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ABSTRACT

We introduce two sets of permutations of {1, 2, . . . , n} whose cardinalities are generalized
Fibonacci numbers. Then we introduce the generalized q-Fibonacci polynomials and the gen-
eralized q-Fibonacci numbers (of first and second kind) by means of the major index statistic
on the introduced sets of permutations.

1. INTRODUCTION

Fibonacci numbers have been studied for a long time and have been generalized in several
ways. For instance [8] they have been generalized to the numbers defined by the recurrence
f

[k]
n+k = f

[k]
n+k−1 + f

[k]
n+k−2 + · · ·+ f

[k]
n with initial conditions f [k]

0 = 1, f [k]
1 = 1, f [k]

2 = 2, . . . ,

f
[k]
k−2 = 2k−3, f [k]

k−1 = 2k−2. In [9] f [k]
n is interpreted as the number of all k-filtering linear

partitions of a linearly ordered set of size n, where a linear partition of a linearly ordered set
L is a family of disjoint non-empty intervals whose union is L and a k-filtering linear partition
is a linear partition in which each interval has size at most k. In [1] Carlitz introduced a
q-analogue of Fibonacci numbers using a particular statistic on the set of Fibonacci strings,
i.e. binary strings without two consecutive 1’s. However, to the best of our knowledge, there
is no q-analogue for the generalized Fibonacci numbers f [k]

n . The aim of this paper is to define
such a q-analogue.

A powerful method to define q-analogues is to use statistics on sets of permutations of
〈n〉 := {1, 2, . . . , n}. We recall some notations and definitions [10]. Let Sn be the set of all
permutations of 〈n〉. Given a permutation π ∈ Sn we consider the following sets: the set of
descents Des(π) := {i ∈ 〈n〉 : π(i) > π(i + 1)}, the set of fixed points Fix(π) := {i ∈ 〈n〉 :
π(i) = i} and the set of inversions Inv(π) := {(i, j) ∈ 〈n〉 : i < j , π(i) > π(j)}. Then we
have the statistics: des(π) := |Des(π)|, fix(π) := | Fix(π)|, inv(π) := |Inv(π)|, the major index
maj(π) :=

∑
i∈Des(π) i and the inverse major index imaj(π) := maj(π−1). Two well known

examples of q-analogues obtained by statistics on sets of permutations are the q-factorial
numbers [n]! =

∑
σ∈Sn

qinv(σ) =
∑
σ∈Sn

qmaj(σ) and the q-derangement numbers dn(q) =∑
δ∈Dn

qmaj(δ), where Dn is the set of all derangements of 〈n〉 [2, 11]. We use this method, and
the combinatorial interpretation given in [9], to obtain two kinds of generalized q-Fibonacci
numbers. First we define two classes of permutations, we call linear permutations, equivalent to
linear partitions. Then we define other two classes of permutations, we call Fibonacci permu-
tations, equivalent to k-filtering linear partitions. Then we define the generalized q-Fibonacci
polynomials using the maj, des, fix and inv statistics on the sets of Fibonacci permutations.
We find their recurrence, their expression in terms of permanents and determinants and their
generating series. Finally we define the generalized q-Fibonacci numbers using the major index
statistic on the sets of Fibonacci permutations. These q-numbers are a specialization of the
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generalized q-Fibonacci polynomials and their main properties are deduced by the analogous
(but easier to obtain) properties of the associated polynomials.

2. LINEAR PERMUTATIONS

We write a permutation π in one line notation π = π(1), π(2), . . . , π(n) or as the product
of its distinct cycles (i, π(i), . . . , πl−1(i)).

We call linear permutation of the first kind any element of the set L≥n := {π ∈ Sn : ∀i ∈
〈n〉(π(i) ≥ i − 1)} and we call linear permutation of the second kind any element of the set
L≤n := {π ∈ Sn : ∀i ∈ 〈n〉(π(i) ≤ i + 1)}. For instance, for n = 3 the linear permutations
of the first kind are 123 = (3)(2)(1), 132 = (32)(1), 213 = (3)(21), 312 = (321), while the
linear permutations of the second kind are 123 = (1)(2)(3), 213 = (12)(3), 132 = (1)(23),
231 = (123). Clearly these permutations are equivalent to the linear partitions of 〈3〉. We will
prove that this is true in general for every n. First note that the map b : L≤n → L≥n , defined
by b(π) := π−1, is a bijection. Then the maj and imaj statistics on L≤n are equivalent to the
imaj and maj statistics on L≥n , respectively.
Proposition 1: Each cycle of a linear permutation can be written as a sequence of consecutive
numbers. More precisely, a cycle γ of a linear permutation of the first kind has the form
γ = (i+ l− 1, i+ l− 2, . . . , i+ 1, i), while a cycle γ of a linear permutation of the second kind
has the form γ = (i, i+ 1, i+ 2, . . . , i+ l − 1).

