is defined by the formula:

xm − C1x
m−1 − ...− Cm = 0. (2)

Let x1, ..., xm be the complex roots (including multiple roots) of equation (2).
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Definition: Let {Ln}∞n=0, Ln = xn
1 + xn

2 + ... + xn
m, be the recurrent sequence of order m.

This sequence depends on parameters (C1, C2, ..., Cm). We call this sequence L-sequence for
parameters (C1, C2, ..., Cm).

Let us prove that {Ln}∞n=0 is a sequence from the set Wn(u0, u1, ..., um−1, C1, C2, ..., Cm).
Let us consider sequences of the following form:

v
(1)
k = {(x1)k}∞k=0, v

(2)
k = {(x2)k}∞k=0, ..., v

(m)
k = {(xm)k}∞k=0.

It is clear that these sequences are the recurrent sequences from the set Wn(u0, u1, ..., um−1, C1,
C2, ..., Cm), since x1, ..., xm are the roots of the characteristic equation. Hence, the sum
of these sequences, i.e. the sequence {Ln}∞n=0, is the recurrent sequence from the set
Wn(u0, u1, ..., um−1, C1, C2, ..., Cm).

Thus, for each set of parameters (C1, C2, ..., Cm), there exists the unique L-sequence. In
particular, the L-sequence with parameters C1 = C2 = 1; m = 2 coincides with the well-known
Lucas sequence.
Definition: Let {un}∞n=0 be a recurrent sequence from the set Wn(u0, u1, ..., um−1, C1, C2, ...,
Cm). We say that a subsequence {vn}∞n=0 of sequence {un}∞n=0 is called regular subsequence
of {un}∞n=0 if there exists a natural number s and a nonnegative integer j such that for every
nonnegative integer k the following formula holds:

vk = usk+j . (3)

We prove below that a regular subsequence of order m is a recurrent sequence of order m. That
is, there exist real numbers U1, .., Um such that for every nonnegative integer k the following
relations take place:

vk+m = U1vk+m−1 + U2vk+m−2 + ... + Umvk. (4)

The main result of this paper is an algorithm for calculating these coefficients U1, .., Um.
It is known that the calculation of roots of a linear equation is a cumbersome problem.

Basing on properties of L-sequences we propose an alternative algorithm for calculating coef-
ficients U1, .., Um. This algorithm significantly reduces the complexity of calculations.

In particular, for m = 3:

Un+3k = LkUn+2k − (C3)kL−kUn+k + (C3)kUn.

This result was proved by Prof. F. T. Howard (see [4]).
For m = 4:

Un+4k = LkUn+3k +
1
2

(L2k−

−(Lk)2)Un+2k + (−C4)kL−kUn+k − (−C4)kUn

For m = 5:

Un+5k = LkUn+4k +
1
2

(L2k − (Lk)2)Un+3k+

+
1
2

(C5)k(L2k − (Lk)2)Un+2k − (C5)kL−kUn+k + (C5)kUn

Etc.
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SOME PROPERTIES OF L-SEQUENCES

Lemma 1: For any integer 1 ≤ i < n the following formula is valid:

Li+1 = C1Li + C2Li−1 + ... + CiL1 + (i + 1)Ci+1. (5)

In particular,

L0 = m;
L1 = C1;
L2 = C1L2 + 2C2;
...

Ln = C1Ln−1 + C2Ln−2 + ... + nCn;

Thus, one can calculate all elements of L-sequence directly from parameters (C1, C2, ..., Cm).
It is not necessary to know values of roots x1, ..., xm of characteristic equation.

Proof: First, let us represent the numbers (C1, C2, ..., Cm) using x1, ..., xm.
Consider next transformations:

xm − C1x
m−1 − ...− Cmx0 = (x− x1) · (x− x2) · ... · (x− xm) =

= xm − (x1 + x2 + ... + xm)xm−1 + (x1x2 + x1x3 + ...+

+xm−1xm)xm−2 − (x1x2x3 + x1x2x4 + ...+

xm−2xm−1xn)xm−3 + ...− (−1)m+1(x1x2x3....xm)x0

Hence, the following relations take place:

C1 = x1 + x2 + ... + xm

C2 = −(x1x2 + x1x3 + ... + xm−1xn) =
m−1∑
j=1

m∑
k=j+1

xjxk

C3 = x1x2x3 + x1x2x4 + ... + xm−2xm−1xn =
m−2∑
j=1

m−1∑
k=j+1

m∑
l=k+1

xjxkxl

...................................

