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ABSTRACT

New results about certain sums Sn(k) of products of the Lucas numbers are derived. These
sums are related to the generating function of the k-th powers of the Fibonacci numbers. The
sums for Sn(k) are expressed by the binomial and the Fibonomial coefficients. Proofs of these
formulas are based on a special inverse formula.

1. INTRODUCTION

Generating functions are very helpful in finding many important relations for sequences
of integers. Many of these identities for the Fibonacci numbers Fn and Lucas numbers Ln

were found by simple manipulation of the various generating functions. Our approach to the
problem is rather different. This paper is devoted to certain generalizations of the well–known
formulas for the Fibonacci and Lucas numbers (see [8] pp. 179–183), for example

n∑
i=0

(−1)iLn−2i = 2Fn+1 . (1)

In the past much attention has been focused on the generating function fk(x) =∑∞
n=0 F k

nxn for the k-th powers of Fn. In [4] Riordan found the general recurrence for fk(x)
considering the initial obsolete conditions F0 = F1 = 1. We can rewrite his result with initial
conditions F0 = 0, F1 = 1 as

(1− Lkx + (−1)kx2)fk(x) = x + kx

bk/2c∑
i=1

Akifk−2i(x(−1)i) ,

where bk
2 c is the integer part of k

2 and Aki are integers given by the equality Aki = aki

i .
Riordan showed that the numbers aki satisfy the relation

1
(1− x− x2)i

=
∞∑

k=2i

akix
k−2i .

Recently Dujella in [2] discovered a more elegant way to compute aki

aki =
bk/2c∑
i=1

(
k −m− 1

m− 1

)(
m

i

)
1
m

and published a bijective proof of Riordan’s theorem using the Morse code interpretation.
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Carlitz in [1] and Horadam in [3] generalized Riordan’s result and found similar recurrences
for the generating functions of different types of generalized Fibonacci numbers. They found
closed form for the polynomial Nk(x) in the numerator and the polynomial Dk(x) in the
denominator of the generating functions.

As a special case of Horadam’s result it is possible to get the following formula for the
generating function of an odd integer powers of Fibonacci numbers

fk(x) =

∑k
i=0

∑i
j=0(−1)

j(j+1)
2

[
k + 1

j

]
F k

i−j xi

∑k+1
i=0 (−1)

i(i+1)
2

[
k + 1

i

]
xi

, (2)

where
[

n
k

]
are the so-called Fibonomial coefficients defined by[

n
k

]
=

FnFn−1 · · ·Fn−k+1

F1F2 · · ·Fk
,

[
n
0

]
= 1 .

Applying Carlitz’ approach, Shannon obtained in [6] some special results for the numerator and
the denominator in the expression of the generating function fk(x). Later Stănică extended
in [7] Horadam’s results giving also some new formulas for weighted cases.

It is easy to obtain for any odd integer k that

fk(x) = 5−
k−1
2

k−1
2∑

j=0

(
k

j

)
Fk−2jx

1− (−1)jLk−2jx− x2
(3)

after simplification of one of Shannon’s results.
As k is an odd positive integer, the denominator Dk+1(x) is a polynomial of even degree

k + 1 and the relation

Dk+1(x) =

k−1
2∏

j=0

(1− (−1)jLk−2jx− x2)

holds. Thus, the coefficients of the powers of x in Dk+1(x) include the following sums of
products of the Lucas numbers

k−1
2∑

in=0

k−1
2∑

in−1=in+1

· · ·

k−1
2∑

in−2=in−1+1

(−1)i1+i2+···+in

n∏
j=1

Lk−2 ij
.

Combining (2) and (3) we will find some new results about these sums with the help of
the Fibonomial coefficients.

2. THE MAIN RESULT

Define the sequence {Sn(k)}∞n=0 for any odd positive integer k in the following way:

S0(k) = 1 , S1(k) =

k−1
2∑

i1=0

(−1)i1Lk−2 i1
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and

Sn(k) =

k−1
2∑

in=0

k−1
2∑

in−1=in+1

· · ·

k−1
2∑

i1=i2+1

(−1)i1+i2+···+in

n∏
j=1

Lk−2 ij
(4)

for any positive integer n > 1.
The main result about these sums is given in the next theorem.

Theorem 1: Let k be any odd positive integer and n be any positive integer. Then

S2n−1(k) =
n∑

i=1

(−1)(i−1)(2i+1)

((k+3
2 − n− i

n− i

)
+

(k+1
2 − n− i

n− i− 1

)) [
k + 1
2i− 1

]
and

S2(n−1)(k) =
n∑

i=1

(−1)(i+1)(2i−1)

((k+5
2 − n− i

n− i

)
+

(k+3
2 − n− i

n− i− 1

)) [
k + 1

2(i− 1)

]
.

