ON THE SET OF REDUCED ϕ-PARTITIONS OF A POSITIVE INTEGER*

Jun Wang
Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P.R. China
\section*{Xin Wang}
Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P.R. China
(Submitted May 2003-Final Revision October 2004)

Abstract

Given a positive integer n, the sum $n=a_{1}+\cdots+a_{i}$ with $1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{i} \in \mathbb{N}$ is called a ϕ-partition if it satisfies $\phi(n)=\phi\left(a_{1}\right)+\cdots+\phi\left(a_{i}\right)$, where ϕ is Euler's totient function. And, a ϕ-partition is reduced if each of its summands is simple, where a simple number is known as 1 or a product of the first primes. In this note we will present a new algorithm to exhaust the set of all reduced ϕ-partitions of n.

1. INTRODUCTION

A partition of $n \in \mathbb{N}$, the set of all positive integers, is defined to be the sum $n=a_{1}+\cdots+a_{i}$ with $1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{i} \in \mathbb{N}$. In [1], Jones introduced an interesting partition: the sum $n=a_{1}+\cdots+a_{i}$ is called a ϕ-partition if it satisfies $\phi(n)=\phi\left(a_{1}\right)+\cdots+\phi\left(a_{i}\right)$, where ϕ is Euler's totient function. Furthermore, a ϕ-partition is reduced if each of its summands is simple, where a simple number is known as 1 or a product of the first primes. More precisely, let p_{i} denote the i-th prime and define $A_{0}=1$ and $A_{i}=\prod_{j=1}^{i} p_{j}$, which is the i-th simple number. Jones proved that every simple number has the only trivial ϕ-partition $A_{i}=A_{i}$, and each non-simple number n has a nontrivial ϕ-partition as follows: Let p and q denote distinct primes. Then
(I) $n=\underbrace{p^{\alpha-1} t+\cdots+p^{\alpha-1} t}_{p}$ if $n=p^{\alpha} t$ for $\alpha>1$ and $p \nmid t$,
(II) $n=\underbrace{j+\cdots+j}_{p-q}+q j$ if $n=p j$ where p and q do not divide j and $q<p$.

This gives algorithms from which we can obtain at least one reduced ϕ-partition of any non-simple number. In fact, we can regard a reduced ϕ-partition of n as a solution of the following system of equations in $\left(x_{0}, x_{1}, \ldots\right)$:

$$
\left\{\begin{array}{lll}
n & =x_{0}+x_{1} A_{1} & \tag{1.1}\\
+x_{2} A_{2}+\ldots \\
\phi(n) & =x_{0}+x_{1} \phi\left(A_{1}\right) & \\
+x_{2} \phi\left(A_{2}\right)+\ldots
\end{array}\right.
$$

such that x_{j} 's are non-negative integers.
Let $S(n)$ and $S^{+}(n)$ denote the sets of all integer and nonnegative integer solutions of (1.1), respectively. A positive integer n is called semisimple if it has exactly one reduced ϕ-partition, that is, $\left|S^{+}(n)\right|=1$.

In [3], a complete characterization of semisimple integers was given (cf. [2]):

Theorem 1.1: Let n be a nonsimple integer. Then n is semisimple if and only if n is a prime, or $n=3^{2}$, or $n=a q_{1} \cdots q_{k} A_{i}$ with $a\left(q_{1}-p_{i+1}\right) \cdots\left(q_{k}-p_{i+1}\right)<p_{i+1}$, where $i \geq 1, k \geq 0, q_{1}>q_{2}>\cdots>q_{k}>p_{i+1}$ are primes and a is a positive integer.

In [3] it also asked for the set $S^{+}(n)$ for any non-semisimple number n. In this note, we present a new algorithm to exhaust the set.