Ch = (−1)h+1 ·
m−h+1∑

p1=1

·
m−h+2∑
p2=p1+1

×

... ·
m∑

ph=ph−1+1

xp1xp2 ...xph

...................................

Cm = (−1)m+1x1x2x3....xm.

(6)

72



A REPRESENTATION OF REGULAR SUBSEQUENCES OF RECURRENT SEQUENCES

Now, let us calculate C1Lt:

C1Lt = (x1 + x2 + ... + xm)(xt
1 + xt

2 + ... + xt
m).

First, we open the left bracket:

= x1(xt
1 + xt

2 + ... + xt
m) + x2(xt

1 + xt
2 + ... + xt

m) + ...+

+xm(xt
1 + xt

2 + ... + xt
m).

Let us group together terms containing the highest power xt+1
i , i = 1, ..., m. We have:

= (xt+1
1 + xt+1

2 + ... + xt+1
m ) + x1(xt

2 + xt
3 + ... + xt

m)+

+x2(xt
1 + xt

3 + ... + xt
m) + ... + xm(xt

1 + xt
2 + ... + xt

m−1).

The expression in the first bracket is equal to Lt+1. Let us regroup the remaining terms as
follows:

= Lt+1 + xt
1(x2 + x3 + x4 + ... + xm) + xt

2(x1 + x3 + x4 + ... + xm)+

+... + xt
m(x1 + x2 + x3 + ... + xm−1).

Note, that xt
i = xt−1

i xi, 1 ≤ i ≤ m. Let us put xi into the inner brackets. Hence, we obtain:

= Lt+1 + xt−1
1 (x1x2 + x1x3 + x1x4 + ... + x1xm)+

+xt−1
2 (x1x2 + x3x2 + x4x2 + ... + xmx2) + ...+

+xt−1
m (xmx1 + xmx2 + xmx3 + ... + xmxm−1).

Let us introduce the following notations.
By the symbol ϕk(i), 1 ≤ i ≤ m, we denote the sum of terms in the right hand side of

relation (6) for coefficient Ci which do not contain element xk. By the symbol ϕ∗k(i) we denote
the sum of remaining terms, ϕ∗k(i) = Ci − ϕk(i).

According to these definitions we can rewrite the last identity in the following way:

C1Lt = Lt+1 + xt
1ϕ1(1) + xt

2ϕ2(1) + ... + xt
mϕm(1),

or:

C1Lt = Lt+1 +
m∑

k=1

xt
kϕk(1).

Let us indicate the following properties of functions ϕk and ϕ∗k:
a) xkϕk(i) is the sum of terms from the right hand side of relation (6) for coefficient Ci

which contain xk;
b) all terms of the sum xkϕk(i) are different;
c) each term of the Ci+1 representation by formula (6), which include xk, exists in xkϕk(i),

and conversely.
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d) the following relation is valid:

xkϕk(i) = −ϕ∗k(i + 1) (7)

for every 1 ≤ k ≤ m and 1 ≤ i < m.
According to the formula (7) we fulfill the following transformations:

m∑
k=1

xs
kϕk(i) = −

m∑
k=1

xs−1
k ϕ∗k(i + 1) =

m∑
k=1

xs−1
k (−Ci+1 + ϕk(i + 1)) =

= −Ci+1

m∑
k=1

xs−1
k +

m∑
k=1

xs−1
k ϕk(i + 1) = −Ci+1Ls−1 +

m∑
k=1

xs−1
k ϕk(i + 1).

Hence, the following equality holds:

m∑
k=1

xs
kϕk(l) = −Ci+1Ls−1 +

m∑
k=1

xs−1
k ϕk(i + 1).

