PRIMALITY TESTS FOR NUMBERS OF THE FORM $k \cdot 2^{m} \pm 1$

Zhi-Hong Sun
Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsu 223001, P.R. China e-mail: zhsun@hytc.edu.cn

(Submitted January 2004-Final Revision December 2004)

Abstract

Let $k, m \in \mathbb{Z}, m \geq 2,0<k<2^{m}$ and $2 \vee k$. In the paper we give a general primality criterion for numbers of the form $k \cdot 2^{m} \pm 1$, which can be viewed as a generalization of the LucasLehmer test for Mersenne primes. In particular, for $k=3,9$ we obtain explicit primality tests, which are simpler than current known results. We also give a new primality test for Fermat numbers and criteria for $9 \cdot 2^{4 n+3} \pm 1,3 \cdot 2^{20 n+6} \pm 1$ or $3 \cdot 2^{36 n+6} \pm 1$ to be twin primes.

1. INTRODUCTION

For nonnegative integers n, the numbers $F_{n}=2^{2^{n}}+1$ are called the Fermat numbers. In 1878 Pepin showed that $F_{n}(n \geq 1)$ is prime if and only if $3^{\left(F_{n}-1\right) / 2} \equiv-1\left(\bmod F_{n}\right)$. For primes p, let $M_{p}=2^{p}-1$. The famous Lucas-Lehmer test states that M_{p} is a Mersenne prime if and only if $M_{p} \mid S_{p-2}$, where $\left\{S_{n}\right\}$ is given by $S_{0}=4$ and $S_{k+1}=S_{k}^{2}-2(k=0,1,2, \ldots)$.

In [1], [2], [6] and [9], W. Borho, W. Bosma, H. Riesel and H.C. Williams extended the above two tests to numbers of the form $k \cdot 2^{m} \pm 1$, where $0<k<2^{m}$ and k is odd. For example, we have the following known results.
Theorem 1.1: Let $p=k \cdot 2^{m}+1$ with $m \geq 2,0<k<2^{m}, 2 \downarrow k$ and $D \in \mathbb{Z}$ with the Jacobi symbol $\left(\frac{D}{p}\right)=-1$. Then p is prime if and only if $D^{(p-1) / 2} \equiv-1(\bmod p)$. In particular, if $3 \vee k$ we may take $D=3$.

Let $\left\{S_{n}(x)\right\}$ be given by $S_{0}(x)=x$ and $S_{k+1}(x)=\left(S_{k}(x)\right)^{2}-2(k \geq 0)$. Then we have Theorem 1.2: Let $p=k \cdot 2^{m}-1$ with $m \geq 3,0<k<2^{m}$ and $k \equiv \pm 1(\bmod 6)$, and let $x=(2+\sqrt{3})^{k}+(2-\sqrt{3})^{k}$. Then p is prime if and only if $p \mid S_{m-2}(x)$.

Here we point out that the x in Theorem 1.2 is also given by $x=\sum_{r=0}^{(k-1) / 2} \frac{k}{k-r}$ $\binom{k-r}{r}(-1)^{r} 4^{k-2 r}$.

In this paper we prove the following main result
(1.1) For $m \geq 2$ let $p=k \cdot 2^{m} \pm 1$ with $0<k<2^{m}$ and k odd. If b is an integer such that $\left(\frac{2+b}{p}\right)=\left(\frac{2-b}{p}\right)=-1$, then p is prime if and only if $p \left\lvert\, S_{m-2}\left(\sum_{r=0}^{(k-1) / 2} \frac{k}{k-r}\binom{k-r}{r}\right.\right.$ $\left.(-1)^{r} b^{k-2 r}\right)$.

As applications of (1.1) we have many new simple primality criteria for numbers of the form $k \cdot 2^{m} \pm 1(k=1,3,9)$. Here are some typical results.
(1.2) For $n \geq 1$ the Fermat number F_{n} is prime if and only if $F_{n} \mid S_{2^{n}-2}(5)$.
(1.3) Let $m \geq 3$ be a positive integer. If $m \equiv 0(\bmod 2)$ or $m \equiv 5,11(\bmod 12)$, then $9 \cdot 2^{m}-1$ is composite. If $m \equiv 1,3,7,9(\bmod 12)$, then $9 \cdot 2^{m}-1$ is prime if and only if $9 \cdot 2^{m}-1 \mid S_{m-2}(x)$, where

$$
x= \begin{cases}5778 & \text { if } m \equiv 1,9(\bmod 12) \\ 1330670 & \text { if } m \equiv 3(\bmod 12) \\ 2186871698 & \text { if } m \equiv 7(\bmod 12)\end{cases}
$$

(1.4) Let n be a nonnegative integer. Then $9 \cdot 2^{4 n+3}-1$ and $9 \cdot 2^{4 n+3}+1$ are twin primes if and only if $\left(9 \cdot 2^{4 n+3}\right)^{2}-1 \mid S_{4 n+1}(32672 \cdot 1067459581)$.