2. ALGORITHM

By S we denote the set of all sequences $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots\right)$ such that a_{j} 's are integers and all but finite many of them are zero. (Here, a bold letter always denotes an element of S.) For convenience, we omit its terminal 0 's, for example, we write $\left(a_{0}, \ldots, a_{i}, 0, \ldots\right)=\left(a_{0}, \ldots, a_{i}\right)$.

Given a subset T of S, let \hat{T} denote the subset of T consisting of all $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots\right)$'s such that $a_{r} \geq 0$ for $r \geq 1$; and let T^{+}denote the set of all nonnegative integer sequences in T. Clearly, $\hat{S}(n) \subset \hat{S}$ and $S^{+}(n) \subset S^{+}$. Given an $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots, a_{j}, \ldots\right) \in S$, let $S_{j}(\boldsymbol{a})$ denote the set of all integer solutions of the following system of equations:

$$
\begin{cases}\sum_{r=0}^{j} a_{r} A_{r} & =\sum_{r=0}^{j} x_{r} A_{r}+A_{j+1} \tag{2.2}\\ \sum_{r=0}^{j} a_{r} \phi\left(A_{r}\right) & =\sum_{r=0}^{j} x_{r} \phi\left(A_{r}\right)+\phi\left(A_{j+1}\right) .\end{cases}
$$

Define a linear order " \preceq " on S to be the "right" lexicographic order, that is, $\boldsymbol{a} \prec \boldsymbol{b}$ if $a_{i}<b_{i}$, for some $i \geq 0$, and $a_{i+j}=b_{i+j}$ for all $j>0$. Given a subset $T \subset S$ and $\boldsymbol{a}, \boldsymbol{b} \in T$, we say \boldsymbol{a} and \boldsymbol{b} are adjacent in T if there is no $\boldsymbol{c} \in T$ with $\boldsymbol{a} \prec \boldsymbol{c} \prec \boldsymbol{b}$.

For exhausting the set $S^{+}(n)$ we proceed to give a new algorithm by solving the system (2.2).

We define an operator \mathfrak{E} on $S^{+}(n)$ by $\mathfrak{E}(\boldsymbol{a})=\boldsymbol{a}$ if $S_{j}^{+}(\boldsymbol{a})=\emptyset$ for all $j \geq 1$; otherwise,

$$
\begin{equation*}
\mathfrak{E}(\boldsymbol{a})=\left(y_{0}, y_{1}, \ldots, y_{j}, a_{j+1}+1, a_{j+2}, \ldots\right), \tag{2.3}
\end{equation*}
$$

where j is the least positive index with $S_{j}^{+}(\boldsymbol{a}) \neq \emptyset$ and $\boldsymbol{y}=\left(y_{0}, y_{1}, \ldots, y_{j}\right)$ is the minimum element of $S_{j}^{+}(\boldsymbol{a})$ in order \preceq. Clearly, $\boldsymbol{a} \in S^{+}(n)$ implies that $\mathfrak{E}(\boldsymbol{a}) \in S^{+}(n)$ and $\boldsymbol{a} \preceq \mathfrak{E}(\boldsymbol{a})$.

Furthermore, define \mathfrak{E}^{0} to be the identity map, \mathfrak{E}^{-1} to be the inverse of \mathfrak{E}, that is, $\mathfrak{E}^{-1}(\boldsymbol{b})=$ \boldsymbol{a} if $\boldsymbol{b}=\mathfrak{E}(\boldsymbol{a})$. For an integer t we inductively define the operator \mathfrak{E}^{t} by $\mathfrak{E}^{t}(\boldsymbol{a})=\mathfrak{E}\left(\mathfrak{E}^{t-1}(\boldsymbol{a})\right)$ for $\boldsymbol{a} \in S^{+}(n)$.

It is evident that if \boldsymbol{a} is maximal in $\left(S^{+}(n), \preceq\right)$, then $\mathfrak{E}(\boldsymbol{a})=\boldsymbol{a}$, in other words, $S_{j}^{+}(\boldsymbol{a})=\emptyset$ for all $j \geq 1$. We now characterize the maximum element of $S^{+}(n)$. To do this, we introduce some notations.