Proof: Let γ be a cycle of length l of a permutation π ∈ L≥n . If l = 1 we have nothing to
prove. Let l ≥ 2. If j is the greatest number in γ, then π(j) < j. On the other hand, since
π is linear of the first kind, π(j) ≥ j − 1. So π(j) = j − 1. If l = 2, then π2(j) = j otherwise
π2(j) < j − 1 and π2(j) ≥ π(j) − 1 = j − 2, that is π2(j) = j − 2. Continuing in this way
we obtain πr(j) = j − r, for r = 3, . . . , l − 1. Therefore γ = (j, π(j), π2(j), . . . , πl−1(j)) =
(j, j − 1, j − 2, . . . , j − l + 1) which, for i = j − l + 1 is equivalent to the claimed form. A
similar argument holds for linear permutations of the second kind.

Proposition 1 implies that linear permutations of 〈n〉 are equivalent to linear partitions
of 〈n〉. Hence it follows that the cardinality of the sets L≤n and L≥n is 1 if n = 0 and is 2n−1

if n ≥ 1. It also follows that each linear permutation π can always be written as product of
distinct cycles so that removing all parentheses one obtains the string n · · · 21 when π ∈ L≥n
and the string 12 · · ·n when π ∈ L≤n . For example, for π = 412358679 ∈ L≥9 we have
π = (9)(876)(5)(4321), while for π−1 = 234157869 ∈ L≤9 we have π−1 = (1234)(5)(678)(9). π
and π−1 always determine the same linear partition.
Proposition 2: The set of the descents of a linear permutation is Des(π) = {i ∈ 〈n〉 : π(i) 6=
i− 1, i} if π ∈ L≥n and Des(π) = {i ∈ 〈n− 1〉 : π(i+ 1) 6= i+ 1, i+ 2} if π ∈ L≤n .

Proof: Let γ1, . . . , γr be the cycles of a linear partition π. By Proposition 1 it follows
that Des(π) =

⋃r
i=1 Des(γi). Let γ = (i+ l−1, i+ l−2, . . . , i+1, i) be a cycle of a permutation

π ∈ L≥n . Then γ has a unique descent in position i, provided that its length is at least two.
Hence i is a descent of π if and only if it is neither a fixed point nor a point shifted to the left
by 1. Let now γ = (i, i+ 1, i+ 2, . . . , i+ l− 1) be a cycle of a permutation π ∈ L≤n . This time
γ has a unique descent in position i + l − 2, provided that its length is at least two. Notice
that if γ does not correspond to a fixed point, then in particular neither i+ l− 2 nor i+ l− 1
are fixed. Hence an element j is a descent of π if and only if j + 1 is neither a fixed point nor
a point shifted to the right by 1.
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Notice that π ∈ L≥n (π ∈ L≤n ) as a linear partition has a descent in the first (penultimate)
element of each interval containing at least two elements.
Proposition 3: We have Inv(π) ' {i ∈ 〈n〉 : π(i) = i − 1} =: Inv∗(π) if π ∈ L≥n and
Inv(π) ' {i ∈ 〈n〉 : π(i) = i+ 1} =: Inv∗(π) if π ∈ L≤n .

Proof: If γ1, . . . , γr are the cycles of π, then Inv(π) =
⋃r
i=1 Inv(γi). If γ = (i+ l− 1, i+

l − 2, . . . , i+ 1, i) is a cycle of π ∈ L≥n then Inv(γ) = {(i, i+ 1), (i, i+ 2), . . . , (i, i+ l − 1)} '
{i + 1, i + 2, . . . , i + l − 1}. If γ = (i, i + 1, i + 2, . . . , i + l − 1) is a cycle of π ∈ L≤n then
Inv(γ) = {(i, i+ l− 1), (i+ 1, i+ l− 1), . . . , (i+ l− 2, i+ l− 1)} ' {i, i+ 1, . . . , i+ l− 2}.
Remark 4: Notice that Des(π) ⊆ Inv∗(π) for every π ∈ L≤n . However if i ∈ Des(π) then
i + 1 does not belong either to Fix(π) or to Inv∗(π). Hence there exists a bijection between
the complement of Fix(π) ∪ Inv∗(π) and Des(π).
Proposition 5: For every linear permutations π we have the identity

des(π) + fix(π) + inv(π) = n. (1)

