A NUMBER FIELD WITH INFINITELY MANY NORMAL INTEGRAL BASES

Daniel Eloff

Dept. of Math. and Statistics, University of British Columbia Okanagan, Kelowna, B.C., Canada V1V 1V7 e-mail: dan.eloff@gmail.com

Blair K. Spearman
Dept. of Math. and Statistics, University of British Columbia Okanagan, Kelowna, B.C., Canada V1V 1V7
e-mail: blair.spearman@ubc.ca

Kenneth S. Williams

School of Math. and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6
e-mail: kwilliam@connect.carleton.ca
(Submitted June 2006-Final Revision July 2007)

Abstract

A cyclic quintic field possessing infinitely many normal integral bases is exhibited. The bases provided are parametrized by Fibonacci numbers.

1. INTRODUCTION AND MAIN THEOREM

Let K be a finite normal extension of the rational field \mathbb{Q}. A normal integral basis of K is an integral basis for K all of whose elements are conjugate over \mathbb{Q}. Now suppose that K is cyclic of degree $d \geq 2$ over \mathbb{Q}. Then K possesses a normal integral basis if and only if K is tamely ramified [3, Corollary, p. 422] or equivalently K has a squarefree conductor [3, p. 175]. If K is a tamely ramified cyclic extension of \mathbb{Q}, it follows from results of Newman and Taussky [4], as well as Thompson [7], that K has a unique (up to order and change of sign) normal integral basis if and only if $d=2,3,4$ or 6 . Thus if K is a tamely ramified, cyclic, quintic extension of \mathbb{Q} then K has at least two normal integral bases. In this paper we exhibit such a field K that possesses infinitely many normal integral bases. Indeed we exhibit infinitely many normal integral bases parametrized by Fibonacci numbers.

We let

$$
f(x)=x^{5}+x^{4}-4 x^{3}-3 x^{2}+3 x+1
$$

It is known that $f(x)$ is irreducible [5, p. 548 (with $n=-1$)]. Let $\theta \in \mathbb{C}$ be a root of $f(x)$. Set $K=\mathbb{Q}(\theta)$. Then K is a cyclic extension of degree 5 over $\mathbb{Q}[5$, p. 548 (with $n=-1$)]. The discriminant of K is 11^{4} and its conductor is 11 [2, Théorème 1 , p. 76 (with $t=-1$)]. Thus K is the unique quintic subfield of the cyclotomic field of 11 th roots of unity.

By a result of Gaál and Pohst [1, Lemma 2, p. 1690 (with $n=-1$)] an integral basis for K is $\left\{1, \theta, \theta^{2}, \theta^{3}, \omega\right\}$, where $\omega=1+2 \theta-3 \theta^{2}-\theta^{3}+\theta^{4}$. Thus $\left\{1, \theta, \theta^{2}, \theta^{3}, \theta^{4}\right\}$ is an integral basis for K. The roots of $f(x)$ in cyclic order are

$$
\begin{align*}
& \theta, \sigma(\theta)=2-4 \theta^{2}+\theta^{4}, \sigma^{2}(\theta)=-1+2 \theta+3 \theta^{2}-\theta^{3}-\theta^{4} \\
& \sigma^{3}(\theta)=-2+\theta^{2}, \sigma^{4}(\theta)=-3 \theta+\theta^{3} \tag{1.1}
\end{align*}
$$

see for example [6, Proposition, p. 217 (with $n=-1$)].

We prove the following result, where $F_{n}(n \in \mathbb{Z})$ denotes the n-th Fibonacci number and $L_{n}(n \in \mathbb{Z})$ denotes the n-th Lucas number.
Theorem: Let K be the cyclic quintic field given by $K=\mathbb{Q}(\theta)$, where $\theta^{5}+\theta^{4}-4 \theta^{3}-3 \theta^{2}+$ $3 \theta+1=0$. Let $\sigma \in \operatorname{Gal}(K / \mathbb{Q}) \simeq \mathbb{Z} / 5 \mathbb{Z}$ be given by

$$
\sigma(\theta)=2-4 \theta^{2}+\theta^{4} .
$$

Set

$$
\begin{array}{r}
\alpha_{n}=\frac{1}{10}\left(25 F_{2 n}+(-1)^{n} L_{2 n}-2\right)+\frac{1}{2}\left(-5 F_{2 n}+(-1)^{n} L_{2 n}\right) \theta \\
-4 F_{2 n} \theta^{2}+F_{2 n} \theta^{3}+F_{2 n} \theta^{4}, \quad n \in \mathbb{N} . \tag{1.2}
\end{array}
$$