Throughout this paper we use the following notations: \mathbb{Z}-the set of integers, \mathbb{N}-the set of positive integers, $\left(\frac{d}{p}\right)$-the Jacobi symbol, (m, n)-the greatest common divisor of m and $n, S_{n}(x)$ - the sequence defined by $S_{0}(x)=x$ and $S_{k+1}(x)=\left(S_{k}(x)\right)^{2}-2(k \geq 0)$.

2. BASIC LEMMAS

For $P, Q \in \mathbb{Z}$ the Lucas sequences $\left\{U_{n}(P, Q)\right\}$ and $\left\{V_{n}(P, Q)\right\}$ are defined by

$$
U_{0}(P, Q)=0, U_{1}(P, Q)=1, \quad U_{n+1}(P, Q)=P U_{n}(P, Q)-Q U_{n-1}(P, Q)(n \geq 1)
$$

and

$$
V_{0}(P, Q)=2, V_{1}(P, Q)=P, \quad V_{n+1}(P, Q)=P V_{n}(P, Q)-Q V_{n-1}(P, Q)(n \geq 1)
$$

Let $D=P^{2}-4 Q$. It is well known that

$$
\begin{equation*}
U_{n}(P, Q)=\frac{1}{\sqrt{D}}\left\{\left(\frac{P+\sqrt{D}}{2}\right)^{n}-\left(\frac{P-\sqrt{D}}{2}\right)^{n}\right\}(D \neq 0) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{n}(P, Q)=\left(\frac{P+\sqrt{D}}{2}\right)^{n}+\left(\frac{P-\sqrt{D}}{2}\right)^{n} \tag{2.2}
\end{equation*}
$$

Set $U_{n}=U_{n}(P, Q)$ and $V_{n}=V_{n}(P, Q)$. From the above one can easily check that

$$
\begin{equation*}
V_{n}=P U_{n}-2 Q U_{n-1}=2 U_{n+1}-P U_{n} \tag{2.3}
\end{equation*}
$$

¿From [5] we also have

$$
\begin{equation*}
U_{2 n}=U_{n} V_{n}, V_{2 n}=V_{n}^{2}-2 Q^{n} \quad \text { and } \quad V_{n}^{2}-D U_{n}^{2}=4 Q^{n} \tag{2.4}
\end{equation*}
$$

If p is an odd prime not dividing Q, it is well known that ([5])

$$
\begin{equation*}
U_{p-\left(\frac{D}{p}\right)}(P, Q) \equiv 0 \quad(\bmod p) \quad \text { and } \quad U_{p}(P, Q) \equiv\left(\frac{D}{p}\right) \quad(\bmod p) \tag{2.5}
\end{equation*}
$$

Let p be an odd prime such that $\left(\frac{Q}{p}\right)=1$ and $p \backslash D$. D. H. Lehmer proved the following stronger congruence (see [4] or [9, p.85]):

$$
\begin{equation*}
U_{\left(p-\left(\frac{D}{p}\right)\right) / 2}(P, Q) \equiv 0 \quad(\bmod p) . \tag{2.6}
\end{equation*}
$$

Definition 2.1: Let $P, Q \in \mathbb{Z}$, and p be an odd prime such that $p \vee Q$. Define $r_{p}(P, Q)$ to be the smallest positive integer n such that $p \mid U_{n}(P, Q)$.
¿From [5, IV.17] or [9, p.87] we know that $p \mid U_{m}(P, Q)$ if and only if $r_{p}(P, Q) \mid m$. This can also be deduced from [9, (4.2.59), p.81]. Using (2.5) and (2.6) we have
Lemma 2.1: Let P and Q be integers, $D=P^{2}-4 Q$, and let p be an odd prime such that $p \bigvee Q$. Then $r_{p}(P, Q) \left\lvert\, p-\left(\frac{D}{p}\right)\right.$. Moreover, if $\left(\frac{Q}{p}\right)=1$ and $p \bigvee D$, then $r_{p}(P, Q) \left\lvert\, \frac{p-\left(\frac{D}{p}\right)}{2}\right.$.
¿From (2.4) and induction we have
Lemma 2.2: Let $P, Q \in \mathbb{Z}, Q \neq 0$ and $n \in \mathbb{N}$. Then $S_{n}\left(\frac{P}{\sqrt{Q}}\right)=Q^{-2^{n-1}} V_{2^{n}}(P, Q)$.
Lemma 2.3: Let $P, Q \in \mathbb{Z}$ and $n \in \mathbb{N}$. Let p be an odd prime such that $p \vee Q\left(P^{2}-4 Q\right)$ and $S_{n}(P / \sqrt{Q}) \equiv 0(\bmod p)$. Then $p \equiv\left(\frac{P^{2}-4 Q}{p}\right)\left(\bmod 2^{n+\left(3+\left(\frac{Q}{p}\right)\right) / 2}\right)$.

