MATRICES AND LINEAR RECURRENCES IN FINITE FIELDS

Owen J. Brison

Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Bloco C6, Piso 2, Campo Grande, 1749-016 LISBOA, PORTUGAL e-mail: brison@ptmat.fc.ul.pt

J. Eurico Nogueira

Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2825-114 MONTE DA CAPARICA, PORTUGAL e-mail: jen@fct.unl.pt (Submitted August 2003-Final Revision February 2004)

ABSTRACT

Linear recurring sequences of order k are investigated using matrix techniques and some finite group theory. An identity, well-known when k = 2, is extended to general k and is used to study the restricted period of a linear recurring sequence over a finite field.

1. INTRODUCTION

Matrix techniques have been used by a number of authors to investigate linear recurring sequences; see for example [1], [3], [4], [5] and [10]. Here we use matrices and some finite group theory to study linear recurring sequences of order $k \ge 2$. An identity, well-known in the case k = 2, is proved for general k over an arbitrary field (Proposition 2.2) and is used to study the restricted period of a linear recurring sequence over a finite field.

In what follows, \mathbb{K} denotes a field, $\mathbb{K}^* = \mathbb{K} \setminus \{0\}$ its multiplicative group, k an integer with $k \geq 2$, \mathbb{K}^k the space of row vectors of length k over \mathbb{K} , $\mathbb{K}[t]$ the ring of polynomials over \mathbb{K} and

$$\mathbb{K}_0[t] = \{ f(t) \in \mathbb{K}[t] : f(0) \neq 0 \}.$$

Suppose that $j, k \in \mathbb{N}$. If $a_j, \dots, a_{j+k-1} \in \mathbb{K}$, write

$$\boldsymbol{a}_{j,k} = (a_j, a_{j+1}, \cdots, a_{j+k-1}) \in \mathbb{K}^k.$$

Let $f(t) = t^k - a_{k-1}t^{k-1} - \cdots - a_1t - a_0 \in \mathbb{K}_0[t]$. Then $\mathcal{S} = (s_j)_{j \in \mathbb{Z}}$, with $s_j \in \mathbb{K}$ for all j, is an *f*-sequence in \mathbb{K} if it satisfies the linear recurrence relation

$$s_{i+k} = \sum_{j=0}^{k-1} s_{i+j} a_j = \mathbf{s}_{i,k} \, \mathbf{a}_{0,k}^{\mathrm{T}}$$
(1)

for all $i \in \mathbb{Z}$; f(t) is the characteristic polynomial of (1). The minimal polynomial of S is the characteristic polynomial of the linear recurrence relation of least possible order satisfied by S: see [3, 8.42]. We fix the notation $\mathcal{U} = (u_i)_{i \in \mathbb{Z}}$ for the unit *f*-sequence, which is the *f*-sequence determined by the vector

$$oldsymbol{u}_{0,k}=(0,\cdots,0,1)\in\mathbb{K}^k.$$

Write $A_f = (\alpha_{ij})$ for the $k \times k$ matrix over \mathbb{K} in which $\alpha_{ij} = 0$ if $i + j \leq k$ and $\alpha_{ij} = a_{i+j-k-1}$ if $i + j \geq k + 1$. Thus

$$A_f = \begin{bmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 0 & 0 & \cdots & a_0 & a_1 \\ \dots & \dots & \ddots & \dots & \dots \\ 0 & a_0 & \cdots & a_{k-3} & a_{k-2} \\ a_0 & a_1 & \cdots & a_{k-2} & a_{k-1} \end{bmatrix}$$

Write C_f for the $k \times k$ companion matrix over \mathbb{K}

$$C_f = \begin{bmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 1 & 0 & \cdots & 0 & a_1 \\ \cdots & \ddots & \cdots & \cdots \\ 0 & 0 & \ddots & 0 & a_{k-2} \\ 0 & 0 & \cdots & 1 & a_{k-1} \end{bmatrix}.$$

Because $f(t) \in \mathbb{K}_0[t]$ then $a_0 \neq 0$ and $A_f, C_f \in GL(k, \mathbb{K})$, the group of invertible $k \times k$ matrices over \mathbb{K} .

