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ABSTRACT

We investigate a kind of q-analogue which involves a unified generalization of Stirling
numbers as a limiting case with q→1. Some basic properties and explicit formulas will be
derived, and certain applications related to previously known results will be discussed.

1. INTRODUCTION

It is known that some previous generalizations of Stirling numbers could be unified by
starting with transformations between generalized factorials involving three arbitrary param-
eters. See the recent paper by Hsu and Shiue [15]; and for some of their combinatorial and
statistical applications refer to Corcino, Hsu, and Tan [9].

Let us denote (t|α)n = t(t − α)...(t − nα + α) for n = 1, 2, ..., and define (t|α)0 =
1. In particular we write (t|1)n = (t)n with (t)0 = 1. The so-called unified gener-
alization of Stirling numbers is a Stirling-type pair

{
S1, S2

}
=
{
S1(n, k), S2(n, k)

}
≡

{S(n, k;α, β, γ), S(n, k;β, α,−γ)} defined by the inverse relations (c.f. [15])

(t|α)n =
n∑

k=0

S1(n, k)(t− γ|β)k (1)

(t|β)n =
n∑

k=0

S2(n, k)(t + γ|α)k (2)

where n ∈ N (the set of nonnegative integers), α, β, and γ are real or complex numbers with
(α, β, γ) 6= (0, 0, 0).

Using Knuth’s convenient notations, we see that the classical Stirling numbers of the first
and second kind as well as the binomial coefficient

(
n
k

)
are given, respectively, by

S(n, k; 1, 0, 0) =
[n
k

]
, S(n, k; 0, 1, 0) =

{n

k

}
, S(n, k; 0, 0, 1) =

(
n

k

)
.

Moreover, as is easily observed, various well-known extensions of Stirling numbers due to
Broder[1], Carlitz [2] [3], Charalambides and Koutras [5], Gould and Hopper [13], Koutras
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[16], Howard [14], Riordan [17], and others can be written as S(n, k;α, β, γ) with suitable
choices of the parameters α, β, and γ (c.f. [15]). However, the weighted Stirling pair of Yu
[19], denoted by {S(n, k, α, β; t), S(n, k, β, α;−t)}, and the one used in the paper-the Stirling-
type pair {S1(n, k), S2(n, k)} of Hsu and Shiue [15], are exactly the same pair of numbers but
are defined in different ways. The former is defined by means of vertical generating functions

(1 + αx)t/α

[
(1 + αx)β/α − 1

β

]k

= k!
∞∑

n=0

S(n, k, α, β; t)
xn

n!

1
(1 + αx)t/α

[
(1 + βx)α/β − 1

α

]k

= k!
∞∑

n=0

S(n, k, β, α;−t)
xn

n!

while the latter is defined by means of the inverse relations (1) and (2). On the other hand, the
multiparameter noncentral Stirling numbers of the first and second kinds, denoted by s(n, k; ᾱ)
and S(n, k; ᾱ), respectively, which are defined by B.S. El-Desouky [11] as follows

(t)n =
n∑

k=0

s(n, k; ᾱ)(t/α)k

(t/α)n =
n∑

k=0

S(n, k; ᾱ)(t)k

where ᾱ = (α0, α1, ..., αn−1) and

(t/α)n =
n−1∏
i=0

(t− αi)

are related with the Stirling-type pair of Hsu and Shiue in the following manner

S(n, k; 1, α, 0) = s(n, k; ᾱ)
S(n, k;α, 1, 0) = S(n, k; ᾱ)

where ᾱ = (0.α, 1.α, ..., (n− 1)α).
Denote [α] = (qα − 1)/(q − 1) with q 6= 1. As a q-analogue of (t|α)n we may consider a

factorial of t of the form

t(t− [α])(t− [2α])...(t− [(n− 1)α]), n ≥ 1.

Multiplying this with (q − 1)n, we get the product

(x− q0)(x− qα)...(x− q(n−1)α)
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where x = t(q − 1) + 1. This suggests the definition

[t|qα]n =
n−1∏
j=0

(t− qjα), n ≥ 1, [t|qα]0 = 1.