Proof: In view of Lemma 2.2 we have $p \mid V_{2^{n}}(P, Q)$ and so $p \mid U_{2^{n+1}}(P, Q)$ by (2.4). From (2.4) we see that $p \backslash U_{2^{n}}(P, Q)$. Thus, $r_{p}(P, Q)=2^{n+1}$. This together with Lemma 2.1 gives the result.
Lemma 2.4: Let $P, Q \in \mathbb{Z}$ and $n \in \mathbb{N}$, and let $p>1$ be an odd integer such that $\left(p, Q\left(P^{2}-\right.\right.$ $4 Q))=1$ and $S_{n}(P / \sqrt{Q}) \equiv 0(\bmod p)$. Let $\alpha=n+2$ or $n+1$ according as Q is a square or not. If $p<\left(2^{\alpha}-1\right)^{2}$, then p is prime.

Proof: If p is composite, then p has a prime divisor q such that $q \leq \sqrt{p}$. Since $q \mid p$ and $S_{n}(P / \sqrt{Q}) \equiv 0(\bmod p)$ we see that $S_{n}(P / \sqrt{Q}) \equiv 0(\bmod q)$. It follows from Lemma 2.3 that $q \equiv\left(\frac{P^{2}-4 Q}{q}\right)\left(\bmod 2^{n+\left(3+\left(\frac{Q}{q}\right)\right) / 2}\right)$ and so $q \geq 2^{n+\left(3+\left(\frac{Q}{q}\right)\right) / 2}-1$. Thus, $p \geq q^{2} \geq$ $\left(2^{n+\left(3+\left(\frac{Q}{q}\right)\right) / 2}-1\right)^{2}$. This contradicts the assumption. So p must be prime.

Let $[x]$ denote the greatest integer not exceeding x. Using induction one can easily prove
Lemma $2.5([9,(4.2 .36)]):$ Let $P, Q \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then

$$
V_{n}(P, Q)=\sum_{r=0}^{[n / 2]} \frac{n}{n-r}\binom{n-r}{r} P^{n-2 r}(-Q)^{r} .
$$

3. THE GENERAL PRIMALITY TEST FOR NUMBERS OF THE FORM $k \cdot 2^{m} \pm 1$

Lemma 3.1: Let $P, Q \in \mathbb{Z}$ and $D=P^{2}-4 Q$. Let p be an odd prime such that $p \bigvee Q D$. Suppose $\left(\frac{Q}{p}\right)=1$ and so $c^{2} \equiv Q(\bmod p)$ for some integer c. Then
(i) $\quad V_{\frac{p-\left(\frac{D}{p}\right)}{2}}(P, Q) \equiv 2\left(\frac{P+2 c}{p}\right) c^{\frac{1-\left(\frac{D}{p}\right)}{2}}(\bmod p)$,
(ii) $\quad V_{\frac{p+\left(\frac{D}{p}\right)}{2}}(P, Q) \equiv P\left(\frac{P+2 c}{p}\right) c^{\frac{\left(\frac{D}{p}\right)-1}{2}}(\bmod p)$.

Proof: For $b, c \in \mathbb{Z}$ it is clear that

$$
\left(\frac{b \pm \sqrt{b^{2}-4 b c}}{2}\right)^{2}=b \cdot \frac{b-2 c \pm \sqrt{(b-2 c)^{2}-4 c^{2}}}{2}
$$

Thus, applying (2.2) we see that

$$
\begin{equation*}
V_{2 n}(b, b c)=b^{n} V_{n}\left(b-2 c, c^{2}\right) . \tag{3.1}
\end{equation*}
$$

Hence, if p is an odd prime such that $p \bigvee b^{2}-4 b c$ and $\varepsilon=\left(\frac{b^{2}-4 b c}{p}\right)$, by $[9,(4.3 .4)]$ we obtain $V_{\frac{p-\varepsilon}{2}}\left(b-2 c, c^{2}\right)=b^{-\frac{p-\varepsilon}{2}} V_{p-\varepsilon}(b, b c) \equiv b^{-\frac{p-\varepsilon}{2}} \cdot 2(b c)^{\frac{1-\varepsilon}{2}}=2 b^{-\frac{p-1}{2}} c^{\frac{1-\varepsilon}{2}} \equiv 2\left(\frac{b}{p}\right) c^{\frac{1-\varepsilon}{2}} \quad(\bmod p)$.

Now suppose $b=P+2 c$ and $c^{2} \equiv Q(\bmod p)$. Then $b^{2}-4 b c=P^{2}-4 c^{2} \equiv P^{2}-4 Q$ $(\bmod p)$ and so $\varepsilon=\left(\frac{D}{p}\right)$. From the above we see that

$$
V_{\frac{p-\varepsilon}{2}}(P, Q) \equiv V_{\frac{p-\varepsilon}{2}}\left(b-2 c, c^{2}\right) \equiv 2\left(\frac{P+2 c}{p}\right) c^{\frac{1-\varepsilon}{2}}(\bmod p) .
$$

This proves (i).
¿From (2.1) and (2.2) we see that

$$
V_{\left(p+\left(\frac{D}{p}\right)\right) / 2}(P, Q)=\frac{1}{2 Q^{\left(1-\left(\frac{D}{p}\right)\right) / 2}}\left\{P V_{\left(p-\left(\frac{D}{p}\right)\right) / 2}(P, Q)+\left(\frac{D}{p}\right) D U_{\left(p-\left(\frac{D}{p}\right)\right) / 2}(P, Q)\right\} .
$$