If $(s_i)_{i\in\mathbb{Z}}$ is an f-sequence and if $n\in\mathbb{Z}$ and $m\in\mathbb{N}$ then [3, 8.12] implies that

$$\boldsymbol{s}_{n+m,k} = \boldsymbol{s}_{n,k} (C_f)^m \tag{2}$$

and because $a_0 \neq 0$ an induction argument shows this to be valid for any $m \in \mathbb{Z}$.

2. AN IDENTITY

If $f(t) = t^2 - \sigma t - \rho \in \mathbb{K}_0[t]$ and if $(s_i)_{i \in \mathbb{Z}}$ is an *f*-sequence, then identities like

$$s_{n+m} = \rho s_n u_{m-1} + s_{n+1} u_m \quad (m, n \in \mathbb{N})$$
(3)

are well-known: see, for example, [2, Lemma 2] or [9, Formula 8]. Proposition 2.2 extends this to the case where f(t) has degree $k \ge 2$. Firstly a lemma.

Lemma 2.1: Let $f(t) = t^k - a_{k-1}t^{k-1} - \cdots - a_1t - a_0 \in \mathbb{K}_0[t]$. Then

$$C_f A_f = A_f (C_f)^{\mathrm{T}}.$$

Proof: Write $C_f = K + L$ where

$$K = \begin{bmatrix} 0 & \cdots & 0 & 0 \\ 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 \end{bmatrix} \quad \text{and} \quad L = \begin{bmatrix} 0 & 0 & \cdots & a_0 \\ 0 & 0 & \cdots & a_1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{k-1} \end{bmatrix}.$$

Then

$$KA_f = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & a_0 \\ \cdots & \cdots & \ddots & \cdots \\ 0 & a_0 & \cdots & a_{k-2} \end{bmatrix}$$

and $LA_f = (a_{i-1}a_{j-1})_{i,j}$ are both symmetric. Thus $C_fA_f = KA_f + LA_f$ is symmetric, and so $C_fA_f = (C_fA_f)^T = A_f(C_f)^T$ because A_f is symmetric. \square **Proposition 2.2**: Let $f(t) = t^k - a_{k-1}t^{k-1} - \cdots - a_1t - a_0 \in \mathbb{K}_0[t]$. Let $(s_i)_{i\in\mathbb{Z}}$ be an *f*-sequence and let $m, n \in \mathbb{Z}$. Then

$$s_{n+m} = \boldsymbol{s}_{n,k} A_f \, \boldsymbol{u}_{m-k,k}^{\mathrm{T}}.$$

Proof: We have

$$s_{n+m} = s_{n+m-k,k} a_{0,k}^{T}$$

$$= s_{n+m-k,k} A_{f} u_{0,k}^{T}$$

$$= s_{n,k} (C_{f})^{m-k} A_{f} u_{0,k}^{T}$$

$$= s_{n,k} A_{f} (C_{f}^{T})^{m-k} u_{0,k}^{T}$$

$$= s_{n,k} A_{f} u_{m-k,k}^{T}.$$

The third and fifth equalities follow from Equation (2), the fourth from repeated application of Lemma 2.1. \Box

Examples 2.3: (a) Proposition 2.2 gives Formula (3) when f(t) has degree 2. (b) Let $f(t) = t^3 - \tau t^2 - \sigma t - \rho \in \mathbb{K}_0[t]$. Take $s_i = u_i$ in Proposition 2.2; then

$$u_{n+m} = u_{n+2}u_m + (\sigma u_{n+1} + \rho u_n)u_{m-1} + \rho u_{n+1}u_{m-2}$$

(c) Let $f(t) = t^k - a_{k-1}t^{k-1} - \cdots - a_1t - a_0 \in \mathbb{K}_0[t]$. Let $(s_i)_{i \in \mathbb{Z}}$ be an *f*-sequence in \mathbb{K} ; Proposition 2.2 gives

$$s_{n+m} = \sum_{i=0}^{k-1} \left(\sum_{j=0}^{i} a_{i-j} s_{n+k-i-j} \right) u_{m+i-k}.$$

3. THE RESTRICTED PERIOD

¿From now on, let \mathbb{F} be a fixed but arbitrary finite field. If $f(t) \in \mathbb{F}_0[t]$ has degree $k \geq 2$ then $\operatorname{ord}(f)$ is the least $e \in \mathbb{N}$ such that f(t) divides $t^e - 1$ (see [3, 3.2]), while if $\mathcal{S} = (s_i)_{i \in \mathbb{Z}}$ is an f-sequence in \mathbb{F} then $z \in \mathbb{Z}$ is a zero index of S if there exists $\lambda \in \mathbb{F}$ such that $s_{z,k} = (0, \dots, 0, \lambda)$.