For $j \geq 1$, write $\Gamma_{j}=A_{j}-\phi\left(A_{j}\right)$. It is easy to see that $\left(p_{j+1}+1\right) \Gamma_{j}>\Gamma_{j+1}>p_{j+1} \Gamma_{j}$. (See [3] Lemma 3.)
Lemma 2.1: Let $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots\right)$ be in $S^{+}(n)$. Then $\mathfrak{E}(\boldsymbol{a}) \succ \boldsymbol{a}$ if and only if there is an index $j>0$ such that

$$
\begin{equation*}
\sum_{r=1}^{j} a_{r} \Gamma_{r} \geq \Gamma_{j+1} \tag{2.4}
\end{equation*}
$$

Proof: Keep the notation of $\mathfrak{E}(\boldsymbol{a})$ as in (2.3). Suppose $\mathfrak{E}(\boldsymbol{a}) \succ \boldsymbol{a}$. Then $\boldsymbol{y}=$ $\left(y_{0}, y_{1}, \ldots, y_{j}\right)$ is a nonnegative integer solution of (2.2). Subtracting the second equation from the first in (2.2) and substituting by \boldsymbol{y}, we get

$$
\sum_{r=1}^{j} a_{r} \Gamma_{r}=\sum_{r=1}^{j} y_{r} \Gamma_{r}+\Gamma_{j+1} \geq \Gamma_{j+1},
$$

as desired.
Conversely, if there is a $j \geq 1$ satisfying (2.4), we may suppose that this j is the least index with this property. Note that $\Gamma_{1}=1$, from which we see that there are nonnegative integers x_{1}, \ldots, x_{j} such that

$$
\begin{equation*}
\sum_{r=1}^{j} a_{r} \Gamma_{r}-\Gamma_{j+1}=\sum_{r=1}^{j} x_{r} \Gamma_{r} . \tag{2.5}
\end{equation*}
$$

It is easy to check that $\boldsymbol{x}=\left(x_{0}, x_{1}, \ldots, x_{j}\right) \in \hat{S}_{j}(\boldsymbol{a})$, where x_{0} is given by

$$
x_{0}-a_{0}=\sum_{r=1}^{j} a_{r} A_{r}-A_{j+1}-\sum_{r=1}^{j} x_{r} A_{r}=\sum_{r=1}^{j} a_{r} \phi\left(A_{r}\right)-\phi\left(A_{j+1}\right)-\sum_{r=1}^{j} x_{r} \phi\left(A_{r}\right) .
$$

Therefore, in order to complete the proof it suffices to prove that $z_{0}-a_{0} \geq 0$ for a $\boldsymbol{z} \in S_{j}^{+}(\boldsymbol{a})$.
Let $\boldsymbol{z}=\left(z_{0}, z_{1}, \ldots, z_{j}\right)$ be the maximum element of ($\left.\hat{S}_{j}(\boldsymbol{a}), \preceq\right)$. If $j=1$, from $a_{1} \Gamma_{1}=$ $\Gamma_{2}+z_{1} \Gamma_{1}$, i.e., $a_{1}-z_{1}=A_{2}-\phi\left(A_{2}\right)=4$, it follows that $z_{0}-a_{0}=\left(a_{1}-z_{1}\right) p_{1}-A_{2}=2>0$.

