MATRICES AND LINEAR RECURRENCES IN FINITE FIELDS

Owen J. Brison

Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa Bloco C6, Piso 2, Campo Grande, 1749-016 LISBOA, PORTUGAL
e-mail: brison@ptmat.fc.ul.pt

J. Eurico Nogueira

Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2825-114 MONTE DA CAPARICA, PORTUGAL
e-mail: jen@fct.unl.pt
(Submitted August 2003-Final Revision February 2004)

Abstract

Linear recurring sequences of order k are investigated using matrix techniques and some finite group theory. An identity, well-known when $k=2$, is extended to general k and is used to study the restricted period of a linear recurring sequence over a finite field.

1. INTRODUCTION

Matrix techniques have been used by a number of authors to investigate linear recurring sequences; see for example [1], [3], [4], [5] and [10]. Here we use matrices and some finite group theory to study linear recurring sequences of order $k \geq 2$. An identity, well-known in the case $k=2$, is proved for general k over an arbitrary field (Proposition 2.2) and is used to study the restricted period of a linear recurring sequence over a finite field.

In what follows, \mathbb{K} denotes a field, $\mathbb{K}^{*}=\mathbb{K} \backslash\{0\}$ its multiplicative group, k an integer with $k \geq 2, \mathbb{K}^{k}$ the space of row vectors of length k over $\mathbb{K}, \mathbb{K}[t]$ the ring of polynomials over \mathbb{K} and

$$
\mathbb{K}_{0}[t]=\{f(t) \in \mathbb{K}[t]: f(0) \neq 0\}
$$

Suppose that $j, k \in \mathbb{N}$. If $a_{j}, \cdots, a_{j+k-1} \in \mathbb{K}$, write

$$
\boldsymbol{a}_{j, k}=\left(a_{j}, a_{j+1}, \cdots, a_{j+k-1}\right) \in \mathbb{K}^{k} .
$$

Let $f(t)=t^{k}-a_{k-1} t^{k-1}-\cdots-a_{1} t-a_{0} \in \mathbb{K}_{0}[t]$. Then $\mathcal{S}=\left(s_{j}\right)_{j \in \mathbb{Z}}$, with $s_{j} \in \mathbb{K}$ for all j, is an f-sequence in \mathbb{K} if it satisfies the linear recurrence relation

$$
\begin{equation*}
s_{i+k}=\sum_{j=0}^{k-1} s_{i+j} a_{j}=s_{i, k} \boldsymbol{a}_{0, k}^{\mathrm{T}} \tag{1}
\end{equation*}
$$

for all $i \in \mathbb{Z} ; f(t)$ is the characteristic polynomial of (1). The minimal polynomial of \mathcal{S} is the characteristic polynomial of the linear recurrence relation of least possible order satisfied by \mathcal{S} : see $[3,8.42]$. We fix the notation $\mathcal{U}=\left(u_{i}\right)_{i \in \mathbb{Z}}$ for the unit f-sequence, which is the f-sequence determined by the vector

$$
\boldsymbol{u}_{0, k}=(0, \cdots, 0,1) \in \mathbb{K}^{k} .
$$

Write $A_{f}=\left(\alpha_{i j}\right)$ for the $k \times k$ matrix over \mathbb{K} in which $\alpha_{i j}=0$ if $i+j \leq k$ and $\alpha_{i j}=a_{i+j-k-1}$ if $i+j \geq k+1$. Thus

$$
A_{f}=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & a_{0} \\
0 & 0 & \cdots & a_{0} & a_{1} \\
\cdots & \cdots & \ddots & \cdots & \cdots \\
0 & a_{0} & \cdots & a_{k-3} & a_{k-2} \\
a_{0} & a_{1} & \cdots & a_{k-2} & a_{k-1}
\end{array}\right]
$$

Write C_{f} for the $k \times k$ companion matrix over \mathbb{K}

$$
C_{f}=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & a_{0} \\
1 & 0 & \cdots & 0 & a_{1} \\
\cdots & \ddots & \cdots & \cdots & \cdots \\
0 & 0 & \ddots & 0 & a_{k-2} \\
0 & 0 & \cdots & 1 & a_{k-1}
\end{array}\right]
$$

Because $f(t) \in \mathbb{K}_{0}[t]$ then $a_{0} \neq 0$ and $A_{f}, C_{f} \in G L(k, \mathbb{K})$, the group of invertible $k \times k$ matrices over \mathbb{K}.

