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ABSTRACT

In this paper, we derive some new formulas for π, similar to that of Bailey, Borwein and
Plouffe. The distinctive feature of these new formulas is that π is expressed in terms of the
powers of the reciprocal of the Golden Ratio φ.

In [3], with the aid of the powerful PSLQ algorithm [4, 6], David Bailey, Peter Borwein
and Simon Plouffe discovered an amazing formula for π:

π =
∞∑

n=0

1
16n

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

)
. (1)

This is a ground-breaking result because this formula can generate the nth base-16 digit of
π without computing any prior digits, contrary to all previous algorithms for the nth digit
of π. For introductions and generalizations, see, e.g., [1, 2, 5]; see also the lucid account in
Hijab’s book [10]. For a compendium of currently known results of BBP-type formulas, see
Bailey’s A Compendium of BBP-Type Formulas for Mathematical Constants, which is available
at http://crd.lbl.gov/∼dhbailey. See also [8].

In this paper, motivated by this beautiful result, we prove the following formulas. Denote
the Golden Ratio by φ = (1 +

√
5)/2. Then, we have

π =
5
√

2 + φ

2 φ

∞∑
n=0

(
1
2φ

)5n (
1

5n + 1
+

1
2φ2(5n + 2)

− 1
22φ3(5n + 3)

− 1
23φ3(5n + 4)

)
(2)

and

π =
5
√

2 + φ

2 φ2

∞∑
n=0

(
1
φ

)10n (
1

10n + 1
+

1
10n + 2

+
1

φ(10n + 3)
+

1
φ3(10n + 4)

− 1
φ5(10n + 6)

− 1
φ5(10n + 7)

− 1
φ6(10n + 8)

− 1
φ8(10n + 9)

)
. (3)

Proof of Formula 2: First, we observe that

∫ 1/(2φ)

0

1
1− φ−1x + x2

dx =
1
5

√
2

5 +
√

5
π. (4)
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Note that we have used in (4) the fact that

tan
π

10
=

√
5− 1√

2(5 +
√

5)
.

Next, we define
A1(x) := −1− φ−1x + φ−1x2 + x3. (5)

Observe that
x5 − 1 = (1− φ−1x + x2)A1(x). (6)

By using (4)-(6), we have, with a := 1/(2φ),

π

5
√

2 + φ
=

∫ a

0

1
1− φ−1x + x2

dx

=
∫ a

0

−A1(x)
1− x5

dx

=
∫ a

0

1 + φ−1x− φ−1x2 − x3

1− x5
dx. (7)

Following [3], we have, for fixed k,

∫ a

0

xk−1

1− x5
dx =

∫ a

0

∞∑
n=0

xk−1+5n dx =
(

1
2 φ

)k ∞∑
n=0

(
1

2 φ

)5n 1
(5n + k)

. (8)

By applying (8) to (7), we have

π

5
√

2 + φ
=
∞∑

n=0

(
1

2 φ

)5n (
1

2φ(5n + 1)
+

1
22φ3(5n + 2)

− 1
23φ4(5n + 3)

− 1
24φ4(5n + 4)

)
,

which is the same as (2).
Remark: Note that, by changing the upper limit of the integral in (4), i.e., (1/2φ) → 1/φ,
we have

∫ 1/φ

0

1
1− φ−1x + x2

dx =
1
5

√
2− 2√

5
π.
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Hence, by the same tricks, one can show that

π =
5
√

2 + φ

2 φ

∞∑
n=0

(
1
φ

)5n (
1

5n + 1
+

1
φ2(5n + 2)

− 1
φ3(5n + 3)

− 1
φ3(5n + 4)

)
. (9)

Proof of Formula 3: To this end, we observe that

∫ 1/φ

0

1
1− φx + x2

dx =
1
5

√
2 +

2√
5

π. (10)

Next, we define

A2(x) := −1− φx− φx2 − x3 + x5 + φx6 + φx7 + x8 (11)

and observe that
x10 − 1 = (1− φx + x2) A2(x). (12)

By putting (10)-(12), we have, with b := 1/φ,

2 φ

5
√

2 + φ
π =

∫ b

0

1
1− φx + x2

dx

=
∫ b

0

−A2(x)
1− x10

dx

=
∫ b

0

1 + φx + φ x2 + x3 − x5 − φx6 − φ x7 − x8

1− x10
dx.

By combining this with

∫ b

0

xk−1

1− x10
dx =

∫ b

0

∞∑
n=0

xk−1+10n dx =
(

1
φ

)k ∞∑
n=0

(
1
φ

)10n 1
(10n + k)

,

we obtain (3) in the same manner we obtained (2).
Remark: Again, consider the integral in (10) with a different upper limit (1/φ → φ/2); we
have

∫ φ/2

0

1
1− φx + x2

dx =
3
5

√
5 +

√
5

10
π.
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By the same tricks used to prove (3), we can show

π =
5
√

2 + φ

6

∞∑
n=0

(
φ

2

)10n (
1

10n + 1
+

φ2

2(10n + 2)
+

φ3

22(10n + 3)
+

φ3

23(10n + 4)

− φ5

25(10n + 6)
− φ7

26(10n + 7)
− φ8

27(10n + 8)
− φ8

28(10n + 9)

)
.
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