ON THE SET OF REDUCED *\(\phi\)*-PARTITIONS OF A POSITIVE INTEGER*

Jun Wang

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P.R. China

Xin Wang

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P.R. China (Submitted May 2003-Final Revision October 2004)

ABSTRACT

Given a positive integer n, the sum $n = a_1 + \cdots + a_i$ with $1 \le a_1 \le a_2 \le \cdots \le a_i \in \mathbb{N}$ is called a ϕ -partition if it satisfies $\phi(n) = \phi(a_1) + \cdots + \phi(a_i)$, where ϕ is Euler's totient function. And, a ϕ -partition is reduced if each of its summands is simple, where a simple number is known as 1 or a product of the first primes. In this note we will present a new algorithm to exhaust the set of all reduced ϕ -partitions of n.

1. INTRODUCTION

A partition of $n \in \mathbb{N}$, the set of all positive integers, is defined to be the sum $n = a_1 + \cdots + a_i$ with $1 \leq a_1 \leq a_2 \leq \cdots \leq a_i \in \mathbb{N}$. In [1], Jones introduced an interesting partition: the sum $n = a_1 + \cdots + a_i$ is called a ϕ -partition if it satisfies $\phi(n) = \phi(a_1) + \cdots + \phi(a_i)$, where ϕ is Euler's totient function. Furthermore, a ϕ -partition is reduced if each of its summands is simple, where a simple number is known as 1 or a product of the first primes. More precisely, let p_i denote the *i*-th prime and define $A_0 = 1$ and $A_i = \prod_{j=1}^i p_j$, which is the *i*-th simple number. Jones proved that every simple number has the only trivial ϕ -partition $A_i = A_i$, and each non-simple number *n* has a nontrivial ϕ -partition as follows: Let *p* and *q* denote distinct primes. Then

(I)
$$n = \underbrace{p^{\alpha-1}t + \dots + p^{\alpha-1}t}_{p}$$
 if $n = p^{\alpha}t$ for $\alpha > 1$ and $p \nmid t$,
(II) $n = \underbrace{j + \dots + j}_{p-q} + qj$ if $n = pj$ where p and q do not divide j and $q < p$.

This gives algorithms from which we can obtain at least one reduced ϕ -partition of any non-simple number. In fact, we can regard a reduced ϕ -partition of n as a solution of the following system of equations in $(x_0, x_1, ...)$:

$$\begin{cases} n = x_0 + x_1 A_1 + x_2 A_2 + \dots \\ \phi(n) = x_0 + x_1 \phi(A_1) + x_2 \phi(A_2) + \dots \end{cases}$$
(1.1)

such that x_j 's are non-negative integers.

Let S(n) and $S^+(n)$ denote the sets of all integer and nonnegative integer solutions of (1.1), respectively. A positive integer n is called semisimple if it has exactly one reduced ϕ -partition, that is, $|S^+(n)| = 1$.

In [3], a complete characterization of semisimple integers was given (cf. [2]):

Research supported by the National Natural Science Foundation of China.

Theorem 1.1: Let n be a nonsimple integer. Then n is semisimple if and only if n is a prime, or $n = 3^2$, or $n = aq_1 \cdots q_k A_i$ with $a(q_1 - p_{i+1}) \cdots (q_k - p_{i+1}) < p_{i+1}$, where $i \ge 1, k \ge 0, q_1 > q_2 > \cdots > q_k > p_{i+1}$ are primes and a is a positive integer.

In [3] it also asked for the set $S^+(n)$ for any non-semisimple number n. In this note, we present a new algorithm to exhaust the set.

2. ALGORITHM

By S we denote the set of all sequences $\mathbf{a} = (a_0, a_1, \dots)$ such that a_j 's are integers and all but finite many of them are zero. (Here, a bold letter always denotes an element of S.) For convenience, we omit its terminal 0's, for example, we write $(a_0, \dots, a_i, 0, \dots) = (a_0, \dots, a_i)$.