Then $\alpha_{n}(n \in \mathbb{N})$ is an integer of K and

$$
\begin{equation*}
\left\{\alpha_{n}, \sigma\left(\alpha_{n}\right), \sigma^{2}\left(\alpha_{n}\right), \sigma^{3}\left(\alpha_{n}\right), \sigma^{4}\left(\alpha_{n}\right)\right\}, \quad n \in \mathbb{N} \tag{1.3}
\end{equation*}
$$

is a normal integral basis for K. Moreover the bases (1.3) are distinct in the sense that if, for some $n_{1}, n_{2} \in \mathbb{N}, j_{1}, j_{2} \in\{0,1,2,3,4\}$, and $\varepsilon= \pm 1$, we have

$$
\sigma^{j_{1}}\left(\alpha_{n_{1}}\right)=\varepsilon \sigma^{j_{2}}\left(\alpha_{n_{2}}\right)
$$

then

$$
j_{1}=j_{2}, \quad n_{1}=n_{2}, \text { and } \epsilon=+1 .
$$

2. PROOF OF THEOREM

The congruences

$$
L_{n} \equiv F_{n}(\bmod 2), \quad L_{2 n} \equiv(-1)^{n} 2(\bmod 5), \quad n \in \mathbb{N},
$$

follow immediately from the easily proved relations $L_{n}^{2}-5 F_{n}^{2}=(-1)^{n} 4$ and $L_{2 n}-5 F_{n}^{2}=$ $(-1)^{n} 2$. Hence, for $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& 25 F_{2 n}+(-1)^{n} L_{2 n}-2 \equiv F_{2 n}-L_{2 n} \\
& 25 F_{2 n}+(-1)^{n} L_{2 n}-2 \equiv(-1)^{n} L_{2 n}-2 \equiv 0(\bmod 2), \\
&-5 F_{2 n}+(-1)^{n} L_{2 n} \equiv F_{2 n}-L_{2 n} \equiv 0(\bmod 2),
\end{aligned}
$$

Thus, for $n \in \mathbb{N}$, we can define integers r_{n}, s_{n} and t_{n} by

$$
\begin{equation*}
r_{n}=\frac{25 F_{2 n}+(-1)^{n} L_{2 n}-2}{10}, \quad s_{n}=\frac{-5 F_{2 n}+(-1)^{n} L_{2 n}}{2}, \quad t_{n}=-F_{2 n} \tag{2.1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
-5 r_{n}+s_{n}-15 t_{n}=1, \quad n \in \mathbb{N} \tag{2.2}
\end{equation*}
$$

and (as $\left.L_{2 n}^{2}-5 F_{2 n}^{2}=4\right)$

$$
\begin{equation*}
s_{n}^{2}-5 s_{n} t_{n}+5 t_{n}^{2}=1, \quad n \in \mathbb{N} \tag{2.3}
\end{equation*}
$$

Now let

$$
\begin{equation*}
\alpha_{n}=r_{n}+s_{n} \theta+4 t_{n} \theta^{2}-t_{n} \theta^{3}-t_{n} \theta^{4}, n \in \mathbb{N} . \tag{2.4}
\end{equation*}
$$

Clearly α_{n} is an integer of K. By (1.1) the conjugates of $\alpha_{n}(n \in \mathbb{N})$ over \mathbb{Q} are

$$
\begin{aligned}
\sigma\left(\alpha_{n}\right)= & \left(r_{n}+2 s_{n}-3 t_{n}\right)-3 t_{n} \theta+\left(-4 s_{n}+9 t_{n}\right) \theta^{2}+t_{n} \theta^{3}+\left(s_{n}-2 t_{n}\right) \theta^{4}, \\
\sigma^{2}\left(\alpha_{n}\right)= & \left(r_{n}-s_{n}+5 t_{n}\right)+\left(2 s_{n}-6 t_{n}\right) \theta+\left(3 s_{n}-6 t_{n}\right) \theta^{2}+\left(-s_{n}+3 t_{n}\right) \theta^{3} \\
& +\left(-s_{n}+2 t_{n}\right) \theta^{4}, \\
\sigma^{3}\left(\alpha_{n}\right)= & \left(r_{n}-2 s_{n}+9 t_{n}\right)+t_{n} \theta+\left(s_{n}-6 t_{n}\right) \theta^{2}+t_{n} \theta^{4}, \\
\sigma^{4}\left(\alpha_{n}\right)= & \left(r_{n}+4 t_{n}\right)+\left(-3 s_{n}+8 t_{n}\right) \theta-t_{n} \theta^{2}+\left(s_{n}-3 t_{n}\right) \theta^{3} .
\end{aligned}
$$