If $\left(s_{i}\right)_{i \in \mathbb{Z}}$ is an f-sequence and if $n \in \mathbb{Z}$ and $m \in \mathbb{N}$ then [3, 8.12] implies that

$$
\begin{equation*}
s_{n+m, k}=s_{n, k}\left(C_{f}\right)^{m} \tag{2}
\end{equation*}
$$

and because $a_{0} \neq 0$ an induction argument shows this to be valid for any $m \in \mathbb{Z}$.

2. AN IDENTITY

If $f(t)=t^{2}-\sigma t-\rho \in \mathbb{K}_{0}[t]$ and if $\left(s_{i}\right)_{i \in \mathbb{Z}}$ is an f-sequence, then identities like

$$
\begin{equation*}
s_{n+m}=\rho s_{n} u_{m-1}+s_{n+1} u_{m} \quad(m, n \in \mathbb{N}) \tag{3}
\end{equation*}
$$

are well-known: see, for example, [2, Lemma 2] or [9, Formula 8]. Proposition 2.2 extends this to the case where $f(t)$ has degree $k \geq 2$. Firstly a lemma.
Lemma 2.1: Let $f(t)=t^{k}-a_{k-1} t^{k-1}-\cdots-a_{1} t-a_{0} \in \mathbb{K}_{0}[t]$. Then

$$
C_{f} A_{f}=A_{f}\left(C_{f}\right)^{\mathrm{T}}
$$

Proof: Write $C_{f}=K+L$ where

$$
K=\left[\begin{array}{cccc}
0 & \cdots & 0 & 0 \\
1 & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & 0
\end{array}\right] \quad \text { and } \quad L=\left[\begin{array}{cccc}
0 & 0 & \cdots & a_{0} \\
0 & 0 & \cdots & a_{1} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{k-1}
\end{array}\right]
$$

Then

$$
K A_{f}=\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & a_{0} \\
\cdots & \cdots & \ddots & \cdots \\
0 & a_{0} & \cdots & a_{k-2}
\end{array}\right]
$$

and $L A_{f}=\left(a_{i-1} a_{j-1}\right)_{i, j}$ are both symmetric. Thus $C_{f} A_{f}=K A_{f}+L A_{f}$ is symmetric, and so $C_{f} A_{f}=\left(C_{f} A_{f}\right)^{\mathrm{T}}=A_{f}\left(C_{f}\right)^{\mathrm{T}}$ because A_{f} is symmetric.
Proposition 2.2: Let $f(t)=t^{k}-a_{k-1} t^{k-1}-\cdots-a_{1} t-a_{0} \in \mathbb{K}_{0}[t]$. Let $\left(s_{i}\right)_{i \in \mathbb{Z}}$ be an f-sequence and let $m, n \in \mathbb{Z}$. Then

$$
s_{n+m}=\boldsymbol{s}_{n, k} A_{f} \boldsymbol{u}_{m-k, k}^{\mathrm{T}} .
$$

Proof: We have

$$
\begin{aligned}
s_{n+m} & =s_{n+m-k, k} \boldsymbol{a}_{0, k}^{\mathrm{T}} \\
& =\boldsymbol{s}_{n+m-k, k} A_{f} \boldsymbol{u}_{0, k}^{\mathrm{T}} \\
& =\boldsymbol{s}_{n, k}\left(C_{f}\right)^{m-k} A_{f} \boldsymbol{u}_{0, k}^{\mathrm{T}} \\
& =s_{n, k} A_{f}\left(C_{f}^{\mathrm{T}}\right)^{m-k} \boldsymbol{u}_{0, k}^{\mathrm{T}} \\
& =\boldsymbol{s}_{n, k} A_{f} \boldsymbol{u}_{m-k, k}^{\mathrm{T}} .
\end{aligned}
$$