Thus, by (i) and (2.6) we obtain

$$
V_{\left(p+\left(\frac{D}{p}\right)\right) / 2}(P, Q) \equiv \frac{1}{2 Q^{\left(1-\left(\frac{D}{p}\right)\right) / 2}} \cdot 2 P\left(\frac{P+2 c}{p}\right) c^{\frac{1-\left(\frac{D}{p}\right)}{2}} \equiv P\left(\frac{P+2 c}{p}\right) c^{\frac{\left(\frac{D}{p}\right)-1}{2}}(\bmod p) .
$$

This proves (ii) and hence the proof is complete.
Remark 3.1: Lemma 3.1 can also be easily deduced from [7, Lemma 3.4] or [8, Lemma 3.1].

Lemma 3.2: Let $P, Q \in \mathbb{Z}$ and p be an odd prime with $p \bigvee Q\left(P^{2}-4 Q\right)$. Suppose $\left(\frac{Q}{p}\right)=1$ and so $c^{2} \equiv Q(\bmod p)$ for some integer c. Then

$$
V_{\frac{p-\left(\frac{-1}{p}\right)}{4}}(P, Q) \equiv 0 \quad(\bmod p) \quad \text { if and only if } \quad\left(\frac{2 Q+c P}{p}\right)=\left(\frac{2 Q-c P}{p}\right)=-1
$$

Proof: From Lemma 3.1 we have

$$
V_{\frac{p-\left(\frac{-1}{p}\right)}{2}}(P, Q) \equiv \begin{cases}2\left(\frac{P+2 c}{p}\right) c^{\frac{1-\left(\frac{-1}{p}\right)}{2}}(\bmod p) & \text { if }\left(\frac{4 Q-P^{2}}{p}\right)=1 \\ P\left(\frac{P+2 c}{p}\right) c^{-\frac{1+\left(\frac{-1}{p}\right)}{2}}(\bmod p) & \text { if }\left(\frac{4 Q-P^{2}}{p}\right)=-1\end{cases}
$$

Thus, applying (2.4) we obtain

$$
\begin{aligned}
V_{\frac{p-\left(\frac{-1}{p}\right)}{4}}^{2}(P, Q) & =V_{\frac{p-\left(\frac{-1}{p}\right)}{2}}(P, Q)+2 Q^{\frac{p-\left(\frac{-1}{p}\right)}{4}} \equiv V_{\frac{p-\left(\frac{-1}{p}\right)}{2}}(P, Q)+2 c^{\frac{1-\left(\frac{-1}{p}\right)}{2}}\left(\frac{c}{p}\right) \\
& \equiv \begin{cases}2 c^{\frac{1-\left(\frac{-1}{p}\right)}{2}}\left\{\left(\frac{P+2 c}{p}\right)+\left(\frac{c}{p}\right)\right\}(\bmod p) & \text { if }\left(\frac{4 Q-P^{2}}{p}\right)=1 \\
c^{-\frac{1+\left(\frac{-1}{p}\right)}{2}}\left\{P\left(\frac{P+2 c}{p}\right)+2 c\left(\frac{c}{p}\right)\right\}(\bmod p) & \text { if }\left(\frac{4 Q-P^{2}}{p}\right)=-1 .\end{cases}
\end{aligned}
$$

Since $p \bigvee P^{2}-4 Q$ and $c^{2} \equiv Q(\bmod p)$ we see that $P\left(\frac{P+2 c}{p}\right) \not \equiv-2 c\left(\frac{c}{p}\right)(\bmod p)$. Hence,

$$
\begin{aligned}
p \left\lvert\, V_{\frac{p-\left(\frac{-1}{p}\right)}{4}}(P, Q)\right. & \Longleftrightarrow\left(\frac{4 Q-P^{2}}{p}\right)=1 \quad \text { and } \quad\left(\frac{P+2 c}{p}\right)=-\left(\frac{c}{p}\right) \\
& \Longleftrightarrow\left(\frac{2 Q+c P}{p}\right)=\left(\frac{2 Q-c P}{p}\right)=-1
\end{aligned}
$$

This proves the lemma.
Lemma 3.3: Suppose $P, Q, k, n \in \mathbb{Z}$ with $k, n \geq 0$. Then

$$
V_{k n}(P, Q)=V_{n}\left(V_{k}(P, Q), Q^{k}\right)
$$

Proof: Set $V_{m}=V_{m}(P, Q)$. From [9, (4.2.8)] we know that

$$
V_{r+k}=V_{k} V_{r}-Q^{k} V_{r-k} \quad \text { and so } \quad V_{k(m+1)}=V_{k} V_{k m}-Q^{k} V_{k(m-1)} .
$$

Now we prove the result by induction on n. Clearly the result is true for $n=0,1$. Suppose the result holds for $1 \leq n \leq m$. By the above and the inductive hypothesis we have

$$
V_{k(m+1)}=V_{k} V_{m}\left(V_{k}, Q^{k}\right)-Q^{k} V_{m-1}\left(V_{k}, Q^{k}\right)=V_{m+1}\left(V_{k}, Q^{k}\right)
$$

