A NUMBER FIELD WITH INFINITELY MANY NORMAL INTEGRAL BASES

A NUMBER FIELD WITH INFINITELY MANY NORMAL INTEGRAL BASES

Daniel Eloff

Dept. of Math. and Statistics, University of British Columbia Okanagan, Kelowna, B.C., Canada V1V 1V7 e-mail: dan.eloff@gmail.com

Blair K. Spearman

Dept. of Math. and Statistics, University of British Columbia Okanagan, Kelowna, B.C., Canada V1V 1V7 e-mail: blair.spearman@ubc.ca

Kenneth S. Williams

School of Math. and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6 e-mail: kwilliam@connect.carleton.ca (Submitted June 2006-Final Revision July 2007)

ABSTRACT

A cyclic quintic field possessing infinitely many normal integral bases is exhibited. The bases provided are parametrized by Fibonacci numbers.

1. INTRODUCTION AND MAIN THEOREM

Let K be a finite normal extension of the rational field \mathbb{Q} . A normal integral basis of K is an integral basis for K all of whose elements are conjugate over \mathbb{Q} . Now suppose that K is cyclic of degree $d \geq 2$ over \mathbb{Q} . Then K possesses a normal integral basis if and only if K is tamely ramified [3, Corollary, p. 422] or equivalently K has a squarefree conductor [3, p. 175]. If K is a tamely ramified cyclic extension of \mathbb{Q} , it follows from results of Newman and Taussky [4], as well as Thompson [7], that K has a unique (up to order and change of sign) normal integral basis if and only if d = 2, 3, 4 or 6. Thus if K is a tamely ramified, cyclic, quintic extension of \mathbb{Q} then K has at least two normal integral bases. In this paper we exhibit such a field K that possesses infinitely many normal integral bases. Indeed we exhibit infinitely many normal integral bases parametrized by Fibonacci numbers.

We let

$$f(x) = x^5 + x^4 - 4x^3 - 3x^2 + 3x + 1.$$

It is known that f(x) is irreducible [5, p. 548 (with n = -1)]. Let $\theta \in \mathbb{C}$ be a root of f(x). Set $K = \mathbb{Q}(\theta)$. Then K is a cyclic extension of degree 5 over \mathbb{Q} [5, p. 548 (with n = -1)]. The discriminant of K is 11⁴ and its conductor is 11 [2, Théorème 1, p. 76 (with t = -1)]. Thus K is the unique quintic subfield of the cyclotomic field of 11th roots of unity.

By a result of Gaál and Pohst [1, Lemma 2, p. 1690 (with n = -1)] an integral basis for K is $\{1, \theta, \theta^2, \theta^3, \omega\}$, where $\omega = 1 + 2\theta - 3\theta^2 - \theta^3 + \theta^4$. Thus $\{1, \theta, \theta^2, \theta^3, \theta^4\}$ is an integral basis for K. The roots of f(x) in cyclic order are

$$\theta, \ \sigma(\theta) = 2 - 4\theta^2 + \theta^4, \ \sigma^2(\theta) = -1 + 2\theta + 3\theta^2 - \theta^3 - \theta^4, \sigma^3(\theta) = -2 + \theta^2, \ \sigma^4(\theta) = -3\theta + \theta^3,$$
(1.1)

see for example [6, Proposition, p. 217 (with n = -1)].

We prove the following result, where F_n $(n \in \mathbb{Z})$ denotes the *n*-th Fibonacci number and L_n $(n \in \mathbb{Z})$ denotes the *n*-th Lucas number.

Theorem: Let K be the cyclic quintic field given by $K = \mathbb{Q}(\theta)$, where $\theta^5 + \theta^4 - 4\theta^3 - 3\theta^2 + 3\theta + 1 = 0$. Let $\sigma \in \text{Gal}(K/\mathbb{Q}) \simeq \mathbb{Z}/5\mathbb{Z}$ be given by

$$\sigma(\theta) = 2 - 4\theta^2 + \theta^4$$

 Set

$$\alpha_n = \frac{1}{10} (25F_{2n} + (-1)^n L_{2n} - 2) + \frac{1}{2} (-5F_{2n} + (-1)^n L_{2n})\theta - 4F_{2n}\theta^2 + F_{2n}\theta^3 + F_{2n}\theta^4, \ n \in \mathbb{N}.$$
(1.2)

Then $\alpha_n \ (n \in \mathbb{N})$ is an integer of K and

$$\left\{\alpha_n, \sigma(\alpha_n), \sigma^2(\alpha_n), \sigma^3(\alpha_n), \sigma^4(\alpha_n)\right\}, \quad n \in \mathbb{N},$$
(1.3)

is a normal integral basis for K. Moreover the bases (1.3) are distinct in the sense that if, for some $n_1, n_2 \in \mathbb{N}, j_1, j_2 \in \{0, 1, 2, 3, 4\}$, and $\varepsilon = \pm 1$, we have

$$\sigma^{j_1}(\alpha_{n_1}) = \varepsilon \sigma^{j_2}(\alpha_{n_2})$$

then

$$j_1 = j_2$$
, $n_1 = n_2$, and $\epsilon = +1$.