For simplicity we denote a = qα with a 6= 1, so that [t|a]n takes the form

[t|a]n =
n−1∏
j=0

(t− aj), [t|a]0 = 1, [t|a]1 = t− 1.

This may be called exponential factorial of t with base a.
Accordingly, parallel to (1) and (2) we may introduce a new kind of generalized Stirling

number-pair {S1[n, k], S2[n, k]} by the inverse relations

[t|a]n =
n∑

k=0

S1[n, k][t− c|b]k (3)

[t|b]n =
n∑

k=0

S2[n, k][t + c|a]k (4)

where a, b, and c are real or complex parameters with a 6= 1, b 6= 1, and S1[n, k] and S2[n, k]
may be denoted more precisely as S1[n, k] = S[n, k; a, b, c] and S2[n, k] = S[n, k; b, a,−c].

We also define the value S1[n, k] = S2[n, k] = 0 for k > n. Generally, {S1[n, k], S2[n, k]}
may be called a pair of exponential-type Stirling numbers. We will investigate some basic
properties of such a pair of numbers in subsequent sections. In particular, it will be shown (in
section 4) that the following limit relations hold:

lim
q→1

S[n, k; qα, qβ , qγ − 1](q − 1)k−n = S(n, k;α, β, γ) (5)

lim
q→1

S[n, k; qβ , qα, 1− qγ ](q − 1)k−n = S(n, k;β, α,−γ). (6)

This indicates that the exponential-type Stirling numbers could be regarded as a q-analogue
for the generalized Stirling numbers S1(n, k) and S2(n, k).

2. ORTHOGONALITY AND RECURRENCE RELATIONS

Evidently the sequences [t|a]n and [t− c|b]n with (b, c) 6= (a, 0) provide two different sets
of bases for the linear space of polynomials in t, so that by substituting (3) into (4) (or (4)
into (3)), we may easily obtain the orthogonality relations stated in the next proposition.
Proposition 1: The numbers S1[n, k] and S2[n, k] satisfy the orthogonality relations

m∑
k=n

S1[m, k]S2[k, n] =
m∑

k=n

S2[m, k]S1[k, n] = δmn (m ≥ n) (7)
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where δmn is the Kronecker delta defined by δmn = 1 if m = n, and δmn = 0 if m 6= n.
As a consequence of (7) we have the inverse relations for n ∈ N :

fn =
n∑

k=0

S1[n, k]gk ⇐⇒ gn =
n∑

k=0

S2[n, k]fk (8)

fn =
∞∑

k=n

S1[k, n]gk ⇐⇒ gn =
∞∑

k=n

S2[k, n]fk (9)

where the sequences {fk} and {gk} are assumed to be an ultimately vanishing sequence.
Hereafter, it suffices to consider S1[n, k] ≡ S[n, k; a, b, c] since a, b, and c are arbitrary

parameters. Note that (3) is a linear relation involving polynomials in t with highest degree n
in t, so that (3) implies

S1[n, n] = 1 (n ≥ 0), S1[1, 0] = c.

Proposition 2: The numbers S1[n, k] satisfy the recurrence relations

S1[n + 1, k] = S1[n, k − 1] + (bk − an + c)S1[n, k] (10)

where n ≥ k ≥ 1 and S1[n, 0] = [1 + c|a]n.
Proof: Taking t = c + 1 in (3) we have

[c + 1|a]n =
n∑

k=0

S1[n, k][1|b]k = S1[n, 0].

To prove (10) we may start with (3) and proceed as follows

n+1∑
k=0

S1[n + 1, k][t− c|b]k = [t|a]n+1 = [t|a]n(t− an)

=
n∑

k=0

S1[n, k][t− c|b]k+1

+
n∑

k=0

S1[n, k](bk − an + c)[t− c|b]k

=
n+1∑
k=1

S1[n, k − 1][t− c|b]k

+
n∑

k=0

S1[n, k](bk − an + c)[t− c|b]k.

