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1. INTRODUCTION AND THE MAIN RESULT

As usual, Fibonacci polynomials Fn(x), Lucas polynomials Ln(x), and Pell polynomials
Pn(x) are defined by the second-order linear recurrence

tn+2 = atn+1 + btn, (1)

with given a, b, t0, t1 and n ≥ 0. This sequence was introduced by Horadam [3] in 1965, and it
generalizes many sequences (see [1, 4]). Examples of such sequences are Fibonacci polynomials
sequence (Fn(x))n≥0, Lucas polynomials sequence (Ln(x))n≥0, and Pell polynomials sequence
(Pn(x))n≥0, when one has a = x, b = t1 = 1, t0 = 0; a = t1 = x, b = 1, t0 = 2; and
a = 2x, b = t1 = 1, t0 = 0; respectively.

Chebyshev polynomials of the second kind (in this paper just Chebyshev polynomials) are
defined by

Un(cos θ) =
sin(n+ 1)θ

sin θ

for n ≥ 0. Evidently, Un(x) is a polynomial of degree n in x with integer coefficients. For
example, U0(x) = 1, U1(x) = 2x,U2(x) = 4x2 − 1, and in general (see Recurrence 1 for
a = 2x, b = −1, t0 = 1, and t1 = 2x, Un+2(x) = 2xUn+1(x) − Un(x). Chebyshev polynomials
were invented for the needs of approximation theory, but are also widely used in various other
branches of mathematics, including algebra, combinatorics, and number theory (see [5]).
Lemma 1.1: Let (tn)n≥0 be any sequence that satisfies tn+2 = 2x · tn+1 − tn with given t0, t1,
and n ≥ 0. Then for all n ≥ 0,

tn = t1 · Un−1(x)− t0 · Un−2(x),

where Um is the mth Chebyshev polynomial of the second kind.
Proof: A proof is straightforward using the relation Un+2(x) = 2xUn+1(x) − Un(x) and

induction on n.
Let A be a tile of size 1× 1 and B be a tile of size 1× 2. We denote by Ln the set of all

tilings of a 1×n rectangle with tiles A and B. An element of Ln can be written as a sequence
of the letters A and B. For example, L1 = {A}, L2 = {AA,B}, and L3 = {AAA,AB,BA}.
We denoted by |α| the number of tiles A and B in α. For example, |AAA| = 3 and |AB| = 2.
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Proposition 1.2: The number of tilings of a 1×n rectangle with tiles A and B is the Fibonacci
number Fn+1, that is, |Ln| = Fn+1.

Proof: The result is immediate for n ≤ 1, so it is sufficient to show that the number of
such tilings satisfies the recurrence Fm = Fm−1 + Fm−2. To do this, we observe that there is
a one-to-one correspondence between the tilings of a 1× (n− i) rectangle and the tilings of a
1× n rectangle in which the rightmost tile has length i, where i = 1, 2. Therefore, if we count
tilings of a 1 × n rectangle according to the length of the rightmost tile, we find the number
of such tilings satisfies the recurrence Fm = Fm−1 + Fm−2, as desired.

Let α be any element of Ln, we define β by βi = 1 if αi = A; otherwise βi = 2, and we
write β = χ(α). For example, χ(AAABAB) = 111212.

Now, let us fix an integer s and a natural number q such that q ≥ 1. Let
a0, a1, . . . , aq−1, b0, b1, . . . , bq−1 be 2q constants and a = (a0, a1, . . . , aq−1), b = (b0, b1, . . . , bq−1).
For any α ∈ Ln, we define v(n; s) = va,b(n;α, q, s) =

∏|α|
i=1 k(βi) where

k(βi) =
{
a(s+β1+···+βi) mod q, if βi = 1,
b(s+β1+···+βi) mod q, if βi = 2,

and β = χ(α). For example, if q = 3, an = n and bn = 1 for n = 0, 1, 2, s = 0, and
α = AABAB, then we have that

va,b(n;α, q, s) = a1 mod 3a2 mod 3b4 mod 3a5 mod 3b7 mod 3 = a1a2b1a2b1 = a1a
2
2 = 4.