Assume now $j>1$. By induction we may suppose that $\sum_{r=1}^{i-1} z_{r} \Gamma_{r}<\Gamma_{i}$ holds for each $1 \leq i<j$ because \boldsymbol{z} is maximal in $\left(\hat{S}_{j}(\boldsymbol{a}), \preceq\right)$. In particular, $z_{r}<p_{r+1}+1$ for $r<j$. By the minimality of j we may assume that $a_{r}<p_{r+1}+1$ for $r<j$. From the minimality of j we can also see that $a_{j}>z_{j}$. Let i be the index such that $a_{r} \geq z_{r}$ for $i \leq r \leq j$ and $a_{i-1}<z_{i-1}$, where $1 \leq i \leq j$, and put $a_{r}^{\prime}=a_{r}-z_{r}$ for $1 \leq r \leq j$. Then $\left|a_{r}^{\prime}\right|<p_{r+1}+1$ for $r<i$ and $\sum_{r=i}^{j} a_{r}^{\prime} \Gamma_{r} \geq \Gamma_{j+1} \quad$ (otherwise, $i>2$ and $\sum_{r=1}^{i-2} a_{r} \Gamma_{r}>\left(z_{i-1}-a_{i-1}\right) \Gamma_{i-1} \geq \Gamma_{i-1}$, which contradicts the choice of j). Set $\sigma_{r}=\frac{\Gamma_{r}}{A_{r}}=1-\frac{\phi\left(A_{r}\right)}{A_{r}}$. Then $\sigma_{r}<\sigma_{j+1}$ for $r<j+1$. We thus have

$$
\sum_{r=i}^{j} a_{r}^{\prime} \Gamma_{r}=\sum_{r=i}^{j} a_{r}^{\prime} A_{r} \sigma_{r} \geq \Gamma_{j+1}=A_{j+1} \sigma_{j+1},
$$

which implies that $\sum_{r=i}^{j} a_{r}^{\prime} A_{r}>A_{j+1}$.
Write $\sum_{r=i}^{j} a_{r}^{\prime} A_{r}-A_{j+1}=t A_{i}$, where t is a positive integer. If $t \geq 2$, taking account of $\left|a_{r}^{\prime}\right| \leq p_{r+1}$ for $r<i$, we then have

$$
\begin{aligned}
z_{0}-a_{0} & =\sum_{r=1}^{j} a_{r}^{\prime} A_{r}-A_{j+1} \geq 2 A_{i}-\sum_{r=1}^{i-1} p_{r+1} A_{r} \\
& =A_{i}-\sum_{r=2}^{i-1} A_{r}>0,
\end{aligned}
$$

which yields $S_{j}^{+}(\boldsymbol{a}) \neq \emptyset$. If $t=1$, then $b_{i} A_{i}+\cdots+b_{j} A_{j}=A_{j+1}$, where $b_{i}=a_{i}^{\prime}-1$ and $b_{r}=a_{r}^{\prime}$ for $i<r \leq j$. From the above case it is easy to see that $p_{j+1}-1 \leq b_{j} \leq p_{j+1}$. If $b_{j}=p_{j+1}$, then $b_{i}=\cdots=b_{j-1}=0$; if $b_{j}=p_{j+1}-1$, then $b_{i} A_{i}+\cdots+b_{j-1} A_{j-1}=A_{j}$. Therefore, there is an s with $i \leq s \leq j$ such that $b_{s}=p_{s+1}$ and $b_{r}=0$ if $r<s$ and $b_{r}=p_{r+1}-1$ if $r>s$. Note that $\left(p_{j+1}-1\right) \phi\left(A_{j}\right)=\phi\left(A_{j+1}\right)$ and $z_{r} \leq p_{r+1}$ for $r<i$. Thus,

$$
\begin{aligned}
z_{0}-a_{0} & =\sum_{r=1}^{j} a_{r} \phi\left(A_{r}\right)-\phi\left(A_{j+1}\right)-\sum_{r=1}^{j} z_{r} \phi\left(A_{r}\right) \\
& \geq \phi\left(A_{i}\right)+\sum_{r=s}^{j} b_{r} \phi\left(A_{r}\right)-\phi\left(A_{j+1}\right)-\sum_{r=1}^{i-1} p_{r+1} \phi\left(A_{r}\right) \\
& \geq 2 \phi\left(A_{i}\right)-\sum_{r=1}^{i-1}\left(\phi\left(A_{r+1}\right)+\phi\left(A_{r}\right)\right) \\
& >\phi\left(A_{i}\right)+1-2 \sum_{r=1}^{i-1} \phi\left(A_{r}\right)>0
\end{aligned}
$$