The third and fifth equalities follow from Equation (2), the fourth from repeated application of Lemma 2.1.
Examples 2.3: (a) Proposition 2.2 gives Formula (3) when $f(t)$ has degree 2.
(b) Let $f(t)=t^{3}-\tau t^{2}-\sigma t-\rho \in \mathbb{K}_{0}[t]$. Take $s_{i}=u_{i}$ in Proposition 2.2; then

$$
u_{n+m}=u_{n+2} u_{m}+\left(\sigma u_{n+1}+\rho u_{n}\right) u_{m-1}+\rho u_{n+1} u_{m-2} .
$$

(c) Let $f(t)=t^{k}-a_{k-1} t^{k-1}-\cdots-a_{1} t-a_{0} \in \mathbb{K}_{0}[t]$. Let $\left(s_{i}\right)_{i \in \mathbb{Z}}$ be an f-sequence in \mathbb{K}; Proposition 2.2 gives

$$
s_{n+m}=\sum_{i=0}^{k-1}\left(\sum_{j=0}^{i} a_{i-j} s_{n+k-i-j}\right) u_{m+i-k} .
$$

3. THE RESTRICTED PERIOD

¿From now on, let \mathbb{F} be a fixed but arbitrary finite field. If $f(t) \in \mathbb{F}_{0}[t]$ has degree $k \geq 2$ then $\operatorname{ord}(f)$ is the least $e \in \mathbb{N}$ such that $f(t)$ divides $t^{e}-1$ (see [3, 3.2]), while if $\mathcal{S}=\left(s_{i}\right)_{i \in \mathbb{Z}}$
is an f-sequence in \mathbb{F} then $z \in \mathbb{Z}$ is a zero index of \mathcal{S} if there exists $\lambda \in \mathbb{F}$ such that $\boldsymbol{s}_{z, k}=$ $(0, \cdots, 0, \lambda)$.

Write $G=G L(k, \mathbb{F})$; then G acts (on the right) on \mathbb{F}^{k}. For $1 \leq i \leq k$ let e_{i} be the k-vector whose $i^{\text {th }}$ entry is 1 and the others 0 . Let $E_{k}=<\boldsymbol{e}_{k}>_{\mathbb{F}}$, the subspace generated by \boldsymbol{e}_{k}. Write

$$
G_{k}=\left\{B \in G: E_{k} B=E_{k}\right\},
$$

the stabilizer in G of E_{k}; then $G_{k} \leq G\left(G_{k}\right.$ is a subgroup of $\left.G\right)$.
The following result is classical, see for example Somer, [6]; Proposition 2.2 is used to give what we believe to be a new proof.
Proposition 3.1: Let $f(t) \in \mathbb{F}_{0}[t]$ be of degree $k \geq 2$ and let $\mathcal{S}=\left(s_{i}\right)_{i \in \mathbb{Z}}$ be an f-sequence in F.
(a) There exists $\alpha(f) \in \mathbb{N}$ such that $d \in \mathbb{Z}$ is a zero index of the unit f-sequence \mathcal{U} if and only if $\alpha(f) \mid d$.
(b) We have $s_{n+\alpha(f)}=\mu s_{n}$ for all $n \in \mathbb{Z}$, where $\mu=u_{\alpha(f)+k-1}$.
(c) We have $\operatorname{ord}(f)=\alpha(f) \operatorname{ord}(\mu)$.
(d) Let d be the least positive integer such that C_{f}^{d} is a scalar matrix. Then $d=\alpha(f)$ and $C_{f}^{d}=\mu I$.
(e) Suppose $f(t)$ is the minimum polynomial of \mathcal{S}. Let δ be the least positive integer such that there exists $\gamma \in \mathbb{F}$ with $s_{n+\delta}=\gamma s_{n}$ for all $n \in \mathbb{Z}$. Then $\delta=\alpha(f)$.

