π IN TERMS OF ϕ

Hei-Chi Chan

Mathematical Sciences Program, University of Illinois at Springfield, Springfield, IL 62703-5407
e-mail: chan.hei-chi@uis.edu
(Submitted February 2004)

Abstract

In this paper, we derive some new formulas for π, similar to that of Bailey, Borwein and Plouffe. The distinctive feature of these new formulas is that π is expressed in terms of the powers of the reciprocal of the Golden Ratio ϕ.

In [3], with the aid of the powerful PSLQ algorithm [4, 6], David Bailey, Peter Borwein and Simon Plouffe discovered an amazing formula for π : $$
\begin{equation*} \pi=\sum_{n=0}^{\infty} \frac{1}{16^{n}}\left(\frac{4}{8 n+1}-\frac{2}{8 n+4}-\frac{1}{8 n+5}-\frac{1}{8 n+6}\right) \tag{1} \end{equation*}
$$

This is a ground-breaking result because this formula can generate the nth base-16 digit of π without computing any prior digits, contrary to all previous algorithms for the nth digit of π. For introductions and generalizations, see, e.g., $[1,2,5]$; see also the lucid account in Hijab's book [10]. For a compendium of currently known results of BBP-type formulas, see Bailey's A Compendium of BBP-Type Formulas for Mathematical Constants, which is available at http://crd.lbl.gov/~dhbailey. See also [8].

In this paper, motivated by this beautiful result, we prove the following formulas. Denote the Golden Ratio by $\phi=(1+\sqrt{5}) / 2$. Then, we have $$
\begin{equation*} \pi=\frac{5 \sqrt{2+\phi}}{2 \phi} \sum_{n=0}^{\infty}\left(\frac{1}{2 \phi}\right)^{5 n}\left(\frac{1}{5 n+1}+\frac{1}{2 \phi^{2}(5 n+2)}-\frac{1}{2^{2} \phi^{3}(5 n+3)}-\frac{1}{2^{3} \phi^{3}(5 n+4)}\right) \tag{2} \end{equation*}
$$

and

$$
\begin{align*}
\pi & =\frac{5 \sqrt{2+\phi}}{2 \phi^{2}} \sum_{n=0}^{\infty}\left(\frac{1}{\phi}\right)^{10 n}\left(\frac{1}{10 n+1}+\frac{1}{10 n+2}+\frac{1}{\phi(10 n+3)}+\frac{1}{\phi^{3}(10 n+4)}\right. \\
& \left.-\frac{1}{\phi^{5}(10 n+6)}-\frac{1}{\phi^{5}(10 n+7)}-\frac{1}{\phi^{6}(10 n+8)}-\frac{1}{\phi^{8}(10 n+9)}\right) . \tag{3}
\end{align*}
$$

Proof of Formula 2: First, we observe that

$$
\begin{equation*}
\int_{0}^{1 /(2 \phi)} \frac{1}{1-\phi^{-1} x+x^{2}} d x=\frac{1}{5} \sqrt{\frac{2}{5+\sqrt{5}}} \pi \tag{4}
\end{equation*}
$$

Note that we have used in (4) the fact that

$$
\tan \frac{\pi}{10}=\frac{\sqrt{5}-1}{\sqrt{2(5+\sqrt{5})}}
$$

Next, we define

$$
\begin{equation*}
A_{1}(x):=-1-\phi^{-1} x+\phi^{-1} x^{2}+x^{3} \tag{5}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
x^{5}-1=\left(1-\phi^{-1} x+x^{2}\right) A_{1}(x) \tag{6}
\end{equation*}
$$

By using (4)-(6), we have, with $a:=1 /(2 \phi)$,

$$
\begin{align*}
\frac{\pi}{5 \sqrt{2+\phi}} & =\int_{0}^{a} \frac{1}{1-\phi^{-1} x+x^{2}} d x \\
& =\int_{0}^{a} \frac{-A_{1}(x)}{1-x^{5}} d x \\
& =\int_{0}^{a} \frac{1+\phi^{-1} x-\phi^{-1} x^{2}-x^{3}}{1-x^{5}} d x . \tag{7}
\end{align*}
$$

Following [3], we have, for fixed k,

$$
\begin{equation*}
\int_{0}^{a} \frac{x^{k-1}}{1-x^{5}} d x=\int_{0}^{a} \sum_{n=0}^{\infty} x^{k-1+5 n} d x=\left(\frac{1}{2 \phi}\right)^{k} \sum_{n=0}^{\infty}\left(\frac{1}{2 \phi}\right)^{5 n} \frac{1}{(5 n+k)} \tag{8}
\end{equation*}
$$

By applying (8) to (7), we have

$$
\frac{\pi}{5 \sqrt{2+\phi}}=\sum_{n=0}^{\infty}\left(\frac{1}{2 \phi}\right)^{5 n}\left(\frac{1}{2 \phi(5 n+1)}+\frac{1}{2^{2} \phi^{3}(5 n+2)}-\frac{1}{2^{3} \phi^{4}(5 n+3)}-\frac{1}{2^{4} \phi^{4}(5 n+4)}\right)
$$

which is the same as (2).
Remark: Note that, by changing the upper limit of the integral in (4), i.e., $(1 / 2 \phi) \rightarrow 1 / \phi$, we have

$$
\int_{0}^{1 / \phi} \frac{1}{1-\phi^{-1} x+x^{2}} d x=\frac{1}{5} \sqrt{2-\frac{2}{\sqrt{5}}} \pi
$$