Using MAPLE, together with (2.2) and (2.3), we obtain

$$
\begin{aligned}
& \operatorname{disc}\left(\left\{\alpha_{n}, \sigma\left(\alpha_{n}\right), \sigma^{2}\left(\alpha_{n}\right), \sigma^{3}\left(\alpha_{n}\right), \sigma^{4}\left(\alpha_{n}\right)\right\}\right) \\
& \quad=11^{4}\left(-5 r_{n}+s_{n}-15 t_{n}\right)^{2}\left(s_{n}^{2}-5 s_{n} t_{n}+5 t_{n}^{2}\right)^{4}=11^{4}=\operatorname{disc}(K),
\end{aligned}
$$

so that for all $n \in \mathbb{N}$

$$
\begin{equation*}
\left\{\alpha_{n}, \sigma\left(\alpha_{n}\right), \sigma^{2}\left(\alpha_{n}\right), \sigma^{3}\left(\alpha_{n}\right), \sigma^{4}\left(\alpha_{n}\right)\right\} \tag{2.5}
\end{equation*}
$$

is a normal integral basis for K.
Finally we show that the infinitely many normal integral bases in (2.5) are all distinct. Suppose that $m(\in \mathbb{N})$ and $n(\in \mathbb{N})$ are such that

$$
\begin{aligned}
& \left\{\alpha_{m}, \sigma\left(\alpha_{m}\right), \sigma^{2}\left(\alpha_{m}\right), \sigma^{3}\left(\alpha_{m}\right), \sigma^{4}\left(\alpha_{m}\right)\right\} \\
& = \pm\left\{\alpha_{n}, \sigma\left(\alpha_{n}\right), \sigma^{2}\left(\alpha_{n}\right), \sigma^{3}\left(\alpha_{n}\right), \sigma^{4}\left(\alpha_{n}\right)\right\} .
\end{aligned}
$$

Then

$$
\alpha_{m}= \pm \sigma^{j}\left(\alpha_{n}\right) \text { for some } j \in\{0,1,2,3,4\} .
$$

If $j=0$ then $\alpha_{m}= \pm \alpha_{n}$ and so, by (2.4), we have

$$
\begin{aligned}
& r_{m}+s_{m} \theta+4 t_{m} \theta^{2}-t_{m} \theta^{3}-t_{m} \theta^{4} \\
& = \pm\left(r_{n}+s_{n} \theta+4 t_{n} \theta^{2}-t_{n} \theta^{3}-t_{n} \theta^{4}\right) .
\end{aligned}
$$

Equating coefficients of θ^{3}, we obtain $t_{m}= \pm t_{n}$. Appealing to (2.1), we deduce $F_{2 m}= \pm F_{2 n}$, so that $F_{2 m}=F_{2 n}$ and $m=n$.

Next we show that if $j \neq 0$ then $t_{n}=0$, which is impossible for $n>0$ as $t_{n}=-F_{2 n}$. If $j=1$ then $\alpha_{m}= \pm \sigma\left(\alpha_{n}\right)$ and we have

$$
\begin{aligned}
& r_{m}+s_{m} \theta+4 t_{m} \theta^{2}-t_{m} \theta^{3}-t_{m} \theta^{4} \\
& = \pm\left(\left(r_{n}+2 s_{n}-3 t_{n}\right)-3 t_{n} \theta+\left(-4 s_{n}+9 t_{n}\right) \theta^{2}+t_{n} \theta^{3}+\left(s_{n}-2 t_{n}\right) \theta^{4}\right) .
\end{aligned}
$$