Thus (10) follows from the comparison of the coefficients of [t − c|b]k in the first and last
expressions.
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It may be worth noticing that (10) represents a new kind of linear partial difference
equations, and the exponential-type Stirling numbers just provide a solution to such kind of
equations with certain given initial conditions.
Proposition 3: For given n ≥ k ≥ 0 there hold the horizontal recurrence relations with b 6= 1:

[bk|b]kS1[n, k] = [bk + c|a]n −
k−1∑
j=0

S1[n, j][bk|b]j (11)

where the case for k = 0 is given by S1[n, 0] = [1 + c|a]n.
Proof: It is clear that [bk|b]j = 0 for j ≥ k + 1. Thus by taking t = bk + c in (3) we

immediately obtain

[bk + c|a]n =
n∑

j=0

S1[n, j][bk|b]j =
k∑

j=0

S1[n, j][bk|b]j (12)

which is precisely (11).
Example: For k = 1 and 2, (11) gives

S1[n, 1] = ([b + c|a]n − [1 + c|a]n) /(b− 1)

S1[n, 2] =
(

1
b
[b2 + c|a]n −

b + 1
b

[b + c|a]n + [1 + c|a]n

)
/(b− 1)(b2 − 1).

3. EXPLICIT FORMULAS

We will find explicit expressions for both S1(n, k) and S1[n, k]. These expressions are
analogous to each other and can be used to prove the limit relations (5) and (6).
Proposition 4: Let β 6= 0. Then the numbers S1(n, k) = S(n, k;α, β, γ) defined by (1) can
be written in the form

S1(n, k) =
1

k!βk

k∑
j=0

(−1)k−j

(
k

j

)
(βj + γ|α)n (13)

where n ≥ k ≥ 0.
Proof: Replacing t with βt + γ, we see that the basic equation (1) takes the form

(βt + γ|α)n =
n∑

k=0

S1(n, k)(βt|β)k

=
n∑

k=0

S1(n, k)βkk!
(

t

k

)
.
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It follows from Newton’s interpolation formula

k!βkS1(n, k) =
[
∆k(βt + γ|α)n

]
t=0

(14)

where ∆ is the difference operator defined by ∆f(t) = f(t + 1) − f(t). Clearly, (14) may be
rewritten more explicitly in the form (13).
Remark: Comparing (14) (with α = 1) with the definition of the well-known C-numbers first
thoroughly investigated by Charalambides and Koutras [5] and also by Howard [14], one may
find that S(n, k; 1, β, γ) are essentially equivalent to C-numbers.

In what follows we will make use of the Gaussian polynomial or q-binomial coefficient
(with q 6= 1) defined by

[
k

j

]
q

=
j∏

i=1

qk−i+1 − 1
qi − 1

,

[
k

0

]
q

= 1,

and also the q-binomial inversion formula for k ∈ N :

fk =
k∑

j=0

[
k

j

]
q

gj ⇐⇒ gk =
k∑

j=0

(−1)k−jq(
k−j
2 )
[
k

j

]
q

fj . (15)

In dealing with the numbers S1[n, k] we often use b instead of q. Also for the sake of simplicity
we adopt the notation

< k|j >=
(

k − j

2

)
−
(

k

2

)
=
(

j + 1
2

)
− kj.

Proposition 5: Let b 6= 1. Then the numbers S1[n, k] = S[n, k; a, b, c] defined by (3) can be
expressed in the form

S1[n, k] =
k∏

i=1

(bi − 1)−1
k∑

j=0

(−1)k−jb<k|j>

[
k

j

]
b

[bj + c|a]n (16)

Proof: Observe that the factor [bk|b]j contained in the RHS of (12) may be written in
the form

[bk|b]j = b(
j
2)(bk − 1)(bk−1 − 1)...(bk−j+1 − 1)

= b(
j
2)
[
k

j

]
b

j∏
i=1

(bi − 1).