The integer $\alpha(f)$ above is known as the restricted period of \mathcal{U}.
Proof: Write $H=<C_{f}>\leq G$ and $H_{k}=H \cap G_{k}$. Write $\alpha(f)$ for the index $\left|H: H_{k}\right|$; then $H_{k}=<C_{f}^{\alpha(f)}>$. If $\boldsymbol{\kappa}=(0, \cdots, 0, \kappa) \in \mathbb{F}^{k} \backslash\{\mathbf{0}\}$ then $\boldsymbol{\kappa} C_{f}^{j}$ has the form $(0, \cdots, 0, \lambda)$ if and only if $C_{f}^{j} \in H_{k}$, which holds if and only if $\alpha(f) \mid j$.
(a) If $d, n \in \mathbb{Z}$ then Equation (2) gives

$$
\boldsymbol{u}_{d, k}=\boldsymbol{u}_{n, k}\left(C_{f}\right)^{d-n}
$$

Because $n=0$ is a zero index of \mathcal{U} then d is a zero index if and only if $\left(C_{f}\right)^{d} \in H_{k}$, which holds if and only if $\alpha(f) \mid d$.
(b) By Proposition 2.2,

$$
\begin{aligned}
s_{n+\alpha(f)} & =s_{n-k+\alpha(f)+k} \\
& =s_{n-k, k} A_{f} \boldsymbol{u}_{\alpha(f), k}^{\mathrm{T}} \\
& =\boldsymbol{s}_{n-k, k} A_{f}(0, \cdots, 0, \mu)^{\mathrm{T}} \\
& =s_{n-k, k} \mu\left(a_{0}, \cdots, a_{k-1}\right)^{\mathrm{T}} \\
& =\mu s_{n} .
\end{aligned}
$$

(c) By (b), $u_{n+\operatorname{ord}(\mu) \alpha(f)}=\mu^{\operatorname{ord}(\mu)} u_{n}=u_{n}$, and so $\operatorname{ord}(f) \mid \operatorname{ord}(\mu) \alpha(f)$ because \mathcal{U} has least period $\operatorname{ord}(f)$ by $[3,8.27]$. By (a), ord $(f)=r \alpha(f)$ for some $r \in \mathbb{N}$. But $u_{k-1+r \alpha(f)}=$ $\mu^{r} u_{k-1}=\mu^{r}$, and $\mu^{r} \neq 1$ unless $\operatorname{ord}(\mu) \mid r$. The assertion follows.
(d) If $B=\left(b_{i j}\right) \in G L(k, \mathbb{F})$ then $(0, \cdots, 0, \lambda) B=\lambda\left(b_{k 1}, \cdots, b_{k k}\right)$ and so $B \in G_{k}$ if and only if $b_{k 1}=\cdots=b_{k, k-1}=0, b_{k k} \neq 0$. Thus $C_{f}^{d} \in H_{k}$, whence $\alpha(f) \mid d$. By Equation (2) and (b), $\boldsymbol{s}_{n, k}\left(C_{f}\right)^{\alpha(f)}=\boldsymbol{s}_{n+\alpha(f), k}=\mu \boldsymbol{s}_{n, k}$ for all choices of f-sequence $\left(s_{i}\right)_{i \in \mathbb{Z}}$. Take $\boldsymbol{s}_{n, k}$ successively as e_{1}, \cdots, e_{k}. Then for $i=1, \cdots, k$ the $i^{\text {th }}$ row of $C_{f}^{\alpha(f)}$ must be μe_{i}. Thus $C_{f}^{\alpha(f)}=\mu I$ and so $d \leq \alpha(f)$.
(e) By (b), $\delta \leq \alpha(f)$. If $n \in \mathbb{Z}$ then $\boldsymbol{s}_{n+\delta, k}=\boldsymbol{s}_{n, k}\left(C_{f}\right)^{\delta}$ by Equation (2), while $\boldsymbol{s}_{n+\delta, k}=\gamma \boldsymbol{s}_{n, k}$ by hypothesis, and so