We will be interested in the sum of all va,b(n;α, q, s) over all α ∈ Ln, which is denoted
by V (n; s) = Va,b(n; q, s), that is, V (n; s) =

∑
α∈Ln

va,b(n;α, q, s). For example, V (1; s) =
a(s+1) mod q and V (2; s) = a(s+1) mod qa(s+2) mod q + b(s+2) mod q. We extend the definition
of V (n; s) as V (0; s) = 1 and V (n; s) = 0 for n < 0. We remark that V (n; q, s) can be given
by a combinatorial interpretation as follows: V (n; q, s) counts the number of ways to tile a
boards of length n, with cells numbers s+ 1 through s+n, using colored tiles of size 1× 1 and
tiles of size 1× 2. For a tile of size 1× 1 on cell i, we have ai mod q color choices; for a tile of
size 1× 2 on cells i− 1 and i, we have bi mod q choices. The main result of this paper can be
formulated as follows.
Theorem 1.3: Let (xn)n≥0 be any sequence (xn = xn;q(a, b)) that satifies

xqn+d = ad · xqn+d−1 + bd · xqn+d−2, (2)

for all n ≥ 1, 0 ≤ d ≤ q − 1, with given x0, x1, . . . , xq−1. Then for n ≥ 1, xqn+d is given by√
−Jq;d

n−2
(
xq+d

√
−Jq;dUn−1(wq;d) + (x2q+d − Iq;dxq+d) · Un−2(wq;d)

)
,

for all n ≥ 1, where Um is the mth Chebyshev polynomial,

xq+d = V (d+ 1;−1)xq−1 + b0V (d; 0)xq−2

x2q+d = V (q + d+ 1;−1)xq−1 + b0V (q + d; 0)xq−2,
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and

wq;d =
Iq;d

2
√
−Jq;d

,

Iq;d = b(d+1) mod q · V (q − 2; d+ 1) + V (q; d), (3)
Jq;d = b(d+1) mod q · (V (q − 1; d+ 1)V (q − 1; d)− V (q; d)V (q − 2; d+ 1)) .

The paper is organized as follows. In Section 2 we give a proof of Theorem 1.3, and in Section
3 we give some applications for Theorem 1.3.

2. PROOFS

Throughout this section, we assume that q is a natural number (q ≥ 1) and s is an
integer. Also, let a0, a1, . . . , aq−1, b0, b1, . . . , bq−1 be 2q constants and a = (a0, a1, . . . , aq−1),
b = (b0, b1, . . . , bq−1). We start from the following lemma.
Lemma 2.1: Let ` be an integer such that ` ≥ s+ 2. Then

V (`− s; s) = a` mod q · V (`− s− 1; s) + b` mod q · V (`− s− 2; s).

Proof: To verify this lemma, we observe that there is a one-to-one correspondence
between the tilings of a 1 × (` − s − i) rectangle and the tilings of a 1 × (` − s) rect-
angle in which the rightmost tile has length i, where i = 1, 2. Hence V (` − s; s) =
a` mod q · V (` − s − 1; s) + b` mod q · V (` − s − 2, s), where the first term corresponds to
the case i = 1 and the second one to the case i = 2.

Now, let us apply this lemma to find xqn+d+m in terms of xqn+d and xqn+d−1.
Proposition 2.2: Let q − 1 ≥ d ≥ 0 and n ≥ 1. Then for all m ≥ 0,

xqn+d+m = V (m; d) · xqn+d + b(d+1) mod q · V (m− 1; d+ 1) · xqn+d−1.

Proof: Let us prove this proposition by induction on m. Since

xqn+d+0 = 1 · xqn+d+0 + b(d+1) mod q · 0 · xqn+d−1,

V (0; d) = 1 and V (m; d) = 0 for m < 0, we have that the proposition holds for m = 0. By
Recurrence 2 we get

xqn+d+1 = a(d+1) mod q · xqn+d + b(d+1) mod q · xqn+d−1

= V (1; d) · xqn+d + b(d+1) mod q · V (0; d+ 1) · xqn+d−1,

therefore the proposition holds for m = 1. Now, we assume that the proposition holds for
0, 1, . . . ,m− 1, and prove that it holds for m. By induction hypothesis we have

xqn+d+m−2 = V (m− 2; d) · xqn+d + b(d+1) mod q · V (m− 3; d+ 1) · xqn+d−1,

and
xqn+d+m−1 = V (m− 1; d) · xqn+d + b(d+1) mod q · V (m− 2; d+ 1) · xqn+d−1,
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hence, by Equation 2 we get

xqn+d+m = a(d+m) mod q · xqn+d+m−1 + b(d+m) mod q · xqn+m+d−2

=
(
a(d+m) mod q · V (m− 1; d) + b(d+m) mod q · V (m− 2; d)

)
xqn+d

+ b(d+1) mod q

(
a(d+m) mod q · V (m− 2; d+ 1) + b(d+m) mod q · V (m− 3; d+ 1)

)
xqn+d−1.