Write $G = GL(k, \mathbb{F})$; then G acts (on the right) on \mathbb{F}^k . For $1 \leq i \leq k$ let e_i be the *k*-vector whose i^{th} entry is 1 and the others 0. Let $E_k = \langle e_k \rangle_{\mathbb{F}}$, the subspace generated by e_k . Write

$$G_k = \{ B \in G : E_k B = E_k \},\$$

the stabilizer in G of E_k ; then $G_k \leq G$ (G_k is a subgroup of G).

The following result is classical, see for example Somer, [6]; Proposition 2.2 is used to give what we believe to be a new proof.

Proposition 3.1: Let $f(t) \in \mathbb{F}_0[t]$ be of degree $k \ge 2$ and let $\mathcal{S} = (s_i)_{i \in \mathbb{Z}}$ be an *f*-sequence in \mathbb{F} .

(a) There exists $\alpha(f) \in \mathbb{N}$ such that $d \in \mathbb{Z}$ is a zero index of the unit f-sequence \mathcal{U} if and only if $\alpha(f) \mid d$.

(b) We have $s_{n+\alpha(f)} = \mu s_n$ for all $n \in \mathbb{Z}$, where $\mu = u_{\alpha(f)+k-1}$.

(c) We have $\operatorname{ord}(f) = \alpha(f)\operatorname{ord}(\mu)$.

(d) Let d be the least positive integer such that C_f^d is a scalar matrix. Then $d = \alpha(f)$ and $C_f^d = \mu I$.

(e) Suppose f(t) is the minimum polynomial of S. Let δ be the least positive integer such that there exists $\gamma \in \mathbb{F}$ with $s_{n+\delta} = \gamma s_n$ for all $n \in \mathbb{Z}$. Then $\delta = \alpha(f)$.

The integer $\alpha(f)$ above is known as the *restricted period* of \mathcal{U} .

Proof: Write $H = \langle C_f \rangle \leq G$ and $H_k = H \cap G_k$. Write $\alpha(f)$ for the index $|H:H_k|$; then $H_k = \langle C_f^{\alpha(f)} \rangle$. If $\kappa = (0, \dots, 0, \kappa) \in \mathbb{F}^k \setminus \{\mathbf{0}\}$ then κC_f^j has the form $(0, \dots, 0, \lambda)$ if and only if $C_f^j \in H_k$, which holds if and only if $\alpha(f) \mid j$. (a) If $d, n \in \mathbb{Z}$ then Equation (2) gives

$$\boldsymbol{u}_{d,k} = \boldsymbol{u}_{n,k} \, (C_f)^{d-n}.$$

Because n = 0 is a zero index of \mathcal{U} then d is a zero index if and only if $(C_f)^d \in H_k$, which holds if and only if $\alpha(f) \mid d$.

(b) By Proposition 2.2,

$$s_{n+\alpha(f)} = s_{n-k+\alpha(f)+k}$$

= $s_{n-k,k}A_f \boldsymbol{u}_{\alpha(f),k}^{\mathrm{T}}$
= $s_{n-k,k}A_f (0, \cdots, 0, \mu)^{\mathrm{T}}$
= $s_{n-k,k}\mu(a_0, \cdots, a_{k-1})^{\mathrm{T}}$
= μs_n .

(c) By (b), $u_{n+\operatorname{ord}(\mu)\alpha(f)} = \mu^{\operatorname{ord}(\mu)}u_n = u_n$, and so $\operatorname{ord}(f) |\operatorname{ord}(\mu)\alpha(f)$ because \mathcal{U} has least period $\operatorname{ord}(f)$ by [3, 8.27]. By (a), $\operatorname{ord}(f) = r\alpha(f)$ for some $r \in \mathbb{N}$. But $u_{k-1+r\alpha(f)} = \mu^r u_{k-1} = \mu^r$, and $\mu^r \neq 1$ unless $\operatorname{ord}(\mu) | r$. The assertion follows.