$$
\left(C_{f}^{\delta}-\gamma I_{k}\right) \boldsymbol{s}_{n, k}=\mathbf{0}
$$

By $[3,8.51], s_{0, k}, \cdots, s_{k-1, k}$ are linearly independent because $f(t)$ is the minimum polynomial of \mathcal{S}. Thus the $k \times k$ matrix $\left(C_{f}^{\delta}-\gamma I_{k}\right)$ has nullity k and so $C_{f}^{\delta}=\gamma I_{k}$. Now $\delta=\alpha(f)$ by (d).

The next result is related to results in Somer [7, 8]. We thank Professor Lawrence Somer for greatly improving our proof, and for permission to include his proof here.
Proposition 3.2: Let $f(t) \in \mathbb{F}_{0}[t]$ be of degree $k \geq 2$. Let $\mathcal{S}=\left(s_{i}\right)_{i \in \mathbb{Z}}$ be an f-sequence in \mathbb{F}^{*}, and suppose that f is the minimum polynomial of \mathcal{S}. Let \mathcal{S}^{\prime} be the sequence $\left(s_{i+1} / s_{i}\right)_{i \in \mathbb{Z}}$. Then \mathcal{S}^{\prime} has least period $\alpha(f)$.

Proof: (Somer) By Proposition 3.1(b),

$$
s_{n+1} / s_{n}=s_{n+\alpha(f)+1} / s_{n+\alpha(f)} \quad \text { for all } n \in \mathbb{Z}
$$

and so \mathcal{S}^{\prime} is periodic with least period at most $\alpha(f)$.
On the other hand, let $b \in \mathbb{N}$ be such that

$$
\begin{equation*}
s_{n+1} / s_{n}=s_{n+b+1} / s_{n+b} \quad \text { for all } n \in \mathbb{Z} \tag{4}
\end{equation*}
$$

Because $s_{i} \in \mathbb{F}^{*}$ for all i then $s_{b}=\gamma s_{0}$ for some $\gamma \in \mathbb{F}^{*}$. Then $s_{b+1}=\gamma s_{1}$ by (4) and by induction $s_{b+n}=\gamma s_{n}$ for all $n \in \mathbb{Z}$. But now $\alpha(f) \leq b$ by Proposition 3.1(e). The result follows.
Proposition 3.3: Let $f(t) \in \mathbb{F}_{0}[t]$ be irreducible over \mathbb{F} of degree $k \geq 2$. Let \mathbb{L} be a splitting field of f over \mathbb{F} and let $\omega \in \mathbb{L}$ be a root of f. Then $\alpha(f)$ coincides with the order of $\omega \mathbb{F}^{*}$ considered as an element of the quotient group $\mathbb{L}^{*} / \mathbb{F}^{*}$.

Proof: Write $\bar{\omega}=\omega \mathbb{F}^{*} \in \mathbb{L}^{*} / \mathbb{F}^{*}$. By $[3,3.3]$, ord $(f)=\operatorname{ord}(\omega)$ while $\operatorname{ord}(f)=\alpha(f) \operatorname{ord}(\mu)$ by Proposition 3.1(c). Thus $\operatorname{ord}(\mu) \mid \operatorname{ord}(\omega)$. Now $\omega \in \mathbb{L}^{*}$ while $\mu \in \mathbb{F}^{*} \leq \mathbb{L}^{*}$. The finite cyclic group \mathbb{L}^{*} has a unique subgroup of each possible order, so $\left\langle\mu>\leq<\omega>\cap \mathbb{F}^{*}\right.$. But

$$
<\bar{\omega}>=<\omega>\mathbb{F}^{*} / \mathbb{F}^{*} \simeq<\omega>/<\omega>\cap \mathbb{F}^{*},
$$