Using Lemma 2.1 for ` = m + d, s = d and for ` = m + d, s = d + 1, we get the desired
result.

Now we introduce a recurrence relation that plays the crucial role in the proof of the Main
Theorem.
Proposition 2.3: Let q − 1 ≥ d ≥ 0. Then for all n ≥ 2,

xq(n+1)+d =
(
b(d+1) mod q · V (q − 2; d+ 1) + V (q; d)

)
xqn+d

+ b(d+1) mod q · (V (q − 1; d+ 1)V (q − 1; d)− V (q; d)V (q − 2; d+ 1))xq(n−1)+d.

Proof: Using Proposition 2.2 for m = q − 1 we get

xq(n+1)+d−1 − b(d+1) mod q · V (q − 2; d+ 1) · xqn+d−1 = V (q − 1; d) · xqn+d, (4)

and for m = q we have

xq(n+1)+d = V (q; d) · xqn+d + b(d+1) mod q · V (q − 1; d+ 1) · xqn+d−1. (5)

Hence, Equation 4 yields

xq(n+1)+d − b(d+1) mod q · V (q − 2; d+ 1) · xqn+d =

= V (q; d)
(
xqn+d − b(d+1) mod q · V (q − 2; d+ 1) · xqn+d

)
+ b(q+1) mod q · V (q − 1; d+ 1)

(
xqn+d−1 − b(d+1) mod q · V (q − 2; d+ 1) · xq(n−1)+d−1

)
,

and by using Equation 4 we get the desired result.
Proof of Theorem 1.3: Recall the definitions in 3. Now we are ready to prove the main

result of this paper. Using Proposition 2.3 we have for n ≥ 2,

xq(n+1)+d = Iq;d · xqn+d + Jq;d · xq(n−1)+d.

If we define tn = xqn+d for n ≥ 1, then we get

tn+1 = Iq;d · tn + Jq;d · tn−1,

therefore, by defining (−Jq;d)n/2t′n = t′n we have for n ≥ 2, t′n+1 = 2wq;dt′n − t′n−1.
Let us find expressions for t′0 and t′1. By the recurrence for tn we can define t0 as t2 =

Iq;dt1 +Jq;dt0, which means that t′0 = t0 = 1
Jq;d

(x2q+d−Iq;dxq+d). By definitions, t′1 = xq+d√
−Jq;d

.
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Using Proposition 2.2, we get xq+d = V (d + 1;−1)xq−1 + b0V (d; 0)xq−2 and x2q+d = V (q +
d+ 1;−1)xq−1 + b0V (q + d; 0)xq−2. Hence, using Lemma 1.1 we get the desired result.

3. APPLICATIONS

There is a connection between the sequences which are defined by Recurrence 2, and the
sequences which are defined by Recurrence 1. Indeed, from Theorem 1.3 we get the following
result.
Corollary 3.1: For given x0 and x−1, and the recurrence xn+2 = a0xn+1 + b0xn, an explicit
solution for this recurrence is given by

xn =
√
−b0

n−2
[√
−b0(a0x0 + b0x−1)Un−1

(
a0

2
√
−b0

)
+ b0x0Un−2

(
a0

2
√
−b0

)]
,

where Um is the mth Chebyshev polynomial.
Proof: Using Theorem 1.3 for q = 1 with the parameters d = 0, I1;0 = a0, J1;0 = b0, x1 =

a0x0 + b0x−1, x2 = (a2
0 + b0)x0 + a0b0x−1, and w1;0 = a0

2
√
−b0

, we get the explicit solution for
the recurrence xn+2 = a0xn+1 + b0xn, as requested.

