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ABSTRACT

Given a positive integer n, the sum n = a1 + · · ·+ ai with 1 ≤ a1 ≤ a2 ≤ · · · ≤ ai ∈ N is
called a φ-partition if it satisfies φ(n) = φ(a1)+ · · ·+φ(ai), where φ is Euler’s totient function.
And, a φ-partition is reduced if each of its summands is simple, where a simple number is
known as 1 or a product of the first primes. In this note we will present a new algorithm to
exhaust the set of all reduced φ-partitions of n.

1. INTRODUCTION

A partition of n ∈ N, the set of all positive integers, is defined to be the sum n = a1+· · ·+ai

with 1 ≤ a1 ≤ a2 ≤ · · · ≤ ai ∈ N. In [1], Jones introduced an interesting partition: the sum
n = a1 + · · · + ai is called a φ-partition if it satisfies φ(n) = φ(a1) + · · · + φ(ai), where φ
is Euler’s totient function. Furthermore, a φ-partition is reduced if each of its summands is
simple, where a simple number is known as 1 or a product of the first primes. More precisely,
let pi denote the i-th prime and define A0 = 1 and Ai =

∏i
j=1 pj , which is the i-th simple

number. Jones proved that every simple number has the only trivial φ-partition Ai = Ai, and
each non-simple number n has a nontrivial φ-partition as follows: Let p and q denote distinct
primes. Then

(I) n = pα−1t + · · ·+ pα−1t︸ ︷︷ ︸
p

if n = pαt for α > 1 and p - t,

(II) n = j + · · ·+ j︸ ︷︷ ︸
p−q

+qj if n = pj where p and q do not divide j and q < p.

This gives algorithms from which we can obtain at least one reduced φ-partition of any
non-simple number. In fact, we can regard a reduced φ-partition of n as a solution of the
following system of equations in (x0, x1, . . . ):{

n = x0 + x1A1 + x2A2 + . . .

φ(n) = x0 + x1φ(A1) + x2φ(A2) + . . .
(1.1)

such that xj ’s are non-negative integers.
Let S(n) and S+(n) denote the sets of all integer and nonnegative integer solutions of

(1.1), respectively. A positive integer n is called semisimple if it has exactly one reduced
φ-partition, that is, |S+(n)| = 1.

In [3], a complete characterization of semisimple integers was given (cf. [2]):
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Theorem 1.1: Let n be a nonsimple integer. Then n is semisimple if and only if n is
a prime, or n = 32, or n = aq1 · · · qkAi with a(q1 − pi+1) · · · (qk − pi+1) < pi+1, where
i ≥ 1, k ≥ 0, q1 > q2 > · · · > qk > pi+1 are primes and a is a positive integer.

In [3] it also asked for the set S+(n) for any non-semisimple number n. In this note, we
present a new algorithm to exhaust the set.

2. ALGORITHM

By S we denote the set of all sequences a = (a0, a1, . . . ) such that aj ’s are integers and
all but finite many of them are zero. (Here, a bold letter always denotes an element of S.) For
convenience, we omit its terminal 0’s, for example, we write (a0, . . . , ai, 0, . . . ) = (a0, . . . , ai).

Given a subset T of S, let T̂ denote the subset of T consisting of all a = (a0, a1, . . . )’s
such that ar ≥ 0 for r ≥ 1; and let T+ denote the set of all nonnegative integer sequences
in T . Clearly, Ŝ(n) ⊂ Ŝ and S+(n) ⊂ S+. Given an a = (a0, a1, . . . , aj , . . . ) ∈ S, let Sj(a)
denote the set of all integer solutions of the following system of equations:{ ∑j

r=0 arAr =
∑j

r=0 xrAr + Aj+1∑j
r=0 arφ(Ar) =

∑j
r=0 xrφ(Ar) + φ(Aj+1).

(2.2)

Define a linear order “�” on S to be the “right” lexicographic order, that is, a ≺ b if
ai < bi, for some i ≥ 0, and ai+j = bi+j for all j > 0. Given a subset T ⊂ S and a, b ∈ T , we
say a and b are adjacent in T if there is no c ∈ T with a ≺ c ≺ b.