3. THE PRELIMINARY RESULTS

Let {Gn} be a generalized Fibonacci sequence, which obeys the recurrence relation Gn+2 =
Gn + Gn+1 with arbitrary seeds G0 and G1. This leads to the generalized Binet formula

Gn = Aαn + Bβn, where α = (1 +
√

5)/2, β = (1−
√

5)/2 .

There are many identities for the generalized Fibonacci numbers Gn (see e. g. [8]). We will
need the following special identities which are generalizations of (1).
Theorem 2: Let a, p 6= 0, q be arbitrary integers and n be a nonnegative integer. Then

n∑
i=a

Gpi+q =
Gp(n+1)+q + (−1)p+1Gpn+q + (−1)pGp(a−1)+q −Gpa+q

1 + (−1)p − Lp
(5)

and

n∑
i=a

(−1)iGpi+q = (6)

=
(−1)nGp(n+1)+q + (−1)n+pGpn+q + (−1)aGpa+q + (−1)a+pGp(a−1)+q

1 + (−1)p + Lp
.

Proof: Using the generalized Binet formula we get immediately (5) and (6).
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Theorem 3: Let a, p 6= 0, q be arbitrary integers and n be a nonnegative integer. Then

n∑
i=a

iGpi+q =
nGp(n+2)+q −Gp(n−1)+q − (n + 1 + 2n(−1)p)Gp(n+1)+q

(1 + (−1)p − Lp)2

+
(n + 2(−1)p(n + 1))Gpn+q(n + 1)

(1 + (−1)p − Lp)2
(7)

+
aGp(a−2)+q − (a− 1)Gp(a+1)+q

(1 + (−1)p − Lp)2

+
(a + 2(a− 1)(−1)p)Gpa+q − (a− 1 + 2a(−1)p)Gp(a−1)+q

(1 + (−1)p − Lp)2

and

n∑
i=a

(−1)i−1iGpi+q =
n(−1)n+1Gp(n+2)+q − (n + 1 + 2n(−1)p)(−1)nGp(n+1)+q

(1 + (−1)p + Lp)2

+
(−1)n+1

(
(n + 2(−1)p(n + 1))Gpn+q + (n + 1)Gp(n−1)+q

)
(1 + (−1)p + Lp)2

−
(a− 1)(−1)aGp(a+1)+q + (a + 2(a− 1)(−1)p)(−1)aGpa+q

(1 + (−1)p + Lp)2

−
(a− 1 + 2a(−1)p)(−1)aGp(a−1)+q + a(−1)aGp(a−2)+q

(1 + (−1)p + Lp)2
,

which we will denote by (8).
Proof: These identities can be proved in a similar way as Theorem 2 but now using the

identity
n∑

i=a

ixi−1 =
nxn+1 − (n + 1)xn − (a− 1)xa + axa−1

(x− 1)2
,

which is formed by differentiating the formula for the sum of a geometrical progression.
Lemma 1: Let n be any positive integer. Then Sn(k) = 0 for each odd positive integer
k < 2n− 1.

Proof: Rewriting relation (4) in the form

Sn(k) =
∑

i1,i2,...,in

0≤in<in−1<···<i1≤ k−1
2

(−1)i1+i2+···+in

n∏
j=1

Lk−2 ij

the assertion easily follows from the condition

0 ≤ in < in−1 < · · · < i1 ≤
k − 1

2

which does not hold for any values i1, i2, . . . , in if k−1
2 < n− 1.
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Lemma 2: Let k be any odd positive integer and n be any positive integer. Then

(i)
n∑

i=1

(
n + i− k+5

2

n− i

)
S2i−1(k) = 0 for n ≥ k + 3

2

and

(ii)
n∑

i=1

(
n + i− k+7

2

n− i

)
S2(i−1)(k) = 0 for n ≥ k + 5

2
.

Proof: We show the proof of (i). Case (ii) can be proved by the analogous procedure.
Let l be any even positive integer. Thus, each positive integer n ≥ k+3

2 can be written in the
form n = k+3+l

2 . Then for the sum in (i) the following holds
k+l+3

2∑
i=1

(
i + l−2

2
k+l+3

2 − i

)
S2i−1(k) = P (k, l) + Q(k, l) ,

where

P (k, l) =
b k+3

4 c∑
i=1

(
i + l−2

2
k+l+3

2 − i

)
S2i−1(k)

and

Q(k, l) =

k+l+3
2∑

i=b k+3
4 c+1

(
i + l−2

2
k+l+3

2 − i

)
S2i−1(k)

=

k+l+1
2 −b k+3

4 c∑
p=0

( bk+3
4 c+ l

2 + p
k+l+1

2 − bk+3
4 c − p

)
S2b k+3

4 c+1+2p(k) .

