
FACTORIZATIONS OF
∑n+i−1

j=i Faj−b

FACTORIZATIONS OF
∑n+i−1

j=i Faj−b

Russell Jay Hendel
Dept. of Mathematics, Towson University, Towson, MD 21252

(Submitted December 2005-Final Revision March 2006)

ABSTRACT

We present one main result, the Factorization Theorem, which unifies several identities
that exhibit factorizations of

∑n+i−1
j=i Faj−b. We introduce a unified proof method based on

formulae for the factorization of Fq−d +Fq+d. One of the factors of
∑n+i−1

j=i Faj−b is a member
of the second order recursive sequence whose members are {G1 +Ga +G2a + ...} or (for a even)
{G a

2
+ G 3a

2
+ G 5a

2
+ ...}, with G equal L or F. It is shown that, for a even, these sequences

obey the same recursions as the sequences {Gna}.

1. THE FACTORIZATION THEOREM

Frietag [2] proved

j=n∑
j=0

F4j+m = F2n+2F2n+m. (1)

The goal of this note is to generalize (1) by studying factorizations of
∑j=n+i−1

j=i Faj−b

for arbitrary integers i, a, b, n. We also provide a unified proof approach to such identities and
simplified notation. All proofs in this note are based on
Lemma 1: Suppose integers p, q, r are in arithmetic progression with common difference d.
Then

Fp + Fr =
{

LdFq, if d is even,

FdLq, if d is odd.
(2)

Proof: Equations (15a) and (15b) in [4], Chapter 3.
Lemma 1 is applied by pairing summands whose subscripts are equi-distant from a central

subscript. To improve clarity we define, for integers a ≥ 1, b and recursive sequence {Gn}

Gab
i = Gai−b. (3)
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Assume, for convenience, n ≥ 7 odd and a even. Then by repeatedly applying (2) and (3), we
have

F
(a,b)

i+ n−1
2

= L1F
(a,b)

i+ n−1
2

F
(a,b)

i+ n−1
2 −1

+F
(a,b)

i+ n−1
2 +1

= LaF
(a,b)

i+ n−1
2

F
(a,b)

i+ n−1
2 −2

+F
(a,b)

i+ n−1
2 +2

= L2aF
(a,b)

i+ n−1
2

F
(a,b)

i+ n−1
2 −3

+F
(a,b)

i+ n−1
2 +3

= L3aF
(a,b)

i+ n−1
2

. . .

F
(a,b)
i +F

(a,b)
i+n−1 = Ln−1

2 aF
(a,b)

i+ n−1
2

.

Summing the left and right sides of the above equations proves

j=i+n−1∑
j=i

F
(a,b)
j = Fi+ n−1

2

(
L1 + La + L2a + ... + Ln−1

2 a

)
.

To formally state the main theorem it seems useful to define, for a second order recursive
sequence {Gn} and integer a ≥ 2,

Ĝ
(1,a)
i =

{
G1, if i = 1

Ĝ
(1,a)
i−1 + G(i−1)a, if i ≥ 1.

(4)

Additionally, if a is even, we define

Ĝ
(0,a)
i =

{
G a

2
, if i = 1

Ĝ
(0,a)
i−1 + G(2i−1) a

2
, if i ≥ 1.

(5)

Comment: If i ≥ 2 then (4) becomes L̂
(1,a)
i = L1 + La + ... + L(i−1)a. The hat of L̂

(1,a)
i is

mnemonical for a ‘summation’ sign since the hat looks like ‘half’ a summation sign rotated 90
degrees. The 0 and 1 in the superscripts correspond to the n even and odd case, respectively,
in the Factorization Theorem.
The Factorization Theorem: (Throughout we assume a ≥ 1.)
(a) If a = 1, b = 0 and n ≡ 2 (mod 4),

n+i−1∑
j=i

Fj = Ln
2
Fi+1+ n

2
.

(b) If a = 1, b = 0 and n ≡ 0 (mod 4),

n+i−1∑
j=i

Fj = Fn
2
Li+1+ n

2
.
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(c) If n odd and a even,

n+i−1∑
j=i

F
(a,b)
j = L̂

(1,a)
n+1

2
F

(a,b)

i+ n−1
2

.

(d) If n even and a ≡ 0 (mod 4),

n+i−1∑
j=i

F
(a,b)
j = L̂

(0,a)
n
2

F
(a,b− a

2 )

i+ n−2
2

.

(e) If n even and a ≡ 2 (mod 4),

n+i−1∑
j=i

F
(a,b)
j = F̂

(0,a)
n
2

L
(a,b− a

2 )

i+ n−2
2

.

Proof: Case (c), for n ≥ 7, has been proven above using Lemma 1. The proof for n =
1, 3, 5 is almost identical. Similarly the proof of each of the other 4 cases of the Factorization
Theorem is almost identical and omitted. Note, that case (a) (for i = 1) was added for
completeness since it occurs as formula (38) in the appendix of [4]. Furthermore, Lemma 1
provides an alternative proof method.