For exhausting the set S+(n) we proceed to give a new algorithm by solving the system
(2.2).

We define an operator E on S+(n) by E(a) = a if S+
j (a) = ∅ for all j ≥ 1; otherwise,

E(a) = (y0, y1, . . . , yj , aj+1 + 1, aj+2, . . . ), (2.3)

where j is the least positive index with S+
j (a) 6= ∅ and y = (y0, y1, . . . , yj) is the minimum

element of S+
j (a) in order �. Clearly, a ∈ S+(n) implies that E(a) ∈ S+(n) and a � E(a).

Furthermore, define E0 to be the identity map, E−1 to be the inverse of E, that is, E−1(b) =
a if b = E(a). For an integer t we inductively define the operator Et by Et(a) = E(Et−1(a))
for a ∈ S+(n).

It is evident that if a is maximal in (S+(n),�), then E(a) = a, in other words, S+
j (a) = ∅

for all j ≥ 1. We now characterize the maximum element of S+(n). To do this, we introduce
some notations.

For j ≥ 1, write Γj = Aj − φ(Aj). It is easy to see that (pj+1 + 1)Γj > Γj+1 > pj+1Γj .
(See [3] Lemma 3.)
Lemma 2.1: Let a = (a0, a1, . . . ) be in S+(n). Then E(a) � a if and only if there is an index
j > 0 such that

j∑
r=1

arΓr ≥ Γj+1. (2.4)
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Proof: Keep the notation of E(a) as in (2.3). Suppose E(a) � a. Then y =
(y0, y1, . . . , yj) is a nonnegative integer solution of (2.2). Subtracting the second equation
from the first in (2.2) and substituting by y, we get

j∑
r=1

arΓr =
j∑

r=1

yrΓr + Γj+1 ≥ Γj+1,

as desired.
Conversely, if there is a j ≥ 1 satisfying (2.4), we may suppose that this j is the least

index with this property. Note that Γ1 = 1, from which we see that there are nonnegative
integers x1, . . . , xj such that

j∑
r=1

arΓr − Γj+1 =
j∑

r=1

xrΓr. (2.5)

It is easy to check that x = (x0, x1, . . . , xj) ∈ Ŝj(a), where x0 is given by

x0 − a0 =
j∑

r=1

arAr −Aj+1 −
j∑

r=1

xrAr =
j∑

r=1

arφ(Ar)− φ(Aj+1)−
j∑

r=1

xrφ(Ar).

Therefore, in order to complete the proof it suffices to prove that z0− a0 ≥ 0 for a z ∈ S+
j (a).

Let z = (z0, z1, . . . , zj) be the maximum element of (Ŝj(a),�). If j = 1, from a1Γ1 =
Γ2 + z1Γ1, i.e., a1 − z1 = A2 − φ(A2) = 4, it follows that z0 − a0 = (a1 − z1)p1 −A2 = 2 > 0.

Assume now j > 1. By induction we may suppose that
∑i−1

r=1 zrΓr < Γi holds for each
1 ≤ i < j because z is maximal in (Ŝj(a),�). In particular, zr < pr+1 + 1 for r < j. By the
minimality of j we may assume that ar < pr+1 + 1 for r < j. From the minimality of j we
can also see that aj > zj . Let i be the index such that ar ≥ zr for i ≤ r ≤ j and ai−1 < zi−1,
where 1 ≤ i ≤ j, and put a′r = ar − zr for 1 ≤ r ≤ j. Then |a′r| < pr+1 + 1 for r < i and∑j

r=i a′rΓr ≥ Γj+1 (otherwise, i > 2 and
∑i−2

r=1 arΓr > (zi−1 − ai−1)Γi−1 ≥ Γi−1, which
contradicts the choice of j). Set σr = Γr

Ar
= 1− φ(Ar)