We still have $\mathcal{S}_{j}^{+}(\boldsymbol{a}) \neq \emptyset$. Therefore, (2.3) is specified as

$$
\begin{equation*}
\mathfrak{E}(\boldsymbol{a})=\left(y_{0}, y_{1}, \ldots, y_{j}, a_{j+1}+1, a_{j+2} \ldots\right), \tag{2.6}
\end{equation*}
$$

where $\left(y_{0}, y_{1}, \ldots, y_{j}\right)$ is the minimum element of $S_{j}^{+}(\boldsymbol{a})$.
¿From definition we can immediately obtain the following proposition, which characterizes the adjacency relation on $S^{+}(n)$, hence whole $S^{+}(n)$ can be obtained.
Theorem 2.2: Suppose \boldsymbol{a} and \boldsymbol{b} are in $S^{+}(n)$ with $\boldsymbol{a} \prec \boldsymbol{b}$. Then \boldsymbol{a} and \boldsymbol{b} are adjacent in $S^{+}(n)$ if and only if $\boldsymbol{b}=\mathfrak{E}(\boldsymbol{a})$. Thus,

$$
S^{+}(n)=\left\{\mathfrak{E}^{t}(\boldsymbol{a}) \mid t \in \mathbb{Z}, \boldsymbol{a} \text { is that one obtained by Algorithms I and II }\right\} .
$$

3. CONCLUDING REMARKS

It can be seen from Theorem 1.1 that all odd integers but prime numbers and 3^{2} are non-semisimple, while $\left(p_{i+1}-1\right) A_{i}$ and $p_{i+2} A_{i}$ are semisimple for all $i \geq 1$. With the notation in Theorem 1.1 for $a=1$ and $k \geq 2$, the smallest semisimple number is $p_{9} \times p_{8} \times A_{6}=$ $23 \times 19 \times 13 \times 11 \times 7 \times 5 \times 3 \times 2$. For $p_{8} \times p_{7} \times A_{5}=746130$ we list the elements of $S^{+}(746130)$ as follows:

$$
\begin{array}{lll}
(0,0,0,0,0,24,6,1), & (270,270,90,18,2,10,7,1), & (404,2,157,18,2,10,7,1), \\
(456,54,1,44,2,10,7,1), & (482,2,14,44,2,10,7,1), & (486,6,2,46,2,10,7,1), \\
(488,2,3,46,2,10,7,1), & (518,32,13,6,7,10,7,1), & (534,0,21,6,7,10,7,1), \\
(540,6,3,9,7,10,7,1), & (542,2,4,9,7,10,7,1), & (548,8,6,1,8,10,7,1), \\
(552,0,8,1,8,10,7,1), & (554,2,2,2,8,10,7,1) . &
\end{array}
$$

We have seen that it is easier to determine an image of \mathfrak{E} than that of \mathfrak{E}^{-1}. Therefore, in order to exhaust the set $S^{+}(n)$, it would be interesting to find the minimum element of $S^{+}(n)$ for any non- ϕ-semisimple number n. It is not difficult to verify that in the example above, the partition obtained by Algorithms (I) and (II) is just the minimum element of $S^{+}(746130)$. We guess that it is always the case for all non-semisimple numbers.

REFERENCES

[1] Patricia Jones. " ϕ-partitions." The Fibonacci Quarterly 29.4 (1991): 347-350.
[2] Corey Powell. "On the Uniqueness of Reduced Phi-Partitions." The Fibonacci Quarterly 34.3 (1996): 194-198.
[3] Jun Wang. "Reduced ϕ-partitions of Positive Integers." The Fibonacci Quarterly 31.4 (1993): 365-369.

AMS Classification Numbers: 05A17, 11P81

必悹