So the result holds for $n=m+1$. Hence, the lemma is proved by induction.
Theorem 3.1: For $m \in\{2,3,4, \ldots\}$ let $p=k \cdot 2^{m} \pm 1$ with $0<k<2^{m}$ and k odd. If $b, c \in \mathbb{Z},(p, c)=1$ and $\left(\frac{2 c+b}{p}\right)=\left(\frac{2 c-b}{p}\right)=-\left(\frac{c}{p}\right)$, then p is prime if and only if $p \mid S_{m-2}(x)$, where $x=c^{-k} V_{k}\left(b, c^{2}\right)=\sum_{r=0}^{(k-1) / 2} \frac{k}{k-r}\binom{k-r}{r}(-1)^{r}(b / c)^{k-2 r}$.

Proof: Set $U_{n}=U_{n}\left(b, c^{2}\right)$ and $V_{n}=V_{n}\left(b, c^{2}\right)$. From Lemmas 3.3, 2.2 and 2.5 we have

$$
V_{\left(p-\left(\frac{-1}{p}\right)\right) / 4}=V_{k \cdot 2^{m-2}}=V_{2^{m-2}}\left(V_{k}, c^{2 k}\right)=c^{k \cdot 2^{m-2}} S_{m-2}\left(V_{k} / c^{k}\right)=c^{k \cdot 2^{m-2}} S_{m-2}(x)
$$

If p is prime, it follows from Lemma 3.2 that $p \left\lvert\, V_{\left(p-\left(\frac{-1}{p}\right)\right) / 4}\right.$. So $S_{m-2}(x) \equiv 0(\bmod p)$.
Now suppose $S_{m-2}(x)=S_{m-2}\left(V_{k} / c^{k}\right) \equiv 0(\bmod p)$. From (2.4) we have $V_{n}^{2}-\left(b^{2}-\right.$ $\left.4 c^{2}\right) U_{n}^{2}=4 c^{2 n}$. Thus, $\left(U_{n}, V_{n}\right) \mid 4 c^{2 n}$. As $(p, 2 c)=1$ and $p \mid V_{k \cdot 2^{m-2}}$ we find $\left(p, U_{k \cdot 2^{m-2}}\right)=1$. It is well known that (see [5] and [9]) $U_{r} \mid U_{r n}$ for any positive integers r and n. Thus, $U_{k} \mid U_{k \cdot 2^{m-2}}$ and so $\left(p, U_{k}\right)=1$. Hence, $\left(p, V_{k}^{2}-4 c^{2 k}\right)=1$ by (2.4). Set $P=V_{k}, Q=c^{2 k}$ and $n=m-2$. If $0<k<2^{m}-2$, then clearly $p=k \cdot 2^{m} \pm 1<\left(2^{m}-1\right)^{2}$. By Lemma 2.4, p is prime. If $p=\left(2^{m}-1\right) 2^{m} \pm 1$ is composite, by Lemma 2.3 we know that any prime divisor q of p satisfying $q \equiv \pm 1\left(\bmod 2^{m}\right)$. It is easy to check that $p \neq\left(2^{m} \pm 1\right)^{2}$. Thus $p \geq\left(2^{m}-1\right)\left(2^{m}+1\right)$. This is impossible. So p is prime. This completes the proof.

Taking $b=4$ and $c=1$ in Theorem 3.1 we obtain the Lucas-Lehmer test for Mersenne primes and Theorem 1.2.
¿From Theorem 3.1 we also have the following criterion for Fermat primes, which is similar to the Lucas-Lehmer test.

Corollary 3.1: For $n \in \mathbb{N}$ the Fermat number F_{n} is prime if and only if $F_{n} \mid S_{2^{n}-2}(5)$.
Proof: Since $F_{n} \equiv 2(\bmod 3)$ and $F_{n} \equiv 3,5(\bmod 7)$ we see that

$$
\left(\frac{-3}{F_{n}}\right)=\left(\frac{F_{n}}{3}\right)=-1 \quad \text { and } \quad\left(\frac{7}{F_{n}}\right)=\left(\frac{F_{n}}{7}\right)=-1 .
$$

Thus putting $p=F_{n}, k=1, b=5$ and $c=1$ in Theorem 3.1 we obtain the result.
Remark 3.2: In 1960 K. Inkeri[3] showed that the Fermat number $F_{n}(n \geq 2)$ is prime if and only if $F_{n} \mid S_{2^{n}-2}(8)$.