Ar
. Then σr < σj+1 for r < j + 1. We thus

have
j∑

r=i

a′rΓr =
j∑

r=i

a′rArσr ≥ Γj+1 = Aj+1σj+1,

which implies that
∑j

r=i a′rAr > Aj+1.
Write

∑j
r=i a′rAr − Aj+1 = tAi, where t is a positive integer. If t ≥ 2, taking account of

|a′r| ≤ pr+1 for r < i, we then have

z0 − a0 =
j∑

r=1

a′rAr −Aj+1 ≥ 2Ai −
i−1∑
r=1

pr+1Ar

= Ai −
i−1∑
r=2

Ar > 0,
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which yields S+
j (a) 6= ∅. If t = 1, then biAi + · · ·+ bjAj = Aj+1, where bi = a′i−1 and br = a′r

for i < r ≤ j. From the above case it is easy to see that pj+1 − 1 ≤ bj ≤ pj+1. If bj = pj+1,
then bi = · · · = bj−1 = 0; if bj = pj+1 − 1, then biAi + · · ·+ bj−1Aj−1 = Aj . Therefore, there
is an s with i ≤ s ≤ j such that bs = ps+1 and br = 0 if r < s and br = pr+1− 1 if r > s. Note
that (pj+1 − 1)φ(Aj) = φ(Aj+1) and zr ≤ pr+1 for r < i. Thus,

z0 − a0 =
j∑

r=1

arφ(Ar)− φ(Aj+1)−
j∑

r=1

zrφ(Ar)

≥ φ(Ai) +
j∑

r=s

brφ(Ar)− φ(Aj+1)−
i−1∑
r=1

pr+1φ(Ar)

≥ 2φ(Ai)−
i−1∑
r=1

(φ(Ar+1) + φ(Ar))

> φ(Ai) + 1− 2
i−1∑
r=1

φ(Ar) > 0.

We still have S+
j (a) 6= ∅. Therefore, (2.3) is specified as

E(a) = (y0, y1, . . . , yj , aj+1 + 1, aj+2 . . . ), (2.6)

where (y0, y1, . . . , yj) is the minimum element of S+
j (a).

¿From definition we can immediately obtain the following proposition, which characterizes
the adjacency relation on S+(n), hence whole S+(n) can be obtained.
Theorem 2.2: Suppose a and b are in S+(n) with a ≺ b. Then a and b are adjacent in
S+(n) if and only if b = E(a). Thus,

S+(n) = {Et(a)|t ∈ Z,a is that one obtained by Algorithms I and II}.

3. CONCLUDING REMARKS

It can be seen from Theorem 1.1 that all odd integers but prime numbers and 32 are
non-semisimple, while (pi+1−1)Ai and pi+2Ai are semisimple for all i ≥ 1. With the notation
in Theorem 1.1 for a = 1 and k ≥ 2, the smallest semisimple number is p9 × p8 × A6 =
23×19×13×11×7×5×3×2. For p8×p7×A5 = 746130 we list the elements of S+(746130)
as follows:

(0, 0, 0, 0, 0, 24, 6, 1), (270, 270, 90, 18, 2, 10, 7, 1), (404, 2, 157, 18, 2, 10, 7, 1),
(456, 54, 1, 44, 2, 10, 7, 1), (482, 2, 14, 44, 2, 10, 7, 1), (486, 6, 2, 46, 2, 10, 7, 1),
(488, 2, 3, 46, 2, 10, 7, 1), (518, 32, 13, 6, 7, 10, 7, 1), (534, 0, 21, 6, 7, 10, 7, 1),
(540, 6, 3, 9, 7, 10, 7, 1), (542, 2, 4, 9, 7, 10, 7, 1), (548, 8, 6, 1, 8, 10, 7, 1),
(552, 0, 8, 1, 8, 10, 7, 1), (554, 2, 2, 2, 8, 10, 7, 1).
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We have seen that it is easier to determine an image of E than that of E−1. Therefore, in
order to exhaust the set S+(n), it would be interesting to find the minimum element of S+(n)
for any non-φ-semisimple number n. It is not difficult to verify that in the example above, the
partition obtained by Algorithms (I) and (II) is just the minimum element of S+(746130). We
guess that it is always the case for all non-semisimple numbers.
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