and so $\operatorname{ord}(\bar{\omega}) \mid(\operatorname{ord}(f) / \operatorname{ord}(\mu))$. Thus ord $(\bar{\omega}) \mid \alpha(f)$.
Suppose that \mathbb{F} has order q. Now $\omega^{\operatorname{ord}(\bar{\omega})}=a \in \mathbb{F}^{*}$ while $a^{q}=a$ by [3, 2.3]. By [3, 2.14], the roots of f are $\omega, \omega^{q}, \cdots, \omega^{q^{k-1}}$, while by $[3,8.21]$ there exist $\lambda_{0}, \cdots, \lambda_{k-1} \in \mathbb{L}$ such that

$$
u_{i}=\sum_{j=0}^{k-1} \lambda_{j}\left(\omega^{q^{j}}\right)^{i}, \quad i \in \mathbb{Z}
$$

But then

$$
u_{i+\operatorname{ord}(\bar{\omega})}=\sum_{j=0}^{k-1} \lambda_{j}\left(\omega^{q^{j}}\right)^{(i+\operatorname{ord}(\bar{\omega}))}=a u_{i}, \quad i \in \mathbb{Z}
$$

and so $u_{\operatorname{ord}(\bar{\omega})}=u_{0}=0, \cdots, u_{\operatorname{ord}(\bar{\omega})+k-2}=u_{k-2}=0$. Thus $\operatorname{ord}(\bar{\omega})$ is a zero index of \mathcal{U} and so $\alpha(f) \mid \operatorname{ord}(\bar{\omega})$ by Proposition 3.1(a).

ACKNOWLEDGMENTS

We thank the referee for helpful comments. The authors are partially supported by the "Centro de Estruturas Lineares e Combinatórias, Universidade de Lisboa".

REFERENCES

[1] Marjorie Bicknell-Johnson and Colin Paul Spears. "Classes of Identities for the Generalized Fibonacci Numbers $G_{n}=G_{n-1}+G_{n-c}$ from Matrices with Constant Valued Determinants." Fibonacci Quarterly 34 (1996): 121-128.
[2] Peter Bundschuh and Peter Jau-Shyong Shiue. "A Generalization of a Paper by D.D. Wall." Atti della Accademia Nazionale dei Lincei, Rendiconti - Classe di Scienze Fisiche, Matematiche e Naturali 56 (1974): 135-144.
[3] Rudolf Lidl and Harald Niederreiter. Finite fields. Addison-Wesley, 1983; second edition, Cambridge University Press, Cambridge, 1997.
[4] Harald Niederreiter. "On the Cycle Structure of Linear Recurring Sequences." Math. Scand. 38 (1976): 53-77.
[5] E.S. Selmer. Linear Recurrence Relations over Finite Fields, mimeographed notes, University of Bergen, 1966.
[6] Lawrence Somer. "Periodicity Properties of k th order Linear Recurrences with Irreducible Characteristic Polynomial over a Finite Field." Finite Fields, Coding Theory and Advances in Communications and Computing. Edited by Gary Mullen and Peter Jau-Shyong Shiue, Marcell Dekker Inc., 1993, pp. 195-207.
[7] Lawrence Somer. "The Divisibility and Modular Properties of k th-order Linear Recurrences over the Ring of Integers of an Algebraic Number Field with respect to Prime Ideals." Ph.D. thesis, University of Illinois at Urbana-Champaign, 1985.
[8] Lawrence Somer. "The Fibonacci Ratios F_{k+1} / F_{k} Modulo p." Fibonacci Quarterly 13 (1975): 322-324.
[9] S. Vajda. Fibonacci and Lucas Numbers, and the Golden Section. Ellis Horwood Limited, Chichester, 1989.
[10] Marcellus E. Waddill. "Using Matrix Techniques to Establish Properties of kth-order Linear Recursive Sequences." Proceedings of the Fifth International Conference on Fibonacci Numbers and their Applications, Volume 5. Edited by Bergum, G.E. et al. University of St. Andrews, Scotland, July 20-24, 1992. Dordrecht: Kluwer Academic Publishers, 1993, 601-615.

AMS Classification Numbers: 11B37, 11B39