Proof: If π ∈ L≥n we have the cases: (a) π(i) = i − 1, that is i ∈ Inv∗(π); (b) π(i) = i,
that is i ∈ Fix(π); (c) π(i) 6= i − 1, i, that is i ∈ Des(π). Since Des(π), Fix(π) and Inv∗(π)
are pairwise disjoint, we have (1). If π ∈ L≤n then we have the cases: (a) π(i) = i, that is
i ∈ Fix(π); (b) π(i) = i+ 1, that is i ∈ Inv∗(π); (c) π(i) 6= i+ 1, i, that is i 6∈ Fix(π)∪ Inv∗(π).
Therefore, by Remark 4, (1) holds also in this case.

Condition (1) does not characterize linear permutations. For instance, π = 2413 =
(1243) = (4312) satisfies (1) but it is not linear.
Lemma 6: If π and π−1 are linear permutations, then des(π) = des(π−1), fix(π) = fix(π−1)
and inv(π) = inv(π−1).

Proof: Consider the linear partition associated to π. Since there is exactly a descent in
each block with at least two elements, des(π) depends only on the number of these blocks.
Hence, since π and π−1 determine the same linear partition, we have the first identity. The
other identities are true for every permutation [8].
Proposition 7: If π ∈ L≥n then maj(π−1) = maj(π) + inv(π)− des(π).

Proof: Let Des(π) = {d1, d2, . . . , di} and Des(π−1) = {d′1, d′2, . . . , d′i}. Let f0 be the
number of fixed points preceding d1, fj be the number of fixed points between d′j and dj+1,
for j = 1, 2, . . . , i − 1, and fi be the number of fixed points to the right of d′i. It is easy
to see that d1 = f0 + 1, d2 = d′1 + f1 + 2, d3 = d′2 + f2 + 2, . . . , di = d′i−1 + fi−1 + 2,
n = d′i + fi + 1. Hence, by summing the left-hand sides and the right-hand sides of these
identities, we have d1 + d2 + . . .+ di + n = d′1 + d′2 + . . .+ d′i + f0 + f1 + . . .+ fi + 2i, that is
maj(π) + n = maj(π−1) + fix(π) + 2des(π). By (1) we obtain the claimed identity.

3. FIBONACCI PERMUTATIONS

A Fibonacci permutation of the first kind of order k of 〈n〉 is a permutation ϕ ∈ Sn such
that i− 1 ≤ ϕ(i) ≤ i+ k − 1 for all i ∈ 〈n〉. A Fibonacci permutation of the second kind
of order k of 〈n〉 is a permutation ϕ ∈ Sn such that i− k+ 1 ≤ ϕ(i) ≤ i+ 1 for all i ∈ 〈n〉. Let
F [k]
n and G[k]

n be the set of all Fibonacci permutations of the first and the second kind,
respectively. Fibonacci permutations, without any specification of the kind, always means
permutations of both kinds. Clearly Fibonacci permutations are linear permutations:
F [k]
n ⊆ L≥n and G[k]

n ⊆ L≤n . In particular F [2]
n = G[2]

n = L≥n ∩ L≤n is a set of involutions.
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Lemma 8: Each cycle of a Fibonacci permutation of order k has length at most k.
Proof: Let γ = (i + l − 1, . . . , i + 1, i) be a cycle of length l of a permutation ϕ ∈ F [k]

n .
Since ϕ(i) = i+ l − 1, we have i− 1 ≤ i+ l − 1 ≤ i+ k − 1, that is 0 ≤ l ≤ k. Similarly for a
cycle γ = (i, i+ 1, . . . , i+ l− 1) of length l of a permutation ϕ ∈ G[k]

n , we have ϕ(i+ l− 1) = i
and then i+ l − 1− k + 1 ≤ i ≤ i+ l − 1 + 1, that is 0 ≤ l ≤ k.