Continuing transformations we obtain:

C1Lt = Lt+1 +
m∑

k=1

xt
kϕk(1) = Lt+1 − C2Lt−1 +

m∑
k=1

xt−1
k ϕk(2) = ... =

= Lt+1 − C2Lt−1 − C3Lt−2 − ...− CtL1 +
m∑

k=1

xkϕk(t) =

= Lt+1 − C2Lt−1 − C3Lt−2 − ...− CtL1 −
m∑

k=1

ϕ∗k(t + 1).

I.e.

C1Lt = Lt+1 − C2Lt−1 − C3Lt−2 − ...− CtL1 −
m∑

k=1

ϕ∗k(t + 1). (8)

Now, let us calculate the sum
∑m

i=1 ϕ∗k(t + 1).
Let us note that:
a) by definition, ϕ∗k(t + 1) is the sum of terms from the right hand side of relation (6) for

coefficient Ct+1. Each term contains xk;
b) Each term from right hand side of equation (6) for coefficient Ct+1 is included into the

sum
∑m

k=1 ϕ∗k(t + 1) exactly t + 1 times.
Let us explain these properties more precisely. According to (6) we have:

Ct+1 = (−1)t ·
m−(t+1)+1∑

p1=1

·
m−(t+1)+2∑

p2=p1+1

·... ·
m∑

p(t+1)=p(t+1)−1+1

xp1xp2 ...xp(t+1) .
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Let us fix the set of numbers (p1, p2, ..., pt+1), where 1 ≤ p1 < p2 < ... < pt+1 ≤ m, and
consider the corresponding term xp1xp2 ...xpt+1 . This term is included exactly one time into
the sum ϕ∗p1

(t + 1), exactly one time into the sum ϕ∗p2
(t + 1),..., and exactly one time into the

sum ϕ∗pt+1
(t + 1), totally t + 1 times. And this term is not included in sums ϕ∗k(t + 1) such

that k /∈ {p1, p2, ..., pm}.
Hence, running through all sets of numbers (p1, p2, pt+1), 1 ≤ ps ≤ m, 1 ≤ s ≤ t + 1 we

get the following relation:

m∑
k=1

ϕ∗k(t + 1) = (t + 1)Ct+1. (9)

Substituting (9) into (8) we obtain the necessary relation (5).
Lemma 1 is proved.

THEOREM ABOUT REGULAR SUBSEQUENCE

Let us define un as recurrent sequence of order m (Cm 6= 0):

un = Wn(u0, ..., um−1, C1, ..., Cm). (10)

The representation of sequence is following:

uk+m = C1uk+m−1 + C2uk+m−3 + ... + Cmuk.

The characteristic equation for this sequence is:

xm − C1x
m−1 − ...− Cm = 0.

Let x1, ..., xi be the different complex roots of this equation and r1, ..., ri be their multiplicities
(r1 + ... + ri = m).

We use the following well-known lemma.
Lemma 2: Let us define m sequences:

{(x1)n}∞n=1, {n(x1)n}∞n=1, ..., {nr1−1(x1)n}∞n=1,

{(x2)n}∞n=1, {n(x2)n}∞n=1, ..., {nr2−1(x2)n}∞n=1, ...,

{(xi)n}∞n=1, {n(xi)n}∞n=1, ..., {nri−1(xi)n}∞n=1.

(11)

There exist complex numbers (a1, ..., am) such that the recurrent sequence un can be
decomposed to a linear combination of numbers (a1, ..., am) and sequences (11). This linear
combination is unique.

Now let us examine the regular subsequence

vk = usk+j (12)

of sequence {un}. Here s is a natural number, and j is a nonnegative integer.
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Now, let us define y1, ..., ym as roots of equation

ym − C1y
m−1 − ...− Cm = 0

including multiple roots, i.e.

ym − C1y
m−1 − ...− Cm = (y − y1) · (y − y2) · ... · (y − ym). (13)

Let us define the numbers:

U1 = (y1)s + (y2)s + ... + (ym)s

U2 = (−1) · [(y1y2)s + (y1y3)s + ... + (y1ym)s+
+ (y2y3)s + ... + (ym−1ym)s]
U3 = (y1y2y3)s + (y1y2y4)s + ... + (y1y2ym)s+
+ (y1y3y4)s + ... + (ym−2ym−1ym)s

. . .