Hence, by the same tricks, one can show that

$$
\begin{equation*}
\pi=\frac{5 \sqrt{2+\phi}}{2 \phi} \sum_{n=0}^{\infty}\left(\frac{1}{\phi}\right)^{5 n}\left(\frac{1}{5 n+1}+\frac{1}{\phi^{2}(5 n+2)}-\frac{1}{\phi^{3}(5 n+3)}-\frac{1}{\phi^{3}(5 n+4)}\right) . \tag{9}
\end{equation*}
$$

Proof of Formula 3: To this end, we observe that

$$
\begin{equation*}
\int_{0}^{1 / \phi} \frac{1}{1-\phi x+x^{2}} d x=\frac{1}{5} \sqrt{2+\frac{2}{\sqrt{5}}} \pi . \tag{10}
\end{equation*}
$$

Next, we define

$$
\begin{equation*}
A_{2}(x):=-1-\phi x-\phi x^{2}-x^{3}+x^{5}+\phi x^{6}+\phi x^{7}+x^{8} \tag{11}
\end{equation*}
$$

and observe that

$$
\begin{equation*}
x^{10}-1=\left(1-\phi x+x^{2}\right) A_{2}(x) . \tag{12}
\end{equation*}
$$

By putting (10)-(12), we have, with $b:=1 / \phi$,

$$
\begin{aligned}
\frac{2 \phi}{5 \sqrt{2+\phi}} \pi & =\int_{0}^{b} \frac{1}{1-\phi x+x^{2}} d x \\
& =\int_{0}^{b} \frac{-A_{2}(x)}{1-x^{10}} d x \\
& =\int_{0}^{b} \frac{1+\phi x+\phi x^{2}+x^{3}-x^{5}-\phi x^{6}-\phi x^{7}-x^{8}}{1-x^{10}} d x .
\end{aligned}
$$

By combining this with

$$
\int_{0}^{b} \frac{x^{k-1}}{1-x^{10}} d x=\int_{0}^{b} \sum_{n=0}^{\infty} x^{k-1+10 n} d x=\left(\frac{1}{\phi}\right)^{k} \sum_{n=0}^{\infty}\left(\frac{1}{\phi}\right)^{10 n} \frac{1}{(10 n+k)},
$$

we obtain (3) in the same manner we obtained (2).
Remark: Again, consider the integral in (10) with a different upper limit ($1 / \phi \rightarrow \phi / 2$); we have

$$
\int_{0}^{\phi / 2} \frac{1}{1-\phi x+x^{2}} d x=\frac{3}{5} \sqrt{\frac{5+\sqrt{5}}{10}} \pi .
$$

By the same tricks used to prove (3), we can show

$$
\begin{aligned}
\pi & =\frac{5 \sqrt{2+\phi}}{6} \sum_{n=0}^{\infty}\left(\frac{\phi}{2}\right)^{10 n}\left(\frac{1}{10 n+1}+\frac{\phi^{2}}{2(10 n+2)}+\frac{\phi^{3}}{2^{2}(10 n+3)}+\frac{\phi^{3}}{2^{3}(10 n+4)}\right. \\
& \left.-\frac{\phi^{5}}{2^{5}(10 n+6)}-\frac{\phi^{7}}{2^{6}(10 n+7)}-\frac{\phi^{8}}{2^{7}(10 n+8)}-\frac{\phi^{8}}{2^{8}(10 n+9)}\right) .
\end{aligned}
$$

ACKNOWLEDGMENT

These examples emerged from a series of seminars I gave to a group of (mainly freshman and sophomore) math and science majors. One of the high points of these seminars was the intriguing formula (1). I would like to thank my audience. I would also like to thank Scott Ebbing, Josh Olson and Doug Woken for their valuable comments on this work. I would like to thank Xiaoye S. Li for her interest in this work. A special thanks goes to David Bailey for his valuable comments on the early version of the present paper. Last but not least, I would like to thank Bailey, Borwein and Plouffe, whose beautiful discoveries change the way we look at (and compute) π and other constants.

REFERENCES

[1] V. Adamchik and S. Wagon. " π : A 2000-Year Search Changes Direction." Mathematica in Education and Research 1 (1996): 11-19.
[2] V. Adamchik and S. Wagon. "A Simple Formula for Pi." Amer. Math. Monthly 9 (1997): 852-855.
[3] D. H. Bailey, P. B. Borwein and S. Plouffe. "On the Rapid Computation of Various Polylogarithmic Constants." Math. Comp. 66 (1997): 903-913.
[4] D. H. Bailey and R. E. Crandall. "On the Random Character of Fundamental Constant Expansions." Exp. Math. 10 (2001): 175-190.
[5] D. H. Bailey and S. Plouffe. "Recognizing Numerical Constants." The Organic Mathematics Project Proceedings, http://www.cecm.sfu.ca/organics, April 12, 1996; hard copy version: Canadian Mathematical Society Conference Proceedings, Volume 20, 1997, 73-88.
[6] J. M. Borwein and D. H. Bailey. Mathematics by Experiment: Plausible Reasoning in the 21st Century, A K Peters, Natick, MA, 2003.
[7] J. M. Borwein, D. H. Bailey, and R. Girgensohn. Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Natick, MA, 2004.
[8] H. C. Chan. "More Formulas for π." Amer. Math. Monthly 113 (2006): 452-455.
[9] H. R. P. Ferguson, D. H. Bailey and S. Arno. "Analysis of PSLQ, An Integer Relation Finding Algorithm." Mathematics of Computation 68 (1999): 351-369.
[10] O. Hijab. Introduction to Calculus and Classical Analysis, Springer-Verlag, New York, 1997.

AMS Classification Numbers: 11A05