Lemma 8 implies that Fibonacci permutations of order k of the set 〈n〉 are equivalent to
k-filtering linear partitions of 〈n〉. Moreover the number of Fibonacci permutations of order k
of the set 〈n〉 is f [k]

n . The map b: G[k]
n → F [k]

n , defined by b(ϕ) := ϕ−1, is a bijection. All the
properties of linear permutations also hold for Fibonacci permutations. In particular the maj
and imaj statistics on F [k]

n correspond to the imaj and maj statistics on G[k]
n , respectively.

4. MULTISETS

We now recall [3, 10] some definitions concerning multisets we need to prove Theorem 11.
A multiset on a set S is a function µ : S → N. If x ∈ S then µ(x) is the multiplicity of x in µ.
The order of µ is ord(µ) :=

∑
x∈S µ(x). We write Mn for the set of all multisets on 〈n〉. A

multiset µ on S is m-filtering if µ(x) < m for every x ∈ S. We write M [m]
n for the set of all

m-filtering multisets on 〈n〉 and
(
S ;m
k

)
for the set of all m-filtering multiset of order k on a

finite set S. The cardinality of the set
(
S ;m
k

)
is the André coefficient (or polynomial coefficient

[3])
(|S| ;m

k

)
. We have the identity

(1 + x+ x2 + · · ·+ xm−1)n =
∑
k≥0

(
n ; m
k

)
xk . (2)

We now introduce the σ-statistic on Mn defining σ(µ) :=
∑
x∈〈n〉 xµ(x) for every multiset

µ on 〈n〉. Notice that maj(π) = σ(Des(π)).
The conjugate of a multiset µ on 〈n〉 is the multiset µ̄ defined by µ̄(x) := µ(n + 1 − x)

for every x ∈ 〈n〉. It is easy to see that ord(µ̄) = ord(µ) and σ(µ̄) = (n + 1) ord(µ) − σ(µ).
Conjugation is a bijection between m-filtering multisets on 〈n〉 of the same order.

The q-André coefficients are the connection coefficients in the identity

[x;m]n =
∑
k≥0

(
n ; m
k

)
q

xk (3)

where[x;m]n :=
∏n
i=1(1 + qi−1x + q2(i−1)x2 + · · · + q(m−1)(i−1)xm−1). For q = 1 identity (3)

reduces to identity (2). The q-André coefficients can be expressed in terms of the σ-statistic.
Indeed the obvious identity

n∏
i=1

(1 + qi−1xi + · · ·+ q(m−1)(i−1)xm−1
i ) =

∑
µ∈M [m]

n

qσ(µ)−ord(µ) x
µ(1)
1 x

µ(2)
2 · · ·xµ(n)

n
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implies, for x1 = x2 = . . . = xn = x, the identity

[x;m]n =
∑

µ∈M [m]
n

qσ(µ)−ord(µ)xord(µ) =
∑
k≥0

 ∑
µ∈(〈n〉 ; m

k )
qσ(µ)−k

 xk .

So we have

∑
µ∈(〈n〉 ; m

k )
qσ(µ) = qk

(
n ; m
k

)
q

. (4)

Also Gaussian coefficients can be expressed in terms of the σ-statistic. As it is well known [5]

we have gn(x) =
∑n
k=0

(
n
k

)
q
(−1)n−kq(

n−k
2 ) xk where gn(x) = (x− 1)(x− q) · · · (x− qn−1).

It is easy to see that gn(−qn−1x) = (−1)nq(
n
2)[x; 2]m. So we have

(
n ; 2
k

)
q

= q(
k
2)
(
n
k

)
q

. Therefore,
since a subset is a 2-filtering multiset, we have

∑
S∈(〈n〉k )

qσ(S) = qk
(
n ; 2
k

)
q

= q(
k+1
2 )
(
n

k

)
q

. (5)

5. GENERALIZED q-FIBONACCI POLYNOMIALS

The generalized q-Fibonacci polynomials of the first and of the second kind are defined
as the polynomials F

[k]
n (q;x, y, z) =

∑
ϕ∈F [k]

n
qmaj(ϕ)xdes(ϕ)yfix(ϕ)zinv(ϕ) and G[k]

n (q;x, y, z) =∑
ϕ∈G[k]

n
qmaj(ϕ)xdes(ϕ)yfix(ϕ)zinv(ϕ), where k is the order. Identity (1) implies that these

polynomials are homogeneous of degree n. Moreover, using the bijection b : G[k]
n → F [k]

n ,
Lemma 6 and Proposition 7, we have that

G[k]
n (q;x, y, z) = F [k]

n (q;x/q, y, qz) . (6)