Consequently, (12) may be expressed as a q-binomial transform

[bk + c|a]n =
k∑

j=0

[
k

j

]
b

S1[n, k]b(
j
2)

j∏
i=1

(bi − 1) (17)
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where n may be regarded as a fixed parameter.
Using the inversion formulae (15), we can invert (17):

b(
k
2)

k∏
i=1

(bi − 1) · S1[n, k] =
k∑

j=0

(−1)k−jb(
k−j
2 )
[
k

j

]
b

[bj + c|a]n,

which is precisely (16).
Evidently, (16) is an analogue of (13) in which the binomial coefficients and generalized

factorials are replaced by the q-binomial coefficients and exponential factorials, respectively.
However, the close relationship between this pair of explicit formulas can only be disclosed
with the substitution a = qα, b = qβ , and c = qγ − 1. This will be shown in the next section.

4. A KIND OF q-ANALOGUE

Let a = qα, b = qβ , and c = qγ − 1 with q 6= 1. Then a pair of q-Stirling numbers σ1[n, k]
and σ2[n, k] may be introduced via S1[n, k] and S2[n, k]. More precisely we have the following
Definition: For α 6= 0 and β 6= 0 we define

σ1[n, k] ≡ σ1[n, k;α, β, γ]q := S[n, k; qα, qβ , qγ − 1](q − 1)k−n

σ2[n, k] ≡ σ2[n, k;α, β, γ]q := S[n, k; qβ , qα, 1− qγ ](q − 1)k−n,

where σ1[0, 0] = σ2[0, 0] = 1, and the case α = 0 or β = 0 is treated as the limit as α → 0 or
β → 0 whenever the limit exists.
Proposition 6: There hold the limit relations

lim
q→1

σ1[n, k;α, β, γ]q = S(n, k;α, β, γ) (5 bis)

lim
q→1

σ2[n, k;α, β, γ]q = S(n, k;β, α,−γ) (6 bis)

where the parameter β contained in (5 bis) and α in (6 bis) are assumed to be different from
zero.

Proof: It suffices to prove (5 bis) since the case for (6 bis) can be treated similarly.
Making use of Proposition 5 with a = qα, b = qβ , and c = qγ − 1, and adopting the notation
[x] = (qx − 1)/(q − 1), we may write, in accordance with the definition,

σ1[n, k] =

(
k∏

i=1

[iβ]

)−1 k∑
j=0

(−1)k−jb<k|j>

[
k

j

]
b

[qβj + qγ − 1|qα]n
(q − 1)n

,
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where
∏k

i=1[iβ] = 1 for k = 0. Clearly we have

lim
q→1

(
k∏

i=1

[iβ]

)−1

=
1

k!βk

lim
q→1

b<k|j>

[
k

j

]
b

=
(

k

j

)

lim
q→1

[qβj + qγ − 1|qα]n
(q − 1)n

= lim
q→1

n−1∏
i=0

([βj] + [γ]− [αi])

=
n−1∏
i=0

(βj + γ − αi) = (βj + γ|α)n.

Consequently we get with the aid of Proposition 4

lim
q→1

σ1[n, k] =
1

k!βk

k∑
j=0

(−1)k−j

(
k

j

)
(βj + γ|α)n = S1(n, k).

This completes the proof of (5 bis).
Using Proposition 1 and the definition of σ1[n, k] and σ2[n, k], the following proposition

can be easily verified.
Proposition 7: The numbers σ1[n, k] and σ2[n, k] satisfy the orthogonality relations

m∑
k=n

σ1[m, k]σ2[k, n] =
m∑

k=n

σ2[m, k]σ1[k, n] = δmn. (18)

And consequently there hold the inverse relations

fn =
n∑

k=0

σ1[n, k]gk ⇐⇒ gn =
n∑

k=0

σ2[n, k]fk (19)

fn =
∞∑

k=n

σ1[k, n]gk ⇐⇒ gn =
∞∑

k=n

σ2[k, n]fk (20)

where the sequences {fk} and {gk} are assumed to be ultimately vanishing.
Parallel to Proposition 2 we have