2. PROOF OF THEOREM

The congruences

$$L_n \equiv F_n \pmod{2}, \quad L_{2n} \equiv (-1)^n 2 \pmod{5}, \quad n \in \mathbb{N},$$

follow immediately from the easily proved relations $L_n^2 - 5F_n^2 = (-1)^n 4$ and $L_{2n} - 5F_n^2 = (-1)^n 2$. Hence, for $n \in \mathbb{N}$, we have

$$25F_{2n} + (-1)^n L_{2n} - 2 \equiv F_{2n} - L_{2n} \equiv 0 \pmod{2},$$

$$25F_{2n} + (-1)^n L_{2n} - 2 \equiv (-1)^n L_{2n} - 2 \equiv 0 \pmod{5},$$

$$-5F_{2n} + (-1)^n L_{2n} \equiv F_{2n} - L_{2n} \equiv 0 \pmod{2}.$$

Thus, for $n \in \mathbb{N}$, we can define integers r_n , s_n and t_n by

$$r_n = \frac{25F_{2n} + (-1)^n L_{2n} - 2}{10}, \quad s_n = \frac{-5F_{2n} + (-1)^n L_{2n}}{2}, \quad t_n = -F_{2n}.$$
 (2.1)

Hence

$$-5r_n + s_n - 15t_n = 1, \quad n \in \mathbb{N},$$
(2.2)

and (as $L_{2n}^2 - 5F_{2n}^2 = 4$)

$$s_n^2 - 5s_n t_n + 5t_n^2 = 1, \quad n \in \mathbb{N}.$$
 (2.3)

Now let

$$\alpha_n = r_n + s_n \theta + 4t_n \theta^2 - t_n \theta^3 - t_n \theta^4, \ n \in \mathbb{N}.$$
(2.4)

Clearly α_n is an integer of K. By (1.1) the conjugates of α_n $(n \in \mathbb{N})$ over \mathbb{Q} are

$$\sigma(\alpha_n) = (r_n + 2s_n - 3t_n) - 3t_n\theta + (-4s_n + 9t_n)\theta^2 + t_n\theta^3 + (s_n - 2t_n)\theta^4$$

$$\sigma^2(\alpha_n) = (r_n - s_n + 5t_n) + (2s_n - 6t_n)\theta + (3s_n - 6t_n)\theta^2 + (-s_n + 3t_n)\theta^3$$

$$+ (-s_n + 2t_n)\theta^4,$$

$$\sigma^3(\alpha_n) = (r_n - 2s_n + 9t_n) + t_n\theta + (s_n - 6t_n)\theta^2 + t_n\theta^4,$$

$$\sigma^4(\alpha_n) = (r_n + 4t_n) + (-3s_n + 8t_n)\theta - t_n\theta^2 + (s_n - 3t_n)\theta^3.$$

Using MAPLE, together with (2.2) and (2.3), we obtain

$$disc(\{\alpha_n, \sigma(\alpha_n), \sigma^2(\alpha_n), \sigma^3(\alpha_n), \sigma^4(\alpha_n)\}) = 11^4(-5r_n + s_n - 15t_n)^2(s_n^2 - 5s_nt_n + 5t_n^2)^4 = 11^4 = disc(K),$$

so that for all $n \in \mathbb{N}$

$$\left\{\alpha_n, \sigma(\alpha_n), \sigma^2(\alpha_n), \sigma^3(\alpha_n), \sigma^4(\alpha_n)\right\}$$
(2.5)

is a normal integral basis for K.

Finally we show that the infinitely many normal integral bases in (2.5) are all distinct. Suppose that $m \in \mathbb{N}$ and $n \in \mathbb{N}$ are such that

$$\{\alpha_m, \sigma(\alpha_m), \sigma^2(\alpha_m), \sigma^3(\alpha_m), \sigma^4(\alpha_m)\}\$$
$$= \pm \{\alpha_n, \sigma(\alpha_n), \sigma^2(\alpha_n), \sigma^3(\alpha_n), \sigma^4(\alpha_n)\}\$$

Then

 $\alpha_m = \pm \sigma^j(\alpha_n) \text{ for some } j \in \{0, 1, 2, 3, 4\}.$

If j = 0 then $\alpha_m = \pm \alpha_n$ and so, by (2.4), we have

$$r_m + s_m\theta + 4t_m\theta^2 - t_m\theta^3 - t_m\theta^4$$

= $\pm (r_n + s_n\theta + 4t_n\theta^2 - t_n\theta^3 - t_n\theta^4).$

Equating coefficients of θ^3 , we obtain $t_m = \pm t_n$. Appealing to (2.1), we deduce $F_{2m} = \pm F_{2n}$, so that $F_{2m} = F_{2n}$ and m = n.