(d) If $B = (b_{ij}) \in GL(k, \mathbb{F})$ then $(0, \dots, 0, \lambda)B = \lambda(b_{k1}, \dots, b_{kk})$ and so $B \in G_k$ if and only if $b_{k1} = \dots = b_{k,k-1} = 0, b_{kk} \neq 0$. Thus $C_f^d \in H_k$, whence $\alpha(f) \mid d$. By Equation (2) and (b),

 $s_{n,k}(C_f)^{\alpha(f)} = s_{n+\alpha(f),k} = \mu s_{n,k}$ for all choices of f-sequence $(s_i)_{i\in\mathbb{Z}}$. Take $s_{n,k}$ successively as e_1, \dots, e_k . Then for $i = 1, \dots, k$ the *i*th row of $C_f^{\alpha(f)}$ must be μe_i . Thus $C_f^{\alpha(f)} = \mu I$ and so $d \leq \alpha(f)$.

(e) By (b), $\delta \leq \alpha(f)$. If $n \in \mathbb{Z}$ then $s_{n+\delta,k} = s_{n,k}(C_f)^{\delta}$ by Equation (2), while $s_{n+\delta,k} = \gamma s_{n,k}$ by hypothesis, and so

$$(C_f^{\delta} - \gamma I_k) \boldsymbol{s}_{n,k} = \boldsymbol{0}.$$

By [3, 8.51], $\mathbf{s}_{0,k}, \dots, \mathbf{s}_{k-1,k}$ are linearly independent because f(t) is the minimum polynomial of \mathcal{S} . Thus the $k \times k$ matrix $(C_f^{\delta} - \gamma I_k)$ has nullity k and so $C_f^{\delta} = \gamma I_k$. Now $\delta = \alpha(f)$ by (d). \Box

The next result is related to results in Somer [7, 8]. We thank Professor Lawrence Somer for greatly improving our proof, and for permission to include his proof here.

Proposition 3.2: Let $f(t) \in \mathbb{F}_0[t]$ be of degree $k \geq 2$. Let $\mathcal{S} = (s_i)_{i \in \mathbb{Z}}$ be an f-sequence in \mathbb{F}^* , and suppose that f is the minimum polynomial of \mathcal{S} . Let \mathcal{S}' be the sequence $(s_{i+1}/s_i)_{i \in \mathbb{Z}}$. Then \mathcal{S}' has least period $\alpha(f)$.

Proof: (Somer) By Proposition 3.1(b),

$$s_{n+1}/s_n = s_{n+\alpha(f)+1}/s_{n+\alpha(f)}$$
 for all $n \in \mathbb{Z}$,

and so \mathcal{S}' is periodic with least period at most $\alpha(f)$.

On the other hand, let $b \in \mathbb{N}$ be such that

$$s_{n+1}/s_n = s_{n+b+1}/s_{n+b} \quad \text{for all } n \in \mathbb{Z}.$$
(4)

Because $s_i \in \mathbb{F}^*$ for all *i* then $s_b = \gamma s_0$ for some $\gamma \in \mathbb{F}^*$. Then $s_{b+1} = \gamma s_1$ by (4) and by induction $s_{b+n} = \gamma s_n$ for all $n \in \mathbb{Z}$. But now $\alpha(f) \leq b$ by Proposition 3.1(e). The result follows. \Box

Proposition 3.3: Let $f(t) \in \mathbb{F}_0[t]$ be irreducible over \mathbb{F} of degree $k \geq 2$. Let \mathbb{L} be a splitting field of f over \mathbb{F} and let $\omega \in \mathbb{L}$ be a root of f. Then $\alpha(f)$ coincides with the order of $\omega \mathbb{F}^*$ considered as an element of the quotient group $\mathbb{L}^*/\mathbb{F}^*$.

Proof: Write $\overline{\omega} = \omega \mathbb{F}^* \in \mathbb{L}^* / \mathbb{F}^*$. By [3, 3.3], $\operatorname{ord}(f) = \operatorname{ord}(\omega)$ while $\operatorname{ord}(f) = \alpha(f) \operatorname{ord}(\mu)$ by Proposition 3.1(c). Thus $\operatorname{ord}(\mu) |\operatorname{ord}(\omega)$. Now $\omega \in \mathbb{L}^*$ while $\mu \in \mathbb{F}^* \leq \mathbb{L}^*$. The finite cyclic group \mathbb{L}^* has a unique subgroup of each possible order, so $\langle \mu \rangle \leq \langle \omega \rangle \cap \mathbb{F}^*$. But

$$<\overline{\omega}>=<\omega>\mathbb{F}^*/\mathbb{F}^*\simeq<\omega>/<\omega>\cap\mathbb{F}^*,$$

and so $\operatorname{ord}(\overline{\omega}) \mid (\operatorname{ord}(f)/\operatorname{ord}(\mu))$. Thus $\operatorname{ord}(\overline{\omega}) \mid \alpha(f)$.