The first interesting case is q = 2. Then Recurrence 2 gives{
x2n = a0x2n−1 + b0x2n−2

x2n+1 = a1x2n + b1x2n−1,
(6)

with given x0 and x1. In this case we have two possibilities: either d = 0 or d = 1. Let d = 0,
so the parameters of the problem are given by I2;0 = a0a1 + b0 + b1, J2;0 = −b0b1, w2;0 =
a0a1+b0+b1

2
√
b0b1

, x2 = a0x1 + b0x0, and x4 = (a2
0a1 + a0b1 + a0b0)x1 + (a0b0a1 + b20)x0. Hence,

Theorem 1.3 gives the following result.
Corollary 3.2: The solution x2n for Recurrence 6 is given by

√
b0b1

n−2
[√

b0b1(a0x1 + b0x0)Un−1

(
a0a1 + b0 + b1

2
√
b0b1

)
− b0b1x0Un−2

(
a0a1 + b0 + b1

2
√
b0b1

)]
,

where Um is the mth Chebyshev polynomial.
Example 3.3: If x0 = 0, x1 = 1, a0 = x, a1 = xy, and b0 = b1 = 1, then the explicit
expression to x2n for the Recurrence 6 is given by xUn−1(1 + 1

2x
2y). Hence, by the definition

it is easy to see that in the case y = 1, we have that the Fibonacci polynomial F2n(x) is given
by xUn−1(1 + 1

2x
2).

If x0 = 2, x1 = 1, a0 = x, a1 = xy, and b0 = b1 = 1, then an explicit expression to x2n for
the Recurrence 6 is given by (x+2)Un−1(1+ 1

2x
2y)−2Un−2(1+ 1

2x
2y). Hence, in the case y = 1

we have that the Lucas polynomial L2n(x) is given by (x+ 2)Un−1(1 + 1
2x

2)− 2Un−2(1 + 1
2x

2).
If x0 = 0, x1 = 1, a0 = 2x, a1 = yx, and b0 = b1 = 1, then an explicit expression to x2n

for the Recurrence 6 is given by 2xUn−1(1 + x2y). Hence, in the case y = 2 we have that the
Pell polynomial P2n(x) is given by 2xUn−1(1 + 2x2).
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Another example for Theorem 1.3 is when q = 3 and d = 0. In this case the parameters
of the problem are given by I3;0 = a0a1a2 + b0a1 + b1a2 +a0b2, J3;0 = b0b1b2, x3 = a0x2 + b0x1,
and x6 = I3;0x3 = b0b1(x2 − a2x1). Therefore, we get the following result.
Corollary 3.4: The solution x2n for Recurrence 2, when q = 3, is given by

√
−b0b1b2

n−2
(√
−b0b1b2(a0x2 + b0x1)Un−1(w) + b0b1(x2 − a2x1)Un−2(w)

)
,

for all n ≥ 1, where w = a0a1a2+a0b2+b0a1+b1a2
2
√
−b0b1b2

, and Um is the mth Chebyshev polynomial.

For example, if we are interested in solving the recurrence
x3n = x3n−1 + x3n−2

x3n+1 = x3n + x3n−1

x3n+2 = yx3n+1 + x3n,

with x0 = 0 and x1 = x2 = 1, then by the above corollary we get that the solution x3n for this
recurrence is given by

2in−1Un−1(−i(1 + y)) + in−2(1− y)Un−2(−i(1 + y)),

where i2 = −1. In particular, if y = 1 then we have that the (3n)th Fibonacci number, F3n, is
given by 2in−1Un−1(−2i).

ACKNOWLEDGMENT

The authors would like to thank the anonymous referee for careful reading of the
manuscript.

The second authors research financed by EC’s IHRP Programme, within the Research
training Network “Algebraic Combinatorics in Europe”, grant HPRN-CT-2001-00272.

REFERENCES

[1] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. 4th Edition.
London, Oxford Univresity Press, 1962.

[2] P. Haukkanen. “A Note on Horadam’s Sequence.” The Fibonacci Quarterly 40.4 (2002):
358-361.

[3] A.F. Horadam. “Generalization of a Result of Morgado.” Portugaliae Math. 44 (1987):
131-136.

[4] A.F. Horadam and J.M. Mahon. “Pell and Pell-Lucas Polynomials.” The Fibonacci
Quarterly 23.1 (1985): 7-20.

[5] Th. Rivlin. Chebyshev Polynomials. From Approximation Theory to Algebra and Number
Theory. John Wiley, New York, 1990.

AMS Classification Numbers: 11B83, 42C05, 11K31

z z z

261


