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ABSTRACT

We consider the problem for finding a wide class of Möbius-type inversion formulae via
Dirichlet series representations. We provide theoretical and computational aspects of this
problem. Several examples are given to illustrate the constructive method.

1. INTRODUCTION

This paper is concerned with the problem of construction for a general type of Möbius
inversion formulae in number theory and combinatorial theory.

We use N and C to denote the set of positive integers and of complex numbers, respectively,
and we put N0 := N ∪ {0}. Usually a number-theoretical function F (i.e. a map F : N → C)
is called multiplicative if

F (mn) = F (m)F (n) (1)

holds whenever m,n ∈ N are relatively prime. This definition of multiplicity implies either
F (1) = 0 (and thus F = 0 identically) or F (1) = 1. If M denotes the set of all multiplicative
number-theoretical functions, then it is well-known that M −{0} forms an abelian group with
respect to the (Dirichlet) convolution ∗, the unit element ε being defined by ε(1) := 1 and
ε(n) := 0 for any n > 1 (compare, e.g. [2, Satz 1.4.8]).

To exclude F = 0 from the set of multiplicative functions several authors use a more
narrow definition of multiplicity by requiring (1) and F (1) = 1.

Next we recall a fairly more general notion of multiplicativity, introduced first by Selberg
[8], which apparently did not prevail in the literature. A number-theoretical function F is said
to be Selberg-multiplicative if, for each prime p, there exists fp : N0 → C with fp(0) = 1 for all
but finitely many p such that

F (n) =
∏
p

fp (ep(n))

holds for every n ∈ N, where ep(n) denotes the exact exponent of p in the canonical factorization
of n. One of the main advantages of this more general notion of multiplicativity is that it can
be used without change to define multiplicative functions of several variables.
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We consider now the particular subclass S of Selberg-multiplicative F : N→ C such that
there exists a universal f : N0 → C with f(0) = 1 such that, for any n ∈ N,

F (n) =
∏
p

f (ep(n)) (2)

Clearly, every F ∈ S is multiplicative in the “usual” sense mentioned at the beginning, and
satisfies F (1) = 1. This means S ⊂ M − {0}. We note that Carlitz [3] and Knopfmacher [7]
have examined a similar set of functions.

Obviously, the classical Möbius function µ belongs to S as well as certain of its general-
izations, e.g. Fleck’s [6] µz, which, for any z ∈ C, is defined by

µz(n) :=
∏
p

(−1)ep(n) ·
(

z

ep(n)

)
(3)

for any n ∈ N. Clearly, µ0 = ε and µ1 = µ. (Note already here that µ−1 = 1, the function
which is identically 1, and µ−2 = τ , the classical divisor function.) This motivates us to
investigate the problem for the construction of a general type of Möbius inversion as follows.
Problem: Given F ∈ S, can we find G ∈ S such that there holds a Möbius-type inversion of
the form

β(n) =
∑
d|n

F
(n

d

)
α(d)⇔ α(n) =

∑
d|n

G
(n

d

)
β(d) (4)

for number-theoretical functions α, β, and the summations are both taken over all the positive
divisors d of n?

The objective of this paper is to solve this problem first theoretically (in section 2), and
then constructively and explicitly (in section 3). It will be shown that G is uniquely determined
by the given F . Then {F,G} may be called a reciprocal pair of generalized Möbius functions.

2. GROUP-THEORETICAL ASPECT OF THE CLASS S

Writing F̌ for the inverse of F ∈M−{0} with respect to convolution ∗ it will be clear that
our above Problem has a unique solution if we can show that F ∈ S implies F̌ ∈ S. Namely
we can write (4) equivalently as β = F ∗ α⇔ α = G ∗ β, and so we have just to take G = F̌ .

The following Proposition gives even a little more information than needed.
Proposition: 〈S, ∗〉 is a subgroup of 〈M − {0}, ∗〉.