Um = (−1)m+1(y1y2...ym)s.

(14)

Theorem 1 (Theorem about regular subsequences): Let {uk} and {vk} and numbers
U1, U2, ..., Um be defined by (10), (12) and (14). Then the sequence {vn} is a recurrent sequence
of order m1, where m1 is a natural number, m1 ≤ m and the next equality is valid:

vm+k = U1vm+k−1 + U2vm+k−2 + ... + Umvk

Proof: According to Lemma 2, the sequence un is a linear combination of complex
numbers (a1, ..., am) and sequences:

{(x1)n}∞n=1, {n(x1)n}∞n=1, ..., {nr1−1(x1)n}∞n=1,

{(x2)n}∞n=1, {n(x2)n}∞n=1, ..., {nr2−1(x2)n}∞n=1, ...,

{(xi)n}∞n=1, {n(xi)n}∞n=1, ..., {nri−1(xi)n}∞n=1.

By definition of the subsequence {vk}, there exist complex numbers b1, ..., bm such that
the sequence {vk} can be represented as a linear combination of these numbers and sequences:

{(x1)sn+j}∞n=1, {n(x1)sn+j}∞n=1, ..., {nr1−1(x1)sn+j}∞n=1,

{(x2)sn+j}∞n=1, {n(x2)sn+j}∞n=1, ..., {nr2−1(x2)sn+j}∞n=1, ...,

{(xi)sn+j}∞n=1, {n(xi)sn+j}∞n=1, ..., {nri−1(xi)sn+j}∞n=1.

Hence, there exist complex numbers (d1, ..., dm) such that the sequence vk can be represented
as a linear combination of numbers (d1, ..., dm) and sequences:

{(x1)sn}∞n=1, {n(x1)sn}∞n=1, ..., {nr1−1(x1)sn}∞n=1,

{(x2)sn}∞n=1, {n(x2)sn}∞n=1, ..., {nr2−1(x2)sn}∞n=1, ...,

{(xi)sn}∞n=1, {n(xi)sn}∞n=1, ..., {nri−1(xi)sn}∞n=1.
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Now, consider the next expression:

F (x) = (x− xs
1)r1 · (x− xs

2)r2 · ... · (x− xs
i )ri .

Let us make the following transformation:

F (x) = (x− xs
1)r1 · (x− xs

2)r2 · ... · (x− xs
i )ri =

= (x− ys
1) · (x− ys

2) · ... · (x− ys
m) =

= xm − (ys
1 + ... + ys

m)xm−1 + ((y1y2)s + ...+
+ (ym−1ym)s)xm−2 + ... + (−1)m+1(y1y2...ym)s =
= xm − U1x

m−1 − ...− Umx0.

(15)

Let us consider the following equation

F (x) = xm − U1x
m−1 − ...− Umx0 = 0.

Note that some numbers in the set (xs
1, x

s
2, ..., x

s
i ) may not be different.

Now let us apply Lemma 2 to the recurrent sequences: Wn(v0, v1, ..., vm−1, U1, U2, ..., Um).
The following statements are evident:

the multiplicity of root xs
1 is greater or equal to r1;

the multiplicity of root xs
2 is greater or equal to r2;

...
the multiplicity of root xs

i is greater or equal to ri.
Hence, by Lemma 2 the sequence
Wn(v0, v1, ..., vm−1, U1, U2, ..., Um) is a linear combination of sequences:

{(x1)sn}∞n=1, {n(x1)sn}∞n=1, ..., {nr1−1(x1)sn}∞n=1,

{(x2)sn}∞n=1, {n(x2)sn}∞n=1, ..., {nr2−1(x2)sn}∞n=1,

...

{(xi)sn}∞n=1, {n(xi)sn}∞n=1, ..., {nri−1(xi)sn}∞n=1.

(16)

Note that in the case when some terms in the set (xs
1, x

s
2, ..., x

s
i ) are not different the

number of different sequences in (16) is less than m. In this case we have m1 < m (see
statement of the theorem 1). In case when these terms are different the following equality
holds m1 = m.