Proposition 8: The number σ1[n, k] = σ1[n, k;α, β, γ]q satisfy the recurrence relations

σ1[n + 1, k] = σ1[n, k − 1] + ([kβ]− [nα]− [γ])σ1[n, k] (21)

where n ≥ k ≥ 1, σ1[n, n] = σ2[0, 0] = 1 and σ1[n, 0] = [qγ |qα]n(q − 1)−n.
Proof: Equation (21) can be easily deduced from the definition of σ1[n, k] and from (10)

with a = qα, b = qβ , and c = qγ−1, by noticing that (bk−an+c)/(q−1) = [(qkβ−1)−(qnα−1)+

161



A q-ANALOGUE OF GENERALIZED STIRLING NUMBERS

(qγ−1)]/(q−1) = [kβ]− [nα]+ [γ], and that σ1[n, 0] = [1+c|a]n(q−1)−n = [qγ |qα]n(q−1)−n.

As q → 1 we see that the limiting form of (21) yields

S(n + 1, k) = S(n, k − 1) + (kβ − nα + γ)S(n, k). (22)

This is the same basic recurrence relation for the generalized Stirling numbers, with S1(n, 0) =
(γ|α)n. (c.f. theorem 1 of [15]). Certainly, the limiting forms of (19)-(20) also yield the
inversion formulas involving the pair of generalized Stirling numbers.

5. SOME REMARKS AND RELATED PROBLEMS

Here we will state several remarks containing some open problems related to q-analogues
of generalized Stirling numbers. These problems are mainly suggested by Propositions 4 and
5, and the similarity between them.
Remark 1: The explicit formula (13) of Proposition 4 can be used to provide a simpler and
more straightforward proof for the generating function of numbers S1(n, k):

1
k!

(1 + αt)γ/α

(
(1 + αt)β/α − 1

β

)k

=
∞∑

n=0

S1(n, k)
tn

n!
(23)

where αβ 6= 0. Note that (23) was proved in Théorêt’s paper [18] using two lemmas, and was
also proved in [15] using difference-differential equations and somewhat tedious computations.

Let us rewrite (13) in the form

S1(n, k) =
n!αn

k!βk

k∑
j=0

(−1)k−j

(
k

j

)(
(β/α)j + (γ/α)

n

)
. (24)

Proof of (23): Starting with (24) and making use of Vandermonde’s convolution identity
and Cauchy’s rule for the multiplication of series, we find

The RHS of (23) =
∞∑

n=0

αn

k!βk

k∑
j=0

(−1)k−j

(
k

j

)(
(β/α)j + (γ/α)

n

)
tn

=
1

k!βk

k∑
j=0

(−1)k−j

(
k

j

){ ∞∑
n=0

(αt)n
n∑

λ=0

(
γ/α

λ

)(
(β/α)j
n− λ

)}

=
1

k!βk

k∑
j=0

(−1)k−j

(
k

j

){ ∞∑
λ=0

(
γ/α

λ

)
(αt)λ

∞∑
µ=0

(
(β/α)j

µ

)
(αt)µ

}

=
1

k!βk

k∑
j=0

(−1)k−j

(
k

j

)
(1 + αt)γ/α(1 + αt)(β/α)j

=
1

k!βk
(1 + αt)γ/α

[
(1 + αt)β/α − 1

]k
= The LHS of (23).
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Hence (23) is proved.
The above proof suggest the following problem.