Given a subset T of S, let \hat{T} denote the subset of T consisting of all $\boldsymbol{a} = (a_0, a_1, \ldots)$'s such that $a_r \geq 0$ for $r \geq 1$; and let T^+ denote the set of all nonnegative integer sequences in T. Clearly, $\hat{S}(n) \subset \hat{S}$ and $S^+(n) \subset S^+$. Given an $\boldsymbol{a} = (a_0, a_1, \ldots, a_j, \ldots) \in S$, let $S_j(\boldsymbol{a})$ denote the set of all integer solutions of the following system of equations:

$$\begin{cases} \sum_{r=0}^{j} a_r A_r &= \sum_{r=0}^{j} x_r A_r + A_{j+1} \\ \sum_{r=0}^{j} a_r \phi(A_r) &= \sum_{r=0}^{j} x_r \phi(A_r) + \phi(A_{j+1}). \end{cases}$$
(2.2)

Define a linear order " \leq " on S to be the "right" lexicographic order, that is, $\boldsymbol{a} \prec \boldsymbol{b}$ if $a_i < b_i$, for some $i \geq 0$, and $a_{i+j} = b_{i+j}$ for all j > 0. Given a subset $T \subset S$ and $\boldsymbol{a}, \boldsymbol{b} \in T$, we say \boldsymbol{a} and \boldsymbol{b} are adjacent in T if there is no $\boldsymbol{c} \in T$ with $\boldsymbol{a} \prec \boldsymbol{c} \prec \boldsymbol{b}$.

For exhausting the set $S^+(n)$ we proceed to give a new algorithm by solving the system (2.2).

We define an operator \mathfrak{E} on $S^+(n)$ by $\mathfrak{E}(\mathbf{a}) = \mathbf{a}$ if $S_j^+(\mathbf{a}) = \emptyset$ for all $j \ge 1$; otherwise,

$$\mathfrak{E}(\mathbf{a}) = (y_0, y_1, \dots, y_j, a_{j+1} + 1, a_{j+2}, \dots),$$
(2.3)

where j is the least positive index with $S_j^+(\boldsymbol{a}) \neq \emptyset$ and $\boldsymbol{y} = (y_0, y_1, \dots, y_j)$ is the minimum element of $S_j^+(\boldsymbol{a})$ in order \preceq . Clearly, $\boldsymbol{a} \in S^+(n)$ implies that $\mathfrak{E}(\boldsymbol{a}) \in S^+(n)$ and $\boldsymbol{a} \preceq \mathfrak{E}(\boldsymbol{a})$.

Furthermore, define \mathfrak{E}^0 to be the identity map, \mathfrak{E}^{-1} to be the inverse of \mathfrak{E} , that is, $\mathfrak{E}^{-1}(\boldsymbol{b}) = \boldsymbol{a}$ if $\boldsymbol{b} = \mathfrak{E}(\boldsymbol{a})$. For an integer t we inductively define the operator \mathfrak{E}^t by $\mathfrak{E}^t(\boldsymbol{a}) = \mathfrak{E}(\mathfrak{E}^{t-1}(\boldsymbol{a}))$ for $\boldsymbol{a} \in S^+(n)$.

It is evident that if a is maximal in $(S^+(n), \preceq)$, then $\mathfrak{E}(a) = a$, in other words, $S_j^+(a) = \emptyset$ for all $j \ge 1$. We now characterize the maximum element of $S^+(n)$. To do this, we introduce some notations.

For $j \ge 1$, write $\Gamma_j = A_j - \phi(A_j)$. It is easy to see that $(p_{j+1} + 1)\Gamma_j > \Gamma_{j+1} > p_{j+1}\Gamma_j$. (See [3] Lemma 3.)

Lemma 2.1: Let $\mathbf{a} = (a_0, a_1, ...)$ be in $S^+(n)$. Then $\mathfrak{E}(\mathbf{a}) \succ \mathbf{a}$ if and only if there is an index j > 0 such that

$$\sum_{r=1}^{j} a_r \Gamma_r \ge \Gamma_{j+1}.$$
(2.4)

Proof: Keep the notation of $\mathfrak{E}(a)$ as in (2.3). Suppose $\mathfrak{E}(a) \succ a$. Then $y = (y_0, y_1, \ldots, y_j)$ is a nonnegative integer solution of (2.2). Subtracting the second equation from the first in (2.2) and substituting by y, we get

$$\sum_{r=1}^{j} a_r \Gamma_r = \sum_{r=1}^{j} y_r \Gamma_r + \Gamma_{j+1} \ge \Gamma_{j+1},$$

as desired.