Proposition 9: The generalized q-Fibonacci polynomials F [k]
n = F

[k]
n (q;x, y, z) and G[k]

n =
G

[k]
n (q;x, y, z) satisfy (for k ≥ 1) the recurrences

F
[k]
n+k = yF

[k]
n+k−1 +

k−1∑
i=1

qn+k−ixziF
[k]
n+k−i−1 (7)

G
[k]
n+k = yG

[k]
n+k−1 + qn+k−1

k−1∑
i=1

xziF
[k]
n+k−i−1. (8)

Proof: It suffices to observe that if ϕ ∈ F [k]
n+k, then ϕ = ϕiγi, where γi = (n+ k, n+ k −

1, . . . , n+k− i+1), and des(ϕ) = des(ϕi)+ [[i > 1]], maj(ϕ) = maj(ϕi)+(n+k− i+1)[[i > 1]],
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fix(ϕ) = fix(ϕi) + [[i = 1]], inv(ϕ) = inv(ϕi) + i− 1, where [[P ]] is the characteristic function of
the proposition P . The second recurrence is proved in a similar way.

The generalized q-Fibonacci polynomials Fn(q;x, y, z) = F
[2]
n (q;x, y, z) are completely

defined by the recurrence Fn+2(q;x, y, z) = yFn+1(q;x, y, z) + qn+1xyFn(q;x, y, z) with the
initial conditions F0(q;x, y, z) = 1, F1(q;x, y, z) = y. This implies that several known polyno-
mials are instances of the generalized q-Fibonacci polynomials, as the Fibonacci polynomials
Fn(t) = Fn(1; 1, t, 1), the q-Fibonacci polynomials [1] Φn(q; t) = Fn(q; 1, t, 1), the k-bonacci
polynomials [6] P [k]

n+k(t) = F
[k]
n (1; tk−1, tk−1, 1/t), the Pell polynomials Pn(t) = Fn(1; 1, 2t, 1),

the Jacobsthal polynomials (of the first kind) [7] Jn(t) = Fn(1; t, 1, 2), the Chebyshev polyno-
mials (of the second kind) Un(t) = Fn(1; 1, 2t,−1).

Proposition 10: Let A[k]
n (q;x, y, z) = [aij ] and B

[k]
n (q;x, y, z) = [bij ] be the n × n matrices

where aij = xqi if i + 1 ≤ j ≤ i + k − 1, aij = y if j = i, aij = z if j = i − 1 and aij = 0
otherwise, bij = xqi−1 if i− k+ 1 ≤ j ≤ i− 1, bij = y if j = i, bij = z if j = i+ 1 and bij = 0
otherwise. Then

F [k]
n (q;x, y, z) = per

(
A[k]
n (q;x, y, z)

)
= det

(
A[k]
n (q;x, y,−z)

)
(9)

G[k]
n (q;x, y, z) = per

(
B[k]
n (q;x, y, z)

)
= det

(
B[k]
n (q;x, y,−z)

)
(10)

Proof: If ϕ ∈ F [k]
n , then aiϕ(i) = xqi if ϕ(i) 6= i, i − 1, that is i ∈ Des(ϕ); aiϕ(i) = y

if ϕ(i) = i, that is i ∈ Fix(ϕ); aiϕ(i) = z if ϕ(i) = i − 1, that is i ∈ Inv(ϕ). Hence, by the
definition of permanent and determinant of a matrix, we have (9). To obtain (10) we have
only to observe that maj(ϕ) =

∑n−1
i=1 i[[ϕ(i+ 1) 6= i+ 1, i+ 2]] =

∑n
i=1(i − 1)[[ϕ(i) 6= i, i+ 1]]

and use Remark 4.
Let F [m]

i,j,k be the set of all Fibonacci permutations of the first kind of order m such

that des(ϕ) = i, fix(ϕ) = j and inv(ϕ) = k, and let f
[m]
i,j,k(q) :=

∑
ϕ∈F [m]

i,j,k

qmaj(ϕ). Clearly

F
[m]
k (q;x, y, z) =

∑
i,j,k≥0

i+j+k=n
f

[m]
i,j,k(q)xiyjzk.