4. THE PRIMALITY CRITERION FOR NUMBERS OF THE FORM $9 \cdot 2^{m} \pm 1$

In the section we use Theorem 3.1 to obtain explicit primality criterion for numbers of the form $9 \cdot 2^{m} \pm 1$.
Theorem 4.1: Let $m \geq 3$ be a positive integer. If $m \equiv 0(\bmod 2)$ or $m \equiv 5,11(\bmod 12)$, then $9 \cdot 2^{m}-1$ is composite. If $m \equiv 1,3,7,9(\bmod 12)$, then $9 \cdot 2^{m}-1$ is prime if and only if $9 \cdot 2^{m}-1 \mid S_{m-2}(x)$, where

$$
x= \begin{cases}5778 & \text { if } m \equiv 1,9(\bmod 12), \\ 1330670 & \text { if } m \equiv 3(\bmod 12), \\ 2186871698 & \text { if } m \equiv 7(\bmod 12)\end{cases}
$$

Proof: Clearly the result is true for $m=3$. Now assume $m \geq 4$. If $m=2 n$ for some integer n, then $9 \cdot 2^{m}-1=\left(3 \cdot 2^{n}+1\right)\left(3 \cdot 2^{n}-1\right)$ and so $9 \cdot 2^{m}-1$ is composite. If $m \equiv 5,11$ $(\bmod 12)$, then $7 \mid 9 \cdot 2^{m}-1$ since $2^{3} \equiv 1(\bmod 7)$. If $m \equiv 1,3,7,9(\bmod 12)$, once setting

$$
b= \begin{cases}3 & \text { if } m \equiv 1,9(\bmod 12) \\ 5 & \text { if } m \equiv 3(\bmod 12) \\ 11 & \text { if } m \equiv 7(\bmod 12)\end{cases}
$$

one can easily check that

$$
\left(\frac{2+b}{9 \cdot 2^{m}-1}\right)=\left(\frac{2-b}{9 \cdot 2^{m}-1}\right)=-1
$$

From Lemma 2.5 we know that

$$
V_{9}(b, 1)=b^{9}-9 b^{7}+27 b^{5}-30 b^{3}+9 b=\left(b^{3}-3 b\right)\left(\left(b^{3}-3 b\right)^{2}-3\right)=x .
$$

Applying Theorem 3.1 in the case $c=1$ we get the result.
In a similar way, applying Theorem 3.1 we have
Theorem 4.2: Let $m \geq 3$ be a positive integer. If $m \equiv 0(\bmod 4)$, then $5 \mid 9 \cdot 2^{m}+1$. If $m \equiv 10(\bmod 12)$, then $13 \mid 9 \cdot 2^{m}+1$. If $m \equiv 5(\bmod 8)$, then $17 \mid 9 \cdot 2^{m}+1$. If $m \not \equiv 0$ $(\bmod 4), m \not \equiv 10(\bmod 12)$ and $m \not \equiv 5(\bmod 8)$, then $9 \cdot 2^{m}+1$ is prime if and only if $9 \cdot 2^{m}+1 \mid S_{m-2}(x)$, where x is given by Table 4.1.

m	b	$x=V_{9}(b, 1)=\left(b^{3}-3 b\right)\left(\left(b^{3}-3 b\right)^{2}-3\right)$
$m \equiv 1,9(\bmod 24)$	37	$50542 \cdot 2554493761$
$m \equiv 2(\bmod 12)$	28	$21868 \cdot 478209421$
$m \equiv 3,6,7(\bmod 12)$	12	$1692 \cdot 2862861$
$m \equiv 11(\bmod 12)$	32	$32672 \cdot 1067459581$
$m \equiv 17,65(\bmod 72)$	150	$3374550 \cdot\left(3374550^{2}-3\right)$
$m \equiv 41(\bmod 72)$	2167	$\left(2167^{3}-6501\right) \cdot\left(\left(2167^{3}-6501\right)^{2}-3\right)$

Table 4.1
Remark 4.1: For $m \geq 4$ let $p=9 \cdot 2^{m}+1$ and

$$
D= \begin{cases}5 & \text { if } m \equiv 0,2,3(\bmod 4) \\ 7 & \text { if } m \equiv 1,9,13,21(\bmod 24) \\ 17 & \text { if } m \equiv 5(\bmod 24) \\ 241 & \text { if } m \equiv 17(\bmod 24)\end{cases}
$$

In [2] W. Bosma showed that p is prime if and only if $D^{(p-1) / 2} \equiv-1(\bmod p)$.

Theorem 4.3: Let n be a positive integer. Then $9 \cdot 2^{4 n+3}-1$ and $9 \cdot 2^{4 n+3}+1$ are twin primes if and only if $\left(9 \cdot 2^{4 n+3}\right)^{2}-1 \mid S_{4 n+1}(32672 \cdot 1067459581)$.

Proof: Let $b=32$. Then $2+b=2 \cdot 17$ and $2-b=-2 \cdot 3 \cdot 5$. Since $\left(\frac{2}{9 \cdot 2^{4 n+3} \pm 1}\right)=$ $\left(\frac{3}{9 \cdot 2^{4 n+3} \pm 1}\right)=1$ and $2^{4} \equiv-1(\bmod 17)$ we find

$$
\begin{aligned}
& \left(\frac{2+b}{9 \cdot 2^{4 n+3} \pm 1}\right)=\left(\frac{17}{9 \cdot 2^{4 n+3} \pm 1}\right)=\left(\frac{9 \cdot 2^{4 n+3} \pm 1}{17}\right)=\left(\frac{4(-1)^{n} \pm 1}{17}\right)=-1 \\
& \left(\frac{2-b}{9 \cdot 2^{4 n+3} \pm 1}\right)=\left(\frac{-5}{9 \cdot 2^{4 n+3} \pm 1}\right)= \pm\left(\frac{9 \cdot 2^{4 n+3} \pm 1}{5}\right)= \pm\left(\frac{72 \pm 1}{5}\right)=-1
\end{aligned}
$$