Equating coefficients of θ^{3}, we obtain $-t_{m}= \pm t_{n}$, so by (2.1) we have $F_{2 m}=\mp F_{2 n}$ and thus $F_{2 m}=F_{2 n}$ and $m=n$. Hence

$$
\begin{aligned}
& r_{n}+s_{n} \theta+4 t_{n} \theta^{2}-t_{n} \theta^{3}-t_{n} \theta^{4} \\
& =-\left(r_{n}+2 s_{n}-3 t_{n}\right)+3 t_{n} \theta-\left(-4 s_{n}+9 t_{n}\right) \theta^{2}-t_{n} \theta^{3}-\left(s_{n}-2 t_{n}\right) \theta^{4} .
\end{aligned}
$$

Equating coefficients of θ and θ^{2}, we have $s_{n}=3 t_{n}$ and $4 t_{n}=4 s_{n}-9 t_{n}$, so $t_{n}=0$.
If $j=2$ then $\alpha_{m}= \pm \sigma^{2}\left(\alpha_{n}\right)$ and we have

$$
\begin{aligned}
& r_{m}+s_{m} \theta+4 t_{m} \theta^{2}-t_{m} \theta^{3}-t_{m} \theta^{4} \\
& = \pm\left(\left(r_{n}-s_{n}+5 t_{n}\right)+\left(2 s_{n}-6 t_{n}\right) \theta+\left(3 s_{n}-6 t_{n}\right) \theta^{2}\right. \\
& \left.\quad+\left(-s_{n}+3 t_{n}\right) \theta^{3}+\left(-s_{n}+2 t_{n}\right) \theta^{4}\right) .
\end{aligned}
$$

Equating coefficients of θ^{3} and θ^{4}, we obtain $-s_{n}+3 t_{n}= \pm\left(-t_{m}\right)=-s_{n}+2 t_{n}$ so $t_{n}=0$.
If $j=3$ then $\alpha_{m}= \pm \sigma^{3}\left(\alpha_{n}\right)$ and we have

$$
\begin{aligned}
& r_{m}+s_{m} \theta+4 t_{m} \theta^{2}-t_{m} \theta^{3}-t_{m} \theta^{4} \\
& = \pm\left(\left(r_{n}-2 s_{n}+9 t_{n}\right)+t_{n} \theta+\left(s_{n}-6 t_{n}\right) \theta^{2}+t_{n} \theta^{4}\right) .
\end{aligned}
$$

Equating coefficients of θ^{3}, we obtain $t_{m}=0$.
If $j=4$ then $\alpha_{m}= \pm \sigma^{4}\left(\alpha_{n}\right)$ and we have

$$
\begin{aligned}
& r_{m}+s_{m} \theta+4 t_{m} \theta^{2}-t_{m} \theta^{3}-t_{m} \theta^{4} \\
& = \pm\left(\left(r_{n}+4 t_{n}\right)+\left(-3 s_{n}+8 t_{n}\right) \theta-t_{n} \theta^{2}+\left(s_{n}-3 t_{n}\right) \theta^{3}\right) .
\end{aligned}
$$

Equating coefficients of θ^{4}, we obtain $t_{m}=0$.
This completes the proof.

ACKNOWLEDGMENTS

The authors wish to thank the referee whose suggestions shortened and improved the paper.

REFERENCES

[1] I. Gaál and M. Pohst. "Power Integral Bases in a Parametric Family of Totally Real Cyclic Quintics." Math Comp. 66 (1997): 1689-1696.
[2] S. Jeannin. "Nombre de Classes et unités Des Corps de Nombres Cycliques Quintiques d'E. Lehmer." J. Théor. Nombres Bordeaux 8 (1996): 75-92.
[3] W. Narkiewicz. Elementary and Analytic Theory of Algebraic Numbers. Second Edition, Springer-Verlag, Berlin Heidelberg New York, 1990.
[4] M. Newman and O. Taussky. "On a Generalization of the Normal Basis in Abelian Algebraic Number Fields." Comm. Pure Appl. Math. 9 (1956): 85-91.
[5] R. Schoof and L. Washington. "Quintic Polynomials and Real Cyclotomic Fields with Large Class Numbers." Math. Comp. 50 (1988): 543-556.
[6] B. K. Spearman and K. S. Williams. "Normal Integral Bases for Emma Lehmer's Parametric Family of Cyclic Quintics." J. Théor. Nombres Bordeaux 16 (2004): 215-220.
[7] R. C. Thompson. "Normal Matrices and the Normal Basis in Abelian Number Fields." Pacific J. Math. 12 (1962): 1115-1124.

AMS Classification Numbers: 11R20