Suppose that \mathbb{F} has order q. Now $\omega^{\operatorname{ord}(\overline{\omega})} = a \in \mathbb{F}^*$ while $a^q = a$ by [3, 2.3]. By [3, 2.14], the roots of f are $\omega, \omega^q, \cdots, \omega^{q^{k-1}}$, while by [3, 8.21] there exist $\lambda_0, \cdots, \lambda_{k-1} \in \mathbb{L}$ such that

$$u_i = \sum_{j=0}^{k-1} \lambda_j (\omega^{q^j})^i, \quad i \in \mathbb{Z}.$$

But then

$$u_{i+\operatorname{ord}(\overline{\omega})} = \sum_{j=0}^{k-1} \lambda_j(\omega^{q^j})^{(i+\operatorname{ord}(\overline{\omega}))} = au_i, \ i \in \mathbb{Z},$$

and so $u_{\operatorname{ord}(\overline{\omega})} = u_0 = 0, \cdots, u_{\operatorname{ord}(\overline{\omega})+k-2} = u_{k-2} = 0$. Thus $\operatorname{ord}(\overline{\omega})$ is a zero index of \mathcal{U} and so $\alpha(f) |\operatorname{ord}(\overline{\omega})$ by Proposition 3.1(a). \Box

ACKNOWLEDGMENTS

We thank the referee for helpful comments. The authors are partially supported by the "Centro de Estruturas Lineares e Combinatórias, Universidade de Lisboa".

REFERENCES

- [1] Marjorie Bicknell-Johnson and Colin Paul Spears. "Classes of Identities for the Generalized Fibonacci Numbers $G_n = G_{n-1} + G_{n-c}$ from Matrices with Constant Valued Determinants." Fibonacci Quarterly **34** (1996): 121-128.
- [2] Peter Bundschuh and Peter Jau-Shyong Shiue. "A Generalization of a Paper by D.D. Wall." Atti della Accademia Nazionale dei Lincei, Rendiconti - Classe di Scienze Fisiche, Matematiche e Naturali 56 (1974): 135-144.
- [3] Rudolf Lidl and Harald Niederreiter. *Finite fields*. Addison-Wesley, 1983; second edition, Cambridge University Press, Cambridge, 1997.
- [4] Harald Niederreiter. "On the Cycle Structure of Linear Recurring Sequences." Math. Scand. 38 (1976): 53-77.
- [5] E.S. Selmer. Linear Recurrence Relations over Finite Fields, mimeographed notes, University of Bergen, 1966.
- [6] Lawrence Somer. "Periodicity Properties of kth order Linear Recurrences with Irreducible Characteristic Polynomial over a Finite Field." *Finite Fields, Coding Theory and Ad*vances in Communications and Computing. Edited by Gary Mullen and Peter Jau-Shyong Shiue, Marcell Dekker Inc., 1993, pp. 195 - 207.
- [7] Lawrence Somer. "The Divisibility and Modular Properties of *k*th-order Linear Recurrences over the Ring of Integers of an Algebraic Number Field with respect to Prime Ideals." Ph.D. thesis, University of Illinois at Urbana-Champaign, 1985.
- [8] Lawrence Somer. "The Fibonacci Ratios F_{k+1}/F_k Modulo p." Fibonacci Quarterly 13 (1975): 322-324.
- [9] S. Vajda. Fibonacci and Lucas Numbers, and the Golden Section. Ellis Horwood Limited, Chichester, 1989.
- [10] Marcellus E. Waddill. "Using Matrix Techniques to Establish Properties of kth-order Linear Recursive Sequences." *Proceedings of the Fifth International Conference on Fibonacci Numbers and their Applications*, Volume 5. Edited by Bergum, G.E. et al. University of St. Andrews, Scotland, July 20-24, 1992. Dordrecht: Kluwer Academic Publishers, 1993, 601-615.

AMS Classification Numbers: 11B37, 11B39

 \mathbf{X} \mathbf{X} \mathbf{X}