Conversely, if there is a $j \ge 1$ satisfying (2.4), we may suppose that this j is the least index with this property. Note that $\Gamma_1 = 1$, from which we see that there are nonnegative integers x_1, \ldots, x_j such that

$$\sum_{r=1}^{j} a_r \Gamma_r - \Gamma_{j+1} = \sum_{r=1}^{j} x_r \Gamma_r.$$
 (2.5)

It is easy to check that $\boldsymbol{x} = (x_0, x_1, \dots, x_j) \in \hat{S}_j(\boldsymbol{a})$, where x_0 is given by

$$x_0 - a_0 = \sum_{r=1}^j a_r A_r - A_{j+1} - \sum_{r=1}^j x_r A_r = \sum_{r=1}^j a_r \phi(A_r) - \phi(A_{j+1}) - \sum_{r=1}^j x_r \phi(A_r).$$

Therefore, in order to complete the proof it suffices to prove that $z_0 - a_0 \ge 0$ for a $\boldsymbol{z} \in S_j^+(\boldsymbol{a})$. Let $\boldsymbol{z} = (z_0, z_1, \dots, z_j)$ be the maximum element of $(\hat{S}_j(\boldsymbol{a}), \preceq)$. If j = 1, from $a_1\Gamma_1 =$

 $\Gamma_2 + z_1\Gamma_1$, i.e., $a_1 - z_1 = A_2 - \phi(A_2) = 4$, it follows that $z_0 - a_0 = (a_1 - z_1)p_1 - A_2 = 2 > 0$. Assume now j > 1. By induction we may suppose that $\sum_{r=1}^{i-1} z_r \Gamma_r < \Gamma_i$ holds for each

Instance now j > 1. By induction we may suppose that $\sum_{r=1}^{j} z_r r r < r_i$ notes for each $1 \le i < j$ because z is maximal in $(\hat{S}_j(a), \preceq)$. In particular, $z_r < p_{r+1} + 1$ for r < j. By the minimality of j we may assume that $a_r < p_{r+1} + 1$ for r < j. From the minimality of j we can also see that $a_j > z_j$. Let i be the index such that $a_r \ge z_r$ for $i \le r \le j$ and $a_{i-1} < z_{i-1}$, where $1 \le i \le j$, and put $a'_r = a_r - z_r$ for $1 \le r \le j$. Then $|a'_r| < p_{r+1} + 1$ for r < i and $\sum_{r=i}^{j} a'_r \Gamma_r \ge \Gamma_{j+1}$ (otherwise, i > 2 and $\sum_{r=1}^{i-2} a_r \Gamma_r > (z_{i-1} - a_{i-1})\Gamma_{i-1} \ge \Gamma_{i-1}$, which contradicts the choice of j). Set $\sigma_r = \frac{\Gamma_r}{A_r} = 1 - \frac{\phi(A_r)}{A_r}$. Then $\sigma_r < \sigma_{j+1}$ for r < j+1. We thus have

$$\sum_{r=i}^{j} a'_r \Gamma_r = \sum_{r=i}^{j} a'_r A_r \sigma_r \ge \Gamma_{j+1} = A_{j+1} \sigma_{j+1},$$

which implies that $\sum_{r=i}^{j} a'_r A_r > A_{j+1}$.

Write $\sum_{r=i}^{j} a'_r A_r - A_{j+1} = tA_i$, where t is a positive integer. If $t \ge 2$, taking account of $|a'_r| \le p_{r+1}$ for r < i, we then have

$$z_0 - a_0 = \sum_{r=1}^{j} a'_r A_r - A_{j+1} \ge 2A_i - \sum_{r=1}^{i-1} p_{r+1} A_r$$
$$= A_i - \sum_{r=2}^{i-1} A_r > 0,$$

which yields $S_j^+(a) \neq \emptyset$. If t = 1, then $b_i A_i + \cdots + b_j A_j = A_{j+1}$, where $b_i = a'_i - 1$ and $b_r = a'_r$ for $i < r \leq j$. From the above case it is easy to see that $p_{j+1} - 1 \leq b_j \leq p_{j+1}$. If $b_j = p_{j+1}$, then $b_i = \cdots = b_{j-1} = 0$; if $b_j = p_{j+1} - 1$, then $b_i A_i + \cdots + b_{j-1} A_{j-1} = A_j$. Therefore, there is an s with $i \leq s \leq j$ such that $b_s = p_{s+1}$ and $b_r = 0$ if r < s and $b_r = p_{r+1} - 1$ if r > s. Note that $(p_{j+1} - 1)\phi(A_j) = \phi(A_{j+1})$ and $z_r \leq p_{r+1}$ for r < i. Thus,