So, we obtain that {vn} is a linear combination of sequences from (16). Hence, {vn} can
be represented by the following formula:

vm+k = U1vm+k−1 + U2vm+k−2 + ... + Umvk.

The Theorem 1 is proved.
One can mention that it is difficult to calculate Ui using roots of characteristic equation

in the case m > 3. In this case we need to find roots of linear equation of order m, and this
problem is rather cumbersome.

In the next paragraph we show how to calculate coefficients Ui using L-sequences.
Property 1: Let Cm and Um be defined by (10) and (14). The next statement is valid.
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If m and s are both even integer numbers then:

Um = −(Cm)s

otherwise
Um = Cs

m.

Proof: By definition we have:

Um = (−1)m+1(y1y2...ym)s =

= (−1)m+1((−1)m+1[(−1)m+1(y1y2...ym)])s) =

= (−1)m+1((−1)m+1Cm)s) = (−1)sm+s+m+1(Cm)s.

If s and m are both even then sm + s + m + 1 is odd; otherwise sm + s + m + 1 is even.
Property 1 is proved.

Property 2: Let Cm and Um be defined by (10) and (14). The next statement is valid.
If m is odd then

Um = Cs
m,

and if m is even then
Um = −(−Cm)s.

Proof: Let us consider the next case: m is even and s is odd. In this case

Um = −(−Cm)s = −(−1)s · (Cm)s = (Cm)s.

In other cases this statement is valid according to the Property 1.
Property 2 is proved.

Remark: In [6] Prof. P.T. Young proved that for each integer k: 1 ≤ k ≤ m − 1 the
following identity holds:

Uk =
m∑

i=1

(−1)k−1D(k)
s (C1, C2, . . . , Cm, 0),

where D
(k)
s are the generalized Dickson polynomials defined by eq. (2.6) in [6]. Theorem 1 in

[6] is an analogue of the Theorem 1 in this paper.

ADDITIONAL PROPERTIES OF L-SEQUENCES
AND REGULAR SUBSEQUENCES

Now, we apply the result of the Theorem 1 to L-sequences.
Let’s use the notations of roots of characteristic equation y1, y2, ..., ym and numbers

U1, U2, ..., Um from equalities (14) and (13) of the previous paragraph. We have shown that:

(x− ys
1) · (x− ys

2) · ... · (x− ys
m) = xm − U1x

m−1 − ...− Umx0, (17)
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and
(x− y1) · (x− y2) · ... · (x− ym) = xm − C1x

m−1 − ...− Cmx0. (18)

Let us denote by the symbol {Ln}∞n=0 the L-sequence with parameters (C1, C2, ..., Cm).
From (18) and definition of L-sequence it follows:

Ln = (y1)n + (y2)n + ... + (ym)n.

Let us denote by the symbol {L(1)
n }∞n=0 the L-sequence with parameters (U1, U2, ..., Um).

From (17) it follows:

L(1)
n = (ys

1)n + (ys
2)n + ... + (ys

m)n = (y1)sn + (y2)sn + ... + (ym)sn.

Hence, for every natural number k the following equality is valid:

L
(1)
k = Lsk (19)

Using Lemma 1 let us prove the following statement.
Lemma 3: Let {Ln} is the L-sequence with parameters (C1, C2, ..., Cm) and {Un} be defined
from (14). The following relation is valid for every integer number 0 ≤ s < m:

Lk(s+1) = U1Lks + U2Lk(s−1) + ... + UsLk + (s + 1)Us+1. (20)

Proof: To prove Lemma 3 it is sufficient to replace Lsk by L
(1)
k . This replacement is

possible due to relation (19). Hence, Lemma 3 follows from the Lemma 1 since {Lsk}∞n=0 is
an L-sequence.

Let us suppose that terms of the sequence {Ln}∞n=0 are given. Let us put numbers
s = 0, 1, ...,m into (20) in a consecutive way. By this way we obtain the following equalities:

U1 = Lk

U2 = 1
2 (L2k − LkU1) = 1

2 (L2k − L2
k)

U3 = 1
3 (L3k − LkU2 − L2kU1) = 1

3 (L3k − 2LkL2k + (Lk)3

... .