Proof: For this we have to show F,G ∈ S ⇒ H = F ∗G, F̌ ∈ S. Let f, g : N0 → C with
f(0) = 1, g(0) = 1 be such that (2) and

G(n) =
∏
p

g (ep(n)) (5)

hold for any n ∈ N. Defining h : N0 → C pointwise by

h(r) :=
r∑

ρ=0

f(ρ)g(r − ρ) (r ∈ N0) (6)
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we see h(0) = 1 and furthermore, since H = F ∗G ∈M ,

H(n) =
∏
p

H
(
pep(n)

)
=
∏
p

ep(n)∑
ρ=0

F (pρ) G
(
pep(n)−ρ

)

=
∏
p

ep(n)∑
ρ=0

f(ρ)g (ep(n)− ρ) =
∏
p

h (ep(n))

where we used (2), (5) and (6), respectively, to get the last two equalities.
To prove F ∈ S ⇒ F̌ ∈ S we define Ψ : N0 → C again pointwise by

Ψ(0) = 1,
r∑

ρ=0

f(ρ)Ψ(r − ρ) = 0 (r = 1, 2, · · · ); (7)

since f(0) = 1 this is uniquely possible. From F ∗ F̌ = ε and (2) we get

0 = ε (pr) =
r∏

ρ=0

F (pρ)F̌ (pr−ρ) =
r∑

ρ=0

f(ρ)F̌ (pr−ρ)

for each prime p and r ∈ N. Then we see from (7) that F̌ (1) = 1 = Ψ(0), and inductively
F̌ (pr) = Ψ(r) for each prime p and r ∈ N. Thus we have

F̌ (n) =
∏
p

F̌
(
pep(n)

)
=
∏
p

Ψ(ep(n)) ,

whence F̌ ∈ S.

3. METHOD OF CONSTRUCTION

Here we will make use of the following well-known proposition (see, e.g., [2, Satz 1.4.4] or
[9, § 2.6]).
Lemma: If F ∈M , then for s ∈ C we have the formal identity

∞∑
n=1

F (n)n−S =
∏
p

∞∑
r=0

F (pr)p−rs.

Now suppose F ∈ S as in our above Problem. From (2) and the Lemma we find

∞∑
n=1

F (n)n−s =
∏
p

∞∑
r=0

f(r)p−rs. (8)
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Moreover, suppose that the formal power series in x = p−s in the right-hand side of (8) has a
formal inverse power series, viz.( ∞∑

r=0

f(r)xr

)−1

=
∞∑

r=0

g(r)xr (9)

with g(0) = 1 (compare f(0) = 1). Then a number-theoretical function G could be constructed
by formula (5), i.e.,

G(n) :=
∏
p

g (ep(n)) .

This shows G ∈ S, so that by the Lemma we have the formal identity

∞∑
n=1

G(n)n−s =
∏
p

∞∑
r=0

g(r)p−rs. (10)

Let the left-hand side of (8) and of (10) be denoted by f̂(s) and ĝ(s), respectively. Then (9)
implies

ĝ(s) = 1/f̂(s). (11)

Remark 1: The formal equation (9) is obviously equivalent to
∑r

ρ=0 f(ρ)g(r − ρ) = 0 for
r = 1, 2, · · · . Comparing this with (7), and taking g(0) = 1 into account, we find g = Ψ as
expected.

Actually, relation (11) together with the familiar rule for the multiplication of generating
Dirichlet series implies a general type of Möbius inversion as stated in the following Theorem,
for which we gave implicitly a first proof at the beginning of section 2.
Theorem: Suppose F ∈ S. Then G ∈ S can be constructed via (2), (9) and (5) so that the
general type of Möbius inversion (4) is valid. Namely

β(n) =
∑
d|n

F
(n

d

)
α(d)⇔ α(n) =

∑
d|n

G
(n

d

)
β(d)

holds for α, β : N→ C, where either of α and β may be given arbitrarily.
Indeed, if U, V are any number-theoretical functions and if they are represented by gen-

erating Dirichlet series

û(s) :=
∞∑

n=1

U(n)n−s, v̂(s) :=
∞∑

n=1

V (n)n−s,

which may be denoted in brief by

û(s) Dir←−−−→(U(n))nεN, v̂(s) Dir←−−−→(V (n))nεN,
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then the well-known rule for the Dirichlet series multiplication (in fact: Dirichlet convolution)
gives

û(s)v̂(s) Dir←−−−→

∑
d|n

U
(n

d

)
V (d)


n∈N

.