Theorem 11: For every i, j, k ∈ N, we have that

F [m]
i,j,k '

(
〈i+ j〉
i

)
×
(
〈i〉 ; m− 1
k − i

)
. (11)

Proof: Let ϕ ∈ F [m]
i,j,k and let π be the associated linear partition of 〈i + j + k〉. π has i

blocks with at least two elements and j blocks with a unique element. There are i+j blocks in
all. Let S = Des(ϕ) ∪ Fix(ϕ). Since |S| = i+ j, there exists a bijection between S and 〈i+ j〉
and Des(ϕ) corresponds to an i-subset D of 〈i + j〉. Let now µ : D → N be the multiset on
D defined in the following way. Let d ∈ D, x be the corresponding element in Des(ϕ) and I
the block of π containing x. Let µ(d) := |I| − 2. Since each block containing a descent has at
least two elements, µ(d) ≥ 0 and µ is well defined. Moreover, since every block has at most m
elements, µ is (m− 1)-filtering. Finally, since in every block I containing a descent there are
exactly |I|−1 inversions, we have ord(µ) = k− i. Notice that if Des(ϕ) = {x1, x2, . . . , xi} and
D = {d1, d2, . . . , di} then, since each xr is the first element of a block of size µ(dr)+2 and dr−1
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is the number of descents and fixed points to the left of xr, we have the relations (♦) x1 = d1,
x2 = d2+µ(d1)+1, x3 = d3+µ(d1)+µ(d2)+2, . . . xi = di+µ(d1)+µ(d2)+· · ·+µ(di−1)+i−1.

Viceversa, if we have a pair 〈D,µ〉 where D is an i-subset of 〈i+ j〉 and µ is an (m− 1)-
filtering multiset on 〈i〉, we can reconstruct π as the linear partition in which the blocks of size
at least 2 are given by {xr, xr+1, . . . , xr+µ(dr)+1}, where the xr are defined by the relations
(♦). In conclusion, since the above constructions are inverses of each other, a permutation
ϕ ∈ F [m]

i,j,k is equivalent to a pair 〈D,µ〉 where D is an i-subset of a (i + j)-set and µ is an
(m− 1)-filtering multiset of order k − i on D.

Lemma 12: Let ϕ ∈ F [m]
i,j,k and 〈D,µ〉 corresponding in the bijection described in the proof of

Theorem 11. Then

maj(ϕ) = σ(D) + σ(µ̄) +
(
i+ 1

2

)
− k . (12)

Proof: From the proof of Theorem 11 maj(ϕ) = x1 + · · · + xi =
∑i
r=1 dr +

∑i
r=1(i −

r)µ(dr)+
∑i−1
r=1 r = σ(D)+ i ord(µ)−σ(µ)+

(
i
2

)
. Since σ(µ̄) = (i+1) ord(µ)−σ(µ), maj(ϕ) =

σ(D) + σ(µ̄)− (k − i) +
(
i
2

)
.

Proposition 13: We have the identities

F [m]
n (q;x, y, z) =

∑
i+j+k=n

(
i ; m− 1
k − i

)
q

(
i+ j

i

)
q

qi
2
xiyjzk (13)

G[m]
n (q;x, y, z) =

∑
i+j+k=n

(
i ; m− 1
k − i

)
q

(
i+ j

i

)
q

qi
2−i+k xiyjzk (14)

Proof: Relation (11), the bijection between the (m−1)-filtering multisets on 〈n〉 of order
k − i given by conjugation and identity (12) imply that

f
[m]
i,j,k(q) = q(

i+1
2 )−k ∑

µ∈(〈i〉 ; m−1
k−i )

qσ(µ)
∑

D∈(〈i+j〉
i )

qσ(D) .

Hence, by identities (4) and (5), we have f [m]
i,j,k(q) = qi

2(i ; m−1
k−i

)
q

(
i+j
i

)
q
.

We close this section deriving the generating series of the generalized q-Fibonacci polyno-
mials. By (13) we can write

∑
n≥0

F [m]
n tn =

∑
n≥0

∑
i+j+k=n

(
i ; m− 1
k − i

)
q

(
i+ j

i

)
q

qi
2

(xt)i(yt)j(zt)k .
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Then, setting r = k − i, we obtain

∑
n≥0

F [m]
n tn =

∑
i≥0

∑
r≥0

(
i ; m− 1

r

)
q

(zt)r

∑
j≥0

(
i+ j

i

)
q

(yt)j

 qi
2
(xt)i(zt)i .