Next we show that if $j \neq 0$ then $t_n = 0$, which is impossible for n > 0 as $t_n = -F_{2n}$. If j = 1 then $\alpha_m = \pm \sigma(\alpha_n)$ and we have

$$r_m + s_m \theta + 4t_m \theta^2 - t_m \theta^3 - t_m \theta^4 = \pm ((r_n + 2s_n - 3t_n) - 3t_n \theta + (-4s_n + 9t_n)\theta^2 + t_n \theta^3 + (s_n - 2t_n)\theta^4).$$

Equating coefficients of θ^3 , we obtain $-t_m = \pm t_n$, so by (2.1) we have $F_{2m} = \mp F_{2n}$ and thus $F_{2m} = F_{2n}$ and m = n. Hence

$$r_n + s_n \theta + 4t_n \theta^2 - t_n \theta^3 - t_n \theta^4 = -(r_n + 2s_n - 3t_n) + 3t_n \theta - (-4s_n + 9t_n)\theta^2 - t_n \theta^3 - (s_n - 2t_n)\theta^4.$$

Equating coefficients of θ and θ^2 , we have $s_n = 3t_n$ and $4t_n = 4s_n - 9t_n$, so $t_n = 0$. If j = 2 then $\alpha_m = \pm \sigma^2(\alpha_n)$ and we have

$$r_m + s_m \theta + 4t_m \theta^2 - t_m \theta^3 - t_m \theta^4 = \pm ((r_n - s_n + 5t_n) + (2s_n - 6t_n)\theta + (3s_n - 6t_n)\theta^2 + (-s_n + 3t_n)\theta^3 + (-s_n + 2t_n)\theta^4).$$

Equating coefficients of θ^3 and θ^4 , we obtain $-s_n + 3t_n = \pm(-t_m) = -s_n + 2t_n$ so $t_n = 0$. If j = 3 then $\alpha_m = \pm \sigma^3(\alpha_n)$ and we have

$$r_m + s_m \theta + 4t_m \theta^2 - t_m \theta^3 - t_m \theta^4 = \pm ((r_n - 2s_n + 9t_n) + t_n \theta + (s_n - 6t_n)\theta^2 + t_n \theta^4).$$

Equating coefficients of θ^3 , we obtain $t_m = 0$.

If j = 4 then $\alpha_m = \pm \sigma^4(\alpha_n)$ and we have

$$r_m + s_m \theta + 4t_m \theta^2 - t_m \theta^3 - t_m \theta^4 = \pm ((r_n + 4t_n) + (-3s_n + 8t_n)\theta - t_n \theta^2 + (s_n - 3t_n)\theta^3).$$

Equating coefficients of θ^4 , we obtain $t_m = 0$.

This completes the proof.

ACKNOWLEDGMENTS

The authors wish to thank the referee whose suggestions shortened and improved the paper.

REFERENCES

- I. Gaál and M. Pohst. "Power Integral Bases in a Parametric Family of Totally Real Cyclic Quintics." *Math Comp.* 66 (1997): 1689-1696.
- [2] S. Jeannin. "Nombre de Classes et unités Des Corps de Nombres Cycliques Quintiques d'E. Lehmer." J. Théor. Nombres Bordeaux 8 (1996): 75-92.
- [3] W. Narkiewicz. *Elementary and Analytic Theory of Algebraic Numbers*. Second Edition, Springer-Verlag, Berlin Heidelberg New York, 1990.
- [4] M. Newman and O. Taussky. "On a Generalization of the Normal Basis in Abelian Algebraic Number Fields." Comm. Pure Appl. Math. 9 (1956): 85-91.
- [5] R. Schoof and L. Washington. "Quintic Polynomials and Real Cyclotomic Fields with Large Class Numbers." *Math. Comp.* 50 (1988): 543-556.
- [6] B. K. Spearman and K. S. Williams. "Normal Integral Bases for Emma Lehmer's Parametric Family of Cyclic Quintics." J. Théor. Nombres Bordeaux 16 (2004): 215-220.
- [7] R. C. Thompson. "Normal Matrices and the Normal Basis in Abelian Number Fields." *Pacific J. Math.* 12 (1962): 1115-1124.

AMS Classification Numbers: 11R20

$$\mathbf{X}$$