(21)

So, Lemma 3 provides the method for calculating U1, ..., Um using only parameters
C1, ..., Cm.

Note that we can rewrite (21) in the alternative form:

Lk = U1

L2k = L2
k + 2U2

L3k = 2LkL2k − (Lk)3 + 3U3

... .
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These equalities generalize the well-known relations of Lucas sequences.
Let us remind that the numbers (U1, U2, ..., Um) are defined by (14). Now let us define

the adjoint numbers:

U−1 = (y1)−s + (y2)−s + ... + (ym)−s;
U−2 = (−1) · [(y1y2)−s + (y1y3)−s + ... + (y1ym)−s+
+ (y2y3)−s + ... + (ym−1ym)−s];
U−3 = (y1y2y3)−s + (y1y2y4)−s + ... + (y1y2ym)−s+
+ (y1y3y4)−s + ... + (ym−2ym−1ym)−s;
. . .

U−m = (−1)m+1(y1y2...ym)−s.

(22)

By analogy with (15) the following relation takes place for numbers U−1, U−2, ..., U−m:

ym − U−1y
m−1 − U−2y

m−2 − ...− U−m = (y − x−i
1 ) · (y − x−i

2 ) · ... · (y − x−i
m ).

Hence, the L-sequence for numbers U−1, U−2, ..., U−m is equal to {L−sk}.
Thus, we can generalize Lemma 3 in the following form.

Lemma 4: Let Ln is the L-sequence with parameters (C1, C2, ..., Cm) and numbers
U−1, ..., U−m be defined by (22). The following equality holds for every integer 1 ≤ s < n:

L−k(s+1) = U−1L−ks + U−2L−k(s−1)+
+ ... + U−sL−k + (s + 1)U−(s+1).

(23)

Let us prove the following statement.
Lemma 5: Let U−m, U−m+1, ..., U−1, U1, ..., Um be defined by (14) and (22). Then the
following formula is valid for 1 ≤ i < m:

Um−i = (−1) · UmU−i. (24)

Proof: For proving of Lemma 5 let us make the following transformations using (14)
and (22):

U1 = (y1)s + (y2)s + ... + (ym)s =
= (y1y2...ym)s[(y1y2...ym−1)−s + (y1y2...ym−2ym)−s+
+ ... + (y2y3...ym)−s] =
= UmU−(m−1)(−1)m(−1)m+1 = (−1)UmU−(m−1)

U2 = (−1) · [(y1y2)s + (y1y3)s + ... + (y1ym)s+
+ (y2y3)s + ... + (ym−1ym)s] =
= (−1) · (y1y2...ym)s[(y1y2...ym−2)−s + (y1y2...ym−3ym−1)−s+
+ (y1y2...ym−3ym)−s + (y1y3y4...ym−1)−s + ... + (y3y3...ym)s] =
= (−1)UmU−(m−2)(−1)m+1(−1)m−1 = (−1)UmU−(m−2)

. . . . . .
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Um−1 = (−1)m[(y1y2...ym−1)s + (y1y2...ym−2ym)s + ...+
+ (y2y3...ym)s] = (−1)m(y1y2...ym)s[(y1)−s + (y2)−s+
+ ... + (ym)−s] = (−1)mUmU−1(−1)m+1 = (−1)UmU−1.

Hence, in all cases the statement of Lemma 5 takes place.
Lemma 5 is proved.
According to Property 2 number Um can be trivially found using parameter Cm.

A SIMPLIFIED METHOD FOR CALCULATING
THE COEFFICIENTS U1, ..., Um

Let us pass to the main task of this paragraph.
Consider the following algorithm.
Let sequence {un} be defined by (1). Suppose that parameters C1, ..., Cm are already

known. Let us define the recurrent sequence {vn} by (3)-(4). The goal of the algorithm is to
find parameters U1, ..., Um.