Recall now the identity 1
(x;q)n+1

=
∑
r≥0

(
n+r
n

)
q
xr where (x; q)n := (1−x)(1−qx) · · · (1−qn−1x)

[4]. Hence identity (3) implies that

∑
n≥0

F [m]
n (q;x, y, z) tn =

∑
i≥0

qi
2 [zt;m− 1]i(xzt2)i

(yt; q)i+1
. (15)

By (15) and (6) we also have

∑
n≥0

G[m]
n (q;x, y, z) tn =

∑
i≥0

qi
2 [qzt;m− 1]i(xzt2)i

(yt; q)i+1
. (16)

6. GENERALIZED q-FIBONACCI NUMBERS

We define the generalized q-Fibonacci numbers of the first kind of order k as the q-
numbers defined by the maj statistic on F [k]

n , or equivalently by the imaj statistic on G[k]
n , that

is f
[k]
n (q) :=

∑
ϕ∈F [k]

n
qmaj(ϕ) =

∑
ϕ∈G[k]

n
qimaj(ϕ). Similarly, we define the generalized

q-Fibonacci numbers of the second kind of order k as the q-numbers defined by the maj
statistic on G[k]

n , or equivalently by the imaj statistic on F [k]
n , that is g[k]

n (q) :=
∑
ϕ∈G[k]

n
qmaj(ϕ) =∑

ϕ∈F [k]
n
qimaj(ϕ). These numbers can be obtained from the generalized q-Fibonacci

polynomials: f [k]
n (q) = F

[k]
n (q; 1, 1, 1), g[k]

n (q) = G
[k]
n (q; 1, 1, 1). By (7), (8) and (6) we have,

for k ≥ 1, the recurrences f [k]
n+k(q) = f

[k]
n+k−1(q) +

∑k−1
i=1 q

n+k−if
[k]
n+k−i−1(q) and g[k]

n+k(q) =

g
[k]
n+k−1(q) + qn+k−1

∑k−1
i=1 q

n+k−ig
[k]
n+k−i−1(q). By (15) and (16) we have

∑
n≥0 f

[k]
n (q) tn =∑

i≥0 q
i2 [t;k−1]i t

2i

(t;q)i+1
,
∑
n≥0 g

[k]
n (q) tn =

∑
i≥0 q

i2 [qt;k−1]i t
2i

(t;q)i+1
. By (9) and (10) we have

f
[k]
n (q) = per (A[k]

n (q; 1, 1, 1)) = det (A[k]
n (q; 1, 1,−1)), g[k]

n (q) = per (B[k]
n (q; 1, 1, 1)) =

det(B[k]
n (q; 1, 1,−1)).

In [2] are defined two q-Mahonian statistics of an n× n (0, 1)-matrix A: Iq(A) :=∑
π∈Sn

qinv(π)a1,π(1) . . . an,π(n) and Mq(A) :=
∑
π∈Sn

qmaj(π)a1,π(1) . . . an,π(n). Then Iq(A
[k]
n ) =

F
[k]
n (1; 1, 1, q), Mq(A

[k]
n ) = f

[k]
n (q), Iq(B

[k]
n ) = G

[k]
n (1; 1, 1, q), Mq(B

[k]
n ) = g

[k]
n (q), where A[k]

n =

A
[k]
n (1; 1, 1, 1) and B

[k]
n = B

[k]
n (1; 1, 1, 1).

The generalized q-Fibonacci numbers f [k]
n (q) and g[k]

n (q), as polynomials in q (with k ≥ 2),
have degree m2 if n = 2m and m2+m if n = 2m+1. Indeed the maximum exponent in a gener-
alized q-Fibonacci number is reached in correspondence of a permutation ϕ with the maximum
number of cycles of length 2. If n = 2m this permutation is ϕ = (1, 2)(3, 4) · · · (2m − 1, 2m)
and maj(ϕ) = 1+3+ · · ·+(2m−1) = m2. If n = 2m+1 it is ϕ = (1)(2, 3)(4, 5) · · · (2m, 2m+1)
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and maj(ϕ) = 2 + 4 + · · · + 2m = m2 + m. Notice that this degree does not depend on the
kind nor on the order.

For q = 1 we have the generalized Fibonacci numbers f [k]
n (1) = g

[k]
n (1) = f

[k]
n . For k = 2

we have essentially the q-Fibonacci numbers defined in [1], since the q-numbers fn(q) :=
f

[2]
n (q) = g

[2]
n (q) satisfy the recurrence fn+2(q) = fn+1(q)+qn+1fn(q) with the initial conditions

f0(q) = f1(q) = 1.
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