Problem 1: Is it possible to start with the explicit formula (16) of Proposition 5 to construct
a generating function for S1[n, k] as well as for σ1[n, k]?
Remark 2: The following vertical recurrence relation

kS1(n, k) =
1
β

n−1∑
j=k−1

(
n

j

)
(β|α)n−jS

1(j, k − 1) (25)

is obtained by Corcino [8]. A simple proof of this relation may be obtained straightforwardly
from (13). Since S1(j − k − 1) = 0 for j < k − 1, we now rewrite (25) in the form

k!βkS1(n, k) =
n−1∑
j=0

(
n

j

)
(β|α)n−jS

1(j, k − 1)(k − 1)!βk−1. (26)

Proof of (26): Using (13) with the aid of Vandermonde’s convolution identity, we see
that

The RHS of (26) =
n−1∑
j=0

(
n

j

)
(β|α)n−j

k−1∑
λ=0

(−1)k−λ−1

(
k − 1

λ

)
(βλ + γ|α)j

=
k−1∑
λ=0

(−1)k−λ−1

(
k − 1

λ

) n−1∑
j=0

(
n

j

)
(β|α)n−j(βλ + γ|α)j

=
k−1∑
λ=0

(−1)k−λ−1

(
k − 1

λ

)
[(β + βλ + γ|α)n − (βλ + γ|α)n]

=
k−1∑
λ=0

(−1)k−λ

(
k − 1

λ

)
(βλ + γ|α)n +

k∑
λ=0

(−1)k−λ

(
k − 1
λ− 1

)
(βλ + γ|α)n

=
k∑

λ=0

(−1)k−λ

(
k

λ

)
(βλ + γ|α)n = The LHS of (26).

This also suggests a related problem for q-Stirling numbers.
Problem 2: How do we make use of the formula (16) to establish a vertical recurrence relation
for S1[n, k] and σ1[n, k]?

We believe that this problem may be much easier to solve than Problem 1.
Remark 3: As is shown in the proof of Proposition 6, the numbers σ1[n, k] could be expressed
more explicitly in the form

σ1[n, k] =
k∑

j=0

(−1)k−jqβ<k|j>

[
k

j

]
b

∏n−1
i=0 ([βj] + [γ]− [αi])∏k

i=1[βi]
(27)
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where < k|j >=
(
+1
2

)
− kj and b = qβ . This implies some interesting cases for some special

values of α, β, and γ.
For instance, taking (α, β, γ) = (θ, 1, 0), we may obtain a q-analogue of Carlitz’s degener-

ate Stirling numbers [2]:

σ[n, k; θ, 1, 0]q =
1

[k]!

k∑
j=0

(−1)k−jq<k|j>

[
k

j

]
q

n−1∏
i=0

([j]− [θi]) (28)

where [k]! = [1][2]...[k]. In particular, for θ = 0 we may get the q-Stirling numbers of the
second kind due to Carlitz [4]:

σ[n, k; 0, 1, 0]q =
1

[k]!

k∑
j=0

(−1)k−jq<k|j>

[
k

j

]
q

[j]n. (29)

This was discussed more thoroughly in Gould’s paper [12]. Obviously (29) implies the explicit
form of the second kind of Stirling numbers as a limiting case:

lim
q→1

σ[n, k; 0, 1, 0]q =
1
k!

k∑
j=0

(−1)k−j

(
k

j

)
jn = S(n, k; 0, 1, 0). (30)

Remark 4: Note that the general expression (27) does not imply any available formula for the
q-analogue of the first kind Stirling numbers S(n, k; 1, 0, 0), inasmuch as β = 0 will present zero
factors in the denominators of fractions appearing in (27). It is known that, in the classical
case, the explicit form for the first kind of Stirling numbers is given by Schlömilch’s formula
which expresses a linear relation between the two kinds of Stirling numbers (c.f. [7]). Thus,
we may propose
Problem 3: How do we make use of the basic relations (3) and (4) together with (16) to find
certain linear relations between the two kinds of numbers, S1[n, k] and S2[n, k], or σ1[n, k] and
σ2[n, k], so that a generalized Schlömilch formula could be established?

Surely, still much remains to be done, and any solutions to the above-mentioned problems
would substantially enrich the theory of q-analogues of generalized Stirling numbers. See also
an approach via the combinatorial study of 0-1 tableau by de Medicis and Leroux [10].
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