Thus, applying Theorem 3.1 we see that $9 \cdot 2^{4 n+3} \pm 1$ is prime if and only if $9 \cdot 2^{4 n+3} \pm 1 \mid$ $S_{4 n+1}\left(V_{9}(b, 1)\right)$. To see the result, we note that $\left(9 \cdot 2^{4 n+3}+1,9 \cdot 2^{4 n+3}-1\right)=1$ and that

$$
V_{9}(b, 1)=b^{9}-9 b^{7}+27 b^{5}-30 b^{3}+9 b=\left(b^{3}-3 b\right)\left(\left(b^{3}-3 b\right)^{2}-3\right)=32672 \cdot 1067459581
$$

Remark 4.2: If $9 \cdot 2^{m} \pm 1(m>1)$ are twin primes, then $m \equiv 3(\bmod 4)$. If $m \equiv 11(\bmod 12)$, then $7 \mid 9 \cdot 2^{m}-1$ and so $9 \cdot 2^{m} \pm 1$ cannot be twin primes. If $m \equiv 3(\bmod 12)$, by taking $b=12$ and $c=1$ in Theorem 3.1 we can prove that $9 \cdot 2^{m}-1$ and $9 \cdot 2^{m}+1$ are twin primes if and only if $\left(9 \cdot 2^{m}\right)^{2}-1 \mid S_{m-2}(4843960812)$. It is known that $9 \cdot 2^{m}-1$ and $9 \cdot 2^{m}+1$ are twin primes when $m=1,3,7,43,63,211$. Do there exist only finitely many such twin primes?

5. THE PRIMALITY CRITERION FOR NUMBERS OF THE FORM $3 \cdot 2^{m} \pm 1$

Theorem 5.1: Let $m \geq 3$ be a positive integer such that $m \not \equiv-2(\bmod 10080)$. If $m \equiv 1$ $(\bmod 4), m \equiv 46(\bmod 72)$ or $m \equiv 862(\bmod 1440)$, then $3 \cdot 2^{m}-1$ is composite. If $m \not \equiv 1$ $(\bmod 4), m \not \equiv 46(\bmod 72)$ and $m \not \equiv 862(\bmod 1440)$, then $3 \cdot 2^{m}-1$ is prime if and only if $3 \cdot 2^{m}-1 \mid S_{m-2}(x)$, where x is given by Table 5.1.

m	b	$x=V_{3}(b, 1)=b^{3}-3 b$
$m \equiv 0,3(\bmod 4)$	3	18
$m \equiv 2,6(\bmod 12)$	5	110
$m \equiv 10 p(\bmod 24)$	15	3330
$m \equiv 22(\bmod 72)$	17	4862
$m \equiv 70(\bmod 144)$	192	7077312
$m \equiv 142(\bmod 288)$	65535	$65535^{3}-3 \cdot 65535$
$m \equiv 286,574(\bmod 1440)$	9	702
$m \equiv 1150(\bmod 1440)$	29	24302
$m \equiv 1438,2878,4318,7198(\bmod 10080)$	27	19602
$m \equiv 5758(\bmod 10080)$	41	68798
$m \equiv 8638(\bmod 10080)$	125	1952750

Table 5.1

Proof: If $m \equiv 1(\bmod 4)$, then $5 \mid 3 \cdot 2^{m}-1$; if $m \equiv 46(\bmod 72)$, then $37 \mid 3 \cdot 2^{m}-1$; if $m \equiv 862(\bmod 1440)$, then $11 \mid 3 \cdot 2^{m}-1$. Now suppose $m \not \equiv 1(\bmod 4), m \not \equiv 46(\bmod 72)$ and $m \not \equiv 862(\bmod 1440)$. Let b be given by Table 5.1 . One can easily check that

$$
\left(\frac{2+b}{3 \cdot 2^{m}-1}\right)=\left(\frac{2-b}{3 \cdot 2^{m}-1}\right)=-1
$$

Thus the result follows from Theorem 3.1 by taking $c=1$ and $p=3 \cdot 2^{m}-1$.
Remark 5.1: If $m \in \mathbb{N}$ and $m \equiv 0,2(\bmod 3)$, in 1993 W . Bosma[2] showed that $3 \cdot 2^{m}-1$ is prime if and only if $3 \cdot 2^{m}-1 \mid S_{m-2}\left(10054 \cdot 2^{3 m}\right)$.