Step 1. According to (5) we calculate terms of L-sequence {Ln} for parameters C1, ..., Cm.
Step 2. According to (20), (23), and (24) and Property 2 we calculate numbers U1, ..., Um.
In most cases we recommend to find U1, ..., U[ m

2 ] by (20), U−1, ..., U−[ m
2 ] - by (23), and the

remaining numbers - by (24).
For example,
By equality (5) we have:

U1 = Ls;

U2 =
1
2

(L2s − LsU1) =
1
2

(L2s − (Ls)2).

By Property 2 we have:

Um = (Cm)s - in the case when m is odd;
Um = −(−Cm)s - in the case when m is even.

By equality (24) we have:

Um−1 = (−1)Um · U−1 = −(Cm)sL−s - in the case when m is odd;
Um−1 = (−1)Um · U−1 = (−Cm)sL−s - in the case when m is even;

Um−2 = (−1) · Um · U−2 = −1
2

(Cm)s(L−2s − (L−s)2)

- in the case when m is odd;

Um−2 = (−1) · Um · U−2 =
1
2

(−Cm)s(L−2s − (L−s)2)

- in the case when m is even;
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Etc.
Let us examine the next cases:

Case 1. m = 2:
U1 = Ls

U2 = Um = −(−C2)s.
Hence,

vk+2 = Lsvk+1 − (−C2)svk.

The last relation is the well-known formula (see, for example, [2]).
Case 2. m = 3:

U1 = Ls; U2 = Um−1 = −(C3)sL−s; U3 = Um = (C3)s.

Hence:
vk+3 = Lsvk+2 − (C3)sL−svk+1 + (C3)svk.

The last formula was obtained by Prof. F. T. Howard in [4].
Case 3. m = 4:

U1 = Ls;

U2 = 1
2 (L2s − (Ls)2);

U3 = Um−1 = (−C4)sL−s;

U4 = Um = −(−C4)s.

Hence,

vk+4 = Lsvk+3 +
1
2

(L2s − (Ls)2)vk+2 + (−C4)sL−svk+1 − (−C4)svk.

The author believes this result is new.
Case 4. m = 5:

U1 = Ls;

U2 = 1
2 (L2s − (Ls)2);

U3 = Um−2 = −1
2 (C5)s(L−2s − (L−s)2);

U4 = Um−1 = −(C5)sL−s;

U5 = Um = (C5)s.

Hence,

vk+5 = Lsvk+4 +
1
2

(L2s − (Ls)2)vk+3−

−1
2

(C5)s(L−2s − (L−s)2)vk+2 − (C5)sL−svk+1 + (C5)svk.
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Remark: Let us examine the following example

un+2 = 4un.

In this case the corresponding L-sequence, let denote it Ln, is a sequence of the second order

Ln = 2n + (−2)n.

The regular subsequence
vn = L2n

is a sequence of the first order:
vn = 4n.

We use here the order of terms of recurrent sequences like in Definition 1 in [4].
Finally, we examine the following example m = 4, C1 = 1, C2 = 3, C3 = 4, C4 = 2. Hence,

un+4 = 3un+3 + 5un+2 + 7un+1 + 2un. (25)

Let s = 5 and j be a natural number.
In this case we have:

L0 = m = 4;
L1 = C1 = 1;
L2 = L1C1 + 2C2 = 1 + 2 · 3 = 7;
L3 = L1C2 + L2C1 + 3C3 = 1 · 3 + 7 · 1 + 3 · 4 = 22.

Hence, by (25) we can calculate the following values:

L5 = 151;
L10 = 23167;
L15 = 3526402.

According to Lemma 3 we can calculate the following values

U1 = L5 = 151;
U2 = (L10 − L5U1)/2 = (23167− 151 · 151)/2 = 183;
U3 = (L15 − L10U1 − L5U2)/3 =
(3526402− 23167 · 151− 151 · 183)/3 = 184.

According to Property 1 we obtain:

U4 = 25 = 32.

Hence,
vk+4 = 151vk+3 + 183vk+2 + 184vk+1 + 32vk.
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Thus, we obtain the following recurrent formula

uk+20 = 151uk+15 + 183uk+10 + 184uk+5 + 32uk.
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