Consequently, by supposing that

â(s) Dir←−−−→ (α(n))nεN , b̂(s) Dir←−−−→ (β(n))nεN ,

we see that the two equations (4) just correspond, respectively, to the following relations

b̂(s) = f̂(s)â(s), â(s) = ĝ(s)b̂(s).

Evidently, these two relations are equivalent to each other, in accordance with (11). Hence the
theorem is proved.
Remark 2: Using the Lemma we see that for every reciprocal pair of generalized Möbius
functions {F,G} as mentioned in the Theorem, there always hold the identities (8) and (10).
Remark 3: It is clear that the process of construction for (4) involves (2), (5), and (9),
in which the series expansion (9) appears to be most critical. However, in the general case,
the coefficients g(r) defined by (9) may be determined explicitly by means of partial Bell
polynomials Br,k(1!f(1), 2!f(2), · · · ).

More precisely, using the well-known results to be found in Comtet [5, § 3.3], one can
express g(r), r ∈ N, in terms of f(1), f(2), · · · , f(r) in the explicit form

g(r) =
∑
π(r)

(−1)kk!
f(1)k1

k1!
· f(2)k2

k2!
· · · , (12)

where π(r) denotes the set of partitions of r, so that the summation is taken over all the
partitions 1k12k2 · · · (with all ki ∈ N0) of r satisfying the conditions

1 · k1 + 2 · k2 + · · · = r, k1 + k2 + · · · = k (⇒ 1 ≤ k ≤ r),

k being the number of parts of the partition 1k12k2 · · · . Evidently, with this remark, we
conclude that the general problem of construction for (4) can be solved explicitly via (2), (9),
(12) and (5).

4. EXAMPLES

In what follows we will present several examples in which both f(r)’s and g(r)’s have
some simple expressions.
Example 1: Starting with (2) and taking

f(r) := (−1)r

(
z

r

)
(13)
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for any r ∈ N0 and z ∈ C, we have( ∞∑
r=0

f(r)xr

)−1

= (1− x)−z =
∞∑

r=0

(
−z

r

)
(−x)r

so that we may denote g(r) = (−1)r
(−z

r

)
for r ∈ N0. Consequently, for each z ∈ C, {µz, µ−z}

is a reciprocal pair of generalized Möbius functions, compare (3). Thus the reciprocal relation
(4) implies the pair of generalized Möbius inversion formulae (cf. [1])

β(n) =
∑
d|n

µz

(n

d

)
α(z)⇔ α(n) =

∑
d|n

µ−z

(n

d

)
β(d). (14)

Evidently the classical Möbius inversion formulae are implied by (14) with z = 1 or z = −1.
Moreover, using (8) with F = µz and (13) we obtain

∞∑
n=1

µz(n)n−s =
∏
p

(1− p−s)z = ζ(s)−z, (15)

where ζ is the classical Riemann zeta function. Consequently, (15) implies both of the well-
known relations

∞∑
n=1

τ(n)n−s = ζ(s)2,
∞∑

n=1

µ(n)n−s = ζ(s)−1.

Note that (15) just means that

(ζ(s))−z
Dir←−−−→ (µz(n))nεN

for every z ∈ C, and in view of our earlier investigations, this implies µz ∗ µz′ = µz+z′ for any
z, z

′ ∈ C. Denoting Mc := {µz|z ∈ C} we conclude immediately that 〈Mc, ∗〉 is a subgroup of
our above group 〈S, ∗〉, compare also [1].
Example 2: The Taylor series expansions of ex and e−x may suggest us to take f(r) :=
1/r!, g(r) := (−1)r/r! for any r ∈ N0. Accordingly we define

λ(n) :=
∏
p

1
ep(n)!

, v(n) :=
∏
p

(−1)ep(n)

ep(n)!
,

where λ(n) and v(n) just correspond to F (n) and G(n) in (2) and (5), respectively. Then, by
the general inversion formula (4), we get the reciprocal relations

β(n) =
∑
d|n

λ
(n

d

)
α(d)⇔ α(n) =

∑
d|n

v
(n

d

)
β(d).