$$z_0 - a_0 = \sum_{r=1}^{j} a_r \phi(A_r) - \phi(A_{j+1}) - \sum_{r=1}^{j} z_r \phi(A_r)$$

$$\ge \phi(A_i) + \sum_{r=s}^{j} b_r \phi(A_r) - \phi(A_{j+1}) - \sum_{r=1}^{i-1} p_{r+1} \phi(A_r)$$

$$\ge 2\phi(A_i) - \sum_{r=1}^{i-1} (\phi(A_{r+1}) + \phi(A_r))$$

$$> \phi(A_i) + 1 - 2\sum_{r=1}^{i-1} \phi(A_r) > 0.$$

We still have $S_i^+(a) \neq \emptyset$. Therefore, (2.3) is specified as

$$\mathfrak{E}(\mathbf{a}) = (y_0, y_1, \dots, y_j, a_{j+1} + 1, a_{j+2} \dots),$$
(2.6)

where (y_0, y_1, \ldots, y_j) is the minimum element of $S_j^+(\boldsymbol{a})$.

From definition we can immediately obtain the following proposition, which characterizes the adjacency relation on $S^+(n)$, hence whole $S^+(n)$ can be obtained.

Theorem 2.2: Suppose a and b are in $S^+(n)$ with $a \prec b$. Then a and b are adjacent in $S^+(n)$ if and only if $b = \mathfrak{E}(a)$. Thus,

 $S^+(n) = \{ \mathfrak{E}^t(\boldsymbol{a}) | t \in \mathbb{Z}, \boldsymbol{a} \text{ is that one obtained by Algorithms I and II} \}.$

3. CONCLUDING REMARKS

It can be seen from Theorem 1.1 that all odd integers but prime numbers and 3^2 are non-semisimple, while $(p_{i+1}-1)A_i$ and $p_{i+2}A_i$ are semisimple for all $i \ge 1$. With the notation in Theorem 1.1 for a = 1 and $k \ge 2$, the smallest semisimple number is $p_9 \times p_8 \times A_6 = 23 \times 19 \times 13 \times 11 \times 7 \times 5 \times 3 \times 2$. For $p_8 \times p_7 \times A_5 = 746130$ we list the elements of $S^+(746130)$ as follows:

(0, 0, 0, 0, 0, 0, 24, 6, 1),	(270, 270, 90, 18, 2, 10, 7, 1),	(404, 2, 157, 18, 2, 10, 7, 1),
(456, 54, 1, 44, 2, 10, 7, 1),	(482, 2, 14, 44, 2, 10, 7, 1),	(486, 6, 2, 46, 2, 10, 7, 1),
(488, 2, 3, 46, 2, 10, 7, 1),	(518, 32, 13, 6, 7, 10, 7, 1),	(534, 0, 21, 6, 7, 10, 7, 1),
(540, 6, 3, 9, 7, 10, 7, 1),	(542, 2, 4, 9, 7, 10, 7, 1),	(548, 8, 6, 1, 8, 10, 7, 1),
(552, 0, 8, 1, 8, 10, 7, 1),	(554, 2, 2, 2, 8, 10, 7, 1).	

We have seen that it is easier to determine an image of \mathfrak{E} than that of \mathfrak{E}^{-1} . Therefore, in order to exhaust the set $S^+(n)$, it would be interesting to find the minimum element of $S^+(n)$ for any non- ϕ -semisimple number n. It is not difficult to verify that in the example above, the partition obtained by Algorithms (I) and (II) is just the minimum element of $S^+(746130)$. We guess that it is always the case for all non-semisimple numbers.

REFERENCES

- [1] Patricia Jones. " ϕ -partitions." The Fibonacci Quarterly **29.4** (1991): 347-350.
- [2] Corey Powell. "On the Uniqueness of Reduced Phi-Partitions." The Fibonacci Quarterly 34.3 (1996): 194-198.
- [3] Jun Wang. "Reduced ϕ -partitions of Positive Integers." The Fibonacci Quarterly **31.4** (1993): 365-369.

AMS Classification Numbers: 05A17, 11P81

 \mathbf{X}