In a similar way, using Theorem 3.1 we can prove
Theorem 5.2: Let $m \geq 3$ be a positive integer such that $180 \vee m$. If $m \equiv 1(\bmod 3)$, then $7 \mid 3 \cdot 2^{m}+1$; if $m \equiv 3(\bmod 4)$, then $5 \mid 3 \cdot 2^{m}+1$; if $m \equiv 2(\bmod 12)$, then $13 \mid 3 \cdot 2^{m}+1$; if $m \equiv 144(\bmod 180)$, then $61 \mid 3 \cdot 2^{m}+1$. If $m \not \equiv 1(\bmod 3), m \not \equiv 3(\bmod 4), m \not \equiv 2(\bmod 12)$ and $m \not \equiv 144(\bmod 180)$, then $3 \cdot 2^{m}+1$ is prime if and only if $3 \cdot 2^{m}+1 \mid S_{m-2}(x)$, where x is given by Table 5.2.

m	b	$x=V_{3}(b, 1)=b^{3}-3 b$
$m \equiv 5(\bmod 12)$	12	1692
$m \equiv 6(\bmod 12)$	28	21868
$m \equiv 8(\bmod 12)$	37	50542
$m \equiv 9(\bmod 12)$	32	32672
$m \equiv 12,24(\bmod 36)$	150	3374550
$m \equiv 36(\bmod 180)$	207	8869122
$m \equiv 72(\bmod 180)$	64	261952
$m \equiv 108(\bmod 180)$	5282	$5282 \cdot 27899521$

Table 5.2
Theorem 5.3: Let n be a nonnegative integer. Then $3 \cdot 2^{20 n+6}-1$ and $3 \cdot 2^{20 n+6}+1$ are twin primes if and only if $\left(3 \cdot 2^{20 n+6}\right)^{2}-1 \mid S_{20 n+4}(73962)$.

Proof: Let $b=42$. Then $2+b=44$ and $2-b=-40$. Since $\left(\frac{2}{3 \cdot 2^{20 n+6} \pm 1}\right)=1$, and $2^{5} \equiv-1$ $(\bmod 11)$ we find

$$
\begin{aligned}
& \left(\frac{2+b}{3 \cdot 2^{20 n+6} \pm 1}\right)=\left(\frac{11}{3 \cdot 2^{20 n+6} \pm 1}\right)= \pm\left(\frac{3 \cdot 2^{20 n+6} \pm 1}{11}\right)= \pm\left(\frac{-6 \pm 1}{11}\right)=-1 \\
& \left(\frac{2-b}{3 \cdot 2^{20 n+6} \pm 1}\right)= \pm\left(\frac{5}{3 \cdot 2^{20 n+6} \pm 1}\right)= \pm\left(\frac{3 \cdot 2^{20 n+6} \pm 1}{5}\right)= \pm\left(\frac{12 \pm 1}{5}\right)=-1
\end{aligned}
$$

Thus, applying Theorem 3.1 in the case $b=42$ and $c=1$ we see that $3 \cdot 2^{20 n+6} \pm 1$ is prime if and only if $3 \cdot 2^{20 n+6} \pm 1 \mid S_{20 n+4}\left(V_{3}(b, 1)\right)$. To see the result, we note that $\left(3 \cdot 2^{20 n+6}+1,3 \cdot\right.$ $\left.2^{20 n+6}-1\right)=1$ and that $V_{3}(b, 1)=b^{3}-3 b=42^{3}-3 \cdot 42=73962$.

In the same way, putting $b=17$ and $c=1$ in Theorem 3.1 we get
Theorem 5.4: Let n be a nonnegative integer. Then $3 \cdot 2^{36 n+6}-1$ and $3 \cdot 2^{36 n+6}+1$ are twin primes if and only if $\left(3 \cdot 2^{36 n+6}\right)^{2}-1 \mid S_{36 n+4}(4862)$.

REFERENCES

[1] W. Borho. "Grosse Primzahlen und befreundete Zahlen: über den Lucas-test und Thabit Regeln." Mitt. Math. Ges. Hamburg (1983): 232-256.
[2] W. Bosma. "Explicit Primality Criteria for $h \cdot 2^{k} \pm 1$." Math. Comp. 61 (1993): 97-109, MR94c:11005.
[3] K. Inkeri. "Tests for Primality." Ann. Acad. Sci. Fenn. (Ser. A) 1 (1960): 1-19, MR22\#7984.
[4] D. H. Lehmer. "An Extended Theory of Lucas' Functions." Ann. Math. 31 (1930): 419-448.
[5] P. Ribenboim. The Book of Prime Number Records, 2nd ed., Springer, Berlin, 1989, 44-50.
[6] H. Riesel. "Lucasian Criteria for the Primality of $N=h \cdot 2^{n}-1$." Math. Comp. 23 (1969): 869-875.
[7] Z.-H. Sun. "Combinatorial Sum $\sum_{k \equiv r(\bmod m)}\binom{n}{k}$ and Its Applications in Number Theory III." J. Nanjing Univ. Math. Biquarterly 12 (1995): 90-102, MR96g:11017.
[8] Z.-H. Sun. "Values of Lucas Sequences Modulo Primes." Rocky Moun. J. Math. 33 (2003): 1123-1145.
[9] H.C. Williams. Édouard Lucas and Primality Testing, Canadian Mathematical Society Series of Monographs and Advanced Texts, Vol. 22, Wiley, New York, 1998, 74-92.

AMS Classification Numbers: 11Y11, 11B39, 11B50

必必