It is easily seen that
( i+ l−2

2
k+l+3

2 −i

)
= 0 for i < k+5

2 and therefore P (k, l) = 0 for any k, l. Since for

any nonnegative integer p the equality S2b k+3
4 c+1+2p(k) = 0 is implied by Lemma 1, it follows

that Q(k, l) = 0.

4. THE SPECIAL CASES FOR SMALL n

We now consider the integers Sn(k) for values n = 1, 2 and 3.
Theorem 4: Let k be any odd positive integer. Then

(i) S1(k) =

k−1
2∑

i1=0

(−1)i1Lk−2i1 = Fk+1,

(ii) S2(k) =

k−1
2∑

i2=0

k−1
2∑

i1=i2+1

(−1)i1+i2Lk−2i2Lk−2i1 =
k + 1

2
− Fk+1Fk,
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(iii) S3(k) =

k−1
2∑

i3=0

k−1
2∑

i2=i3+1

k−1
2∑

i1=i2+1

(−1)i3+i2+i1Lk−2i3Lk−2i2Lk−2i1

=
k − 1

2
Fk+1 −

1
2
Fk+1FkFk−1 .

Proof: All cases can be proved with a suitable choice of the parameters in Theorem 2
and Theorem 3:

(i) Putting n = k−1
2 , p = −2, q = k and a = 0 in (5) we have immediately

S1(k) =

k−1
2∑

i1=0

(−1)i1Lk−2i1 = Fk+1 .

(ii) If we take n = k−1
2 , p = −4, q = 2k − 1, a = 0 and use the identities Ln = Fn+2 − Fn−2

and Ln+m + (−1)mLn−m = 5FmFn (see [8], (17b)), we get, using (5),
k−1
2∑

i=0

F2(k−2i)−1 =
1
5
(F2k+3 − F2k−1 + 1) =

1
5
(L2k+1 + 1) = Fk+1Fk.

Setting n = k−1
2 , p = −2, q = k we obtain from (6)

k−1
2∑

i=a

(−1)iLk−2i = (−1)aFk−2a+1 ,

where a is a nonnegative integer.
Finally using the identity LnFn−1 = F2n−1 + (−1)n (see [8], (15b)) we have

S2(k) =

k−1
2∑

i2=0

k−1
2∑

i1=i2+1

(−1)i1+i2Lk−2i2Lk−2i1 = −

k−1
2∑

i2=0

Lk−2i2F(k−2i2)−1

=

k−1
2∑

i2=0

(1− F2(k−2i2)−1) =
k + 1

2
− Fk+1Fk.

(iii) First, we derive several identities which are necessary to prove this case. Setting n = k−1
2 ,

p = −4, q = 2k − 1, a = j + 1 and using the well–known identity Ln = Fn+2 − Fn−2 we
obtain from (5)

k−1
2∑

i=j+1

F2(k−2i)−1 =
1
5
(F2(k−2j)−1 − F2(k−2j)−5 + 1) =

1
5
(L2(k−2j)−3 + 1) .

For a = 0, p = −6, q = 3(k − 1) and n = k−1
2 we get from (6), using the relation

Lm−3 + Lm+3 = 10F3m,
k−1
2∑

j=0

(−1)jL3(k−2j−1) = (−1)
k−1
2 +

1
20

(L3(k−1) + L3(k+1)) = (−1)
k−1
2 +

1
2
F3k .
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For a = 0, p = −2, q = k − 3 and n = k−1
2 the identity

k−1
2∑

j=0

(−1)jLk−2j−3 = 2(−1)
k−1
2 + Fk−2

follows from (6).
Setting a = 0, p = −2, q = k and n = k−1

2 we get from (8) using the identities Lk+Lk+2 =
5Fk+1 and Fk−1 + Fk+1 = Lk (see [8], (5) and (6))

k−1
2∑

i=0

(−1)iiLk−2i =
1
5
((−1)

k−1
2 − Lk) .

From (17a) in [8] we obtain the following special case

Lk−2jL2(k−2j)−3 = L3(k−2j−1) − Lk−2j−3 .