2. THE Ĝ SEQUENCES

In section 1 we showed how case (c) generalizes (1). We now explore this generalization
in further detail. We begin with the following definition: A sequence {Gn} which satisfies, for
all n, the recursion Gn = cGn−2 + dGn−1, is said to have type 〈c, d〉. For example {Fi} has
type 〈1, 1〉 and {F2i} has type 〈−1, 3.〉 The concept of type is useful because of the following
elementary result.
Lemma 2:
(a) If two sequences have the same type and agree on two consecutive values then they are
identical.
(b) Type is preserved under fixed finite linear combinations.

The following well known result will prove useful in the sequel.

Lemma 3: For fixed integers a ≥ 1 and b, the sequence {G(a,b)
i }, with G = F or L, has type

〈(−1)a+1, La〉.
Proof: [5]. The case b = 0 was proven by Cheves [1]. The result also follows immediately

from Lemma 1.
The next two lemmas show how the Ĝ sequences generalize the sequences {F (a,b)

i }, {L(a,b)
i }.

Lemma 4: Suppose a is even and fixed: Then the sequences {L̂(1,a)
i }, {L̂(0,a)

i }, {F̂ (1,a)
i }, and

{F̂ (0,a)
i } have type 〈−1, La〉.
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Proof: Equations (4) and (3) state that L̂
(1,a)
i is the sum of L1 and a linear combination

of L
(a,0)
j , 1 ≤ j ≤ i − 1. Lemma 3 states that the sequence {L(a,0)

i } has type 〈−1, La〉. The
result now follows from Lemma 1b after paying attention to the initial L1 term. (The details
are straightforward and left to the reader.) The proofs of the other cases are almost identical
and omitted.
Lemma 5: For all integer i,

(a) L̂
(1,2)
i = L2i−1

(b) F̂
(0,2)
i = F2i

(c) L̂
(1,4)
i = F4i−2

(d) L̂
(0,4)
i = F4i

Proof of (a): By (4), if i ≥ 2, L̂
(1,2)
i = L1 + L2 + L4 + ... + L2(i−1) = L2i−1. The proof

of (b) is almost identical and omitted.

Proof of (c): By Lemma 3, F4i−2 is of type 〈−1, L4〉. By Lemma 4, L̂
(1,4)
i is also of

type 〈−1, L4〉. Lemma 5(c) now follows from Lemma 1(a) after a straightforward verification
that the initial values of the two sequences, for i = 1, 2, are equal. The proof of (d) is almost
identical and omitted.

Lemma 5(c) clarifies how part (c) of the Factorization Theorem generalizes (1). One of the
factors in (1) is a Fibonacci number while the other factor is a member of a L̂ sequence (which
for a = 4 happens to equal a member of the Fibonacci sequence). Furthermore, according to

Lemma 5, the change in this factor, from a member of {F (a,b)
i }, for a = 4, to a member of the

more general {L̂(1,a)
i }, for a > 4, is only a change in the initial values of the sequence; it is not

a change in the underlying type.
One final comment on the Ĝ: The Ĝ resemble similar sums that occur in connection with

Zeckendorf Decompositions. In this paper
∑i+n−1

i=1 F
(a,b)
i is the expression to be factored;

by contrast in the Zeckendorf Decomposition literature
∑i+n−1

i=1 F
(a,b)
i only occurs as one factor.

For example, using (3), we can formulate the following generalization of (2.3) and (4.4) of [3]
for a ≡ 2 (mod 4) :

F (a,0)
n = L a

2

n∑
j=1

F
(a a

2 )
j (6)

(The proof of this identity is left as an exercise using Lemma 1.)

3. BEST RESULTS
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We next investigate whether the factorizations in the main theorem are ‘best’. Table 1
exhibits numerical computations.

a b n i
∑n+i−1

j=i F
(6,b)
i Factor1 Factor2

6 5 1 1 1 1 1
6 5 1 2 13 1 13
6 5 1 3 233 1 233
6 5 3 1 247 19 13
6 5 3 2 4,427 19 233
6 5 3 3 79,439 19 4,181
6 4 1 1 1 1 1
6 4 1 2 21 1 21
6 4 1 3 377 1 377
6 4 3 1 399 19 21
6 4 3 2 7,163 19 377
6 4 3 3 128,535 19 6,765
6 3 1 1 2 1 2
6 3 1 2 34 1 34
6 3 1 3 610 1 610

Table 1. Numerical examples of the main theorem

As can be seen, by looking up prime factors of the center sum column, the factorizations
cannot be uniformly improved (for all i) for b = 5, 4, but can be improved uniformly, for
b = 3, with an additional factor of 2. In general, there are further uniform factors when b = a

2 .
However, the Factorization Theorem cannot be improved uniformly for all b, i. Similar heuristic
remarks show the impossibility of extending the Factorization Theorem to odd a > 1.
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