Moreover, (8) and (10) imply the following identities

∞∑
n=1

λ(n)n−s =
∏
p

exp
(
p−s
)

= exp

(∑
p

p−s

)
,
∞∑

n=1

v(n)n−s = exp

(
−
∑

p

p−s

)
.
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Certainly these two expressions define holomorphic functions in the half-plane Re s > 1.
Example 3: Let F0 := 0, F1 := 1, and Fi := Fi−1 + Fi−2 for i ≥ 2 denote the sequence of
Fibonacci numbers. Defining f(r) := Fr+1 for r ∈ N0 we see f(0) = 1 and(

1− x− x2
)−1

=
∞∑

r=0

f(r)xr.

Putting a :=
(
1 +
√

5
)
/2, b :=

(
−1 +

√
5
)
/2 = −1/a we have Binet’s formula

f(r) =
1√
5

(
ar+1 − br+1

)
for any r ∈ N0.

Let us denote 1 − x − x2 =:
∑∞

r=0 g(r)xr, so that g(0) = 1, g(1) = g(2) = −1, and g(r) = 0
for r ≥ 3.

Accordingly we define (cf. (2) and (5))

ξ(n) :=
∏
p

((
a1+ep(n) − b1+ep(n)

)
/
√

5
)

, η(n) :=
∏
p

g (ep(n)) .

Clearly, η(1) = 1 and η(n) = 0 if and only if n ∈ N is not cube-free (i.e., if there exists a prime
p with p3|n), and finally η(n) = (−1)ω∗(n) if n is cube-free and ω∗(n) denotes the number
of distinct prime factors of n with ep(n) ∈ {1, 2}. Consequently (4) implies the reciprocal
relations

β(n) =
∑
d|n

ξ
(n

d

)
α(d)⇔ α(n) =

∑
d|n

η
(n

d

)
β(d).

Moreover, using (8) and (10) we obtain the formal identities

∞∑
n=1

ξ(n)n−s =
∏
p

(
1− p−s − p−2s

)−1
,

∞∑
n=1

η(n)n−s =
∏
p

(
1− p−s − p−2s

)
.

These expressions define functions holomorphic in Re s > 1. In particular, the second one may
be compared with the famous identity

∑
n≥1 µ(n)n−s =

∏
p (1− p−s) = ζ(s)−1.

Remark 4: With the examples given above, one may observe that even Bernoulli numbers,
Euler numbers, and Catalan numbers together with their generating functions could be called
into play in the construction of Möbius-type inversion formulae of the form (4). Perhaps these
would serve as additional examples to justify the availability of the method expounded in
section 3.

5. A FINAL REMARK

Though formula (12) gives a general expression of g(r) in terms of f(1), · · · , f(r), it seems
not so useful for the computation of g(r) even with simpler f ’s. For instance, for the cases
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such as (13) for fixed z ∈ C, the g(r)’s are easily determined via (9) (cf. Example 1). However,
in using (12) for computing g it involves finding non-trivial relations such as

∑
π(r)

(−1)k k!
k1!k2! · · ·

(
z

1

)k1
(

z

2

)k2

· · · =
(
−z

r

)
(16)

or even only

∑
π(r)

(−1)k k!
k1!k2! · · ·

=
{ −1 when r = 1,

0 when r ≥ 2,
(17)

in the particular case z = −1.
Actually, the verification of (16) and even (17) is a bit of a tedious job, although it could

be done by using Charalambides-Singh [4, (3.20), (3.24)] and Comtet [5, 3.3.6)], respectively.
More precisely, (16) and (17) are equivalent to the following less familiar identities

r∑
k=1

(−1)k k!
r!

C(r, k, z) =
(
−z

r

)
,

r∑
k=1

(−1)k k!
r!

Br,k(1!, 2! · · · ) =
{ −1 when r = 1,

0 when r ≥ 2,

where Br,k are as in Remark 3, and C(. . . ) are known as C-numbers (see loc.cit.).
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