The previous identities enable us to finish the proof of the third case:

S3(k) =

k−1
2∑

i3=0

k−1
2∑

i2=i3+1

k−1
2∑

i1=i2+1

(−1)i3+i2+i1Lk−2i3Lk−2i2Lk−2i1

=

k−1
2∑

i3=0

k−1
2∑

i2=i3+1

(−1)i3+1Lk−2i3Lk−2i2F(k−2i2)−1

=

k−1
2∑

i3=0

k−1
2∑

i2=i3+1

(−1)i3+1Lk−2i3(F2(k−2i2)−1 − 1)

=

k−1
2∑

i3=0

(−1)i3+1Lk−2i3

(
1
5
(L2(k−2i3)−3 + 1)− k − 1

2
+ i3

)

=
(

k − 1
2

− 1
5

) k−1
2∑

i3=0

(−1)i3Lk−2i3 −

k−1
2∑

i3=0

(−1)i3i3Lk−2i3

− 1
5

k−1
2∑

i3=0

(−1)i3L3(k−2i3−1) +
1
5

k−1
2∑

i3=0

(−1)i3Lk−2i3−3

=
k − 1

2
Fk+1 +

1
10

(2Fk − F3k) =
k − 1

2
Fk+1 −

1
2
Fk+1FkFk−1.

Remark: It is known that L−m = (−1)mLm. If we assume that n in (1) is an odd number,
then

n∑
i=0

(−1)iLn−2i =

n−1
2∑

i=0

(−1)iLn−2i +
n∑

i= n+1
2

(−1)iLn−2i = 2

n−1
2∑

i=0

(−1)iLn−2i = 2Fn+1 ,

which shows a relation between case (i) in Theorem 4 and (1).
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The previous method of evaluation of the integers Sn(k) can be used similarly also for
n > 3. Again we only need the identities (5), (6), (7) and (8) for suitable values of the
parameters a, k, p, q. But its concrete realization would be more complicated.

5. THE PROOF OF THE MAIN THEOREM

Relations (2) and (3) which hold for any odd positive integer k lead to

Dk+1(x) =

k−1
2∏

j=0

(1− (−1)jLk−2jx− x2) =
k+1∑
i=0

dk+1,i xi ,

where dk+1,i = (−1)
i(i+1)

2

[
k + 1

i

]
.

After multiplication of all factors in Dk+1(x) it follows that

dk+1,0 = S0(k) = 1 , dk+1,i =
b i

2 c∑
l=0

(k+1
2 − (i− 2l)

l

)
(−1)i+lSi−2l(k) ,

where i = 1, 2, . . . , k + 1.
We can rewrite the last identity into the following two relations for any positive integer n

dk+1,2n−1 =−
n∑

i=1

(
n + i− k+5

2

n− i

)
S2i−1(k) , (9)

dk+1,2(n−1) =
n∑

i=1

(
n + i− k+7

2

n− i

)
S2(i−1)(k) , (10)

with respect to Lemma 2 and the well–known formula
(

r
m

)
= (−1)m

(
m−r−1

m

)
.

Proof of Theorem 1: We have to invert identities (9) and (10) to obtain explicit formulas
for the sums Sn(k). We use the inversion theorem from [5] (see (23), p. 74). Thus,

an =
n∑

i=1

(
n + i + p

n− i

)
bi

holds if and only if

bn =
n∑

i=1

(−1)i+n

((
2n + p

n− i

)
−

(
2n + p

n− i− 1

))
ai , (11)

where p is any integer.
To prove the first equality in Theorem 1 we set an = dk+1,2n−1, bi = −S2i−1(k) and

p = −k+5
2 in (11). Then identity

S2n−1(k) =
n∑

i=1

(−1)n−i+1

((
2n− k+5

2

n− i

)
−

(
2n− k+5

2

n− i− 1

))
dk+1,2i−1

=
n∑

i=1

(−1)1
((k+3

2 − n− i

n− i

)
+

(k+1
2 − n− i

n− i− 1

))
dk+1,2i−1
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holds. Thus,

S2n−1(k) =
n∑

i=1

(−1)(i−1)(2i+1)

((k+3
2 − n− i

n− i

)
+

(k+1
2 − n− i

n− i− 1

)) [
k + 1
2i− 1

]
.

Similarly setting an = dk+1,2(n−1), bi = S2(i−1)(k) and p = −k+7
2 in (11) we get

S2(n−1)(k) =
n∑

i=1

(−1)n−i

((
2n− k+7

2

n− i

)
−

(
2n− k+7

2

n− i− 1

))
dk+1,2(i−1)

=
n∑

i=1

((k+5
2 − n− i

n− i

)
+

(k+3
2 − n− i

n− i− 1

))
dk+1,2(i−1)

=
n∑

i=1

(−1)(i+1)(2i−1)

((k+5
2 − n− i

n− i

)
+

(k+3
2 − n− i

n− i− 1

)) [
k + 1

2(i− 1)

]
.

6. CONCLUSION

The effectiveness of the formulas from Theorem 1 for the computation of Sn(k) is shown
by the following fact. Using the standard PC we have found that the computation of S12(51)
by relation (4) took 26.5 minutes approximately and by Theorem 1 less than a second only.
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