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Abstract. In this paper we consider the Fibonacci Zeta functions ζF (s) =
∑∞

n=1 F−s
n and

the Lucas Zeta functions ζL(s) =
∑∞

n=0 L−s
n . The sequences {Aν}ν≥0 and {Bν}ν≥0, which

are derived from
∑n

ν=1 F−s
ν = An/Bn, satisfy certain recurrence formulas. We examine

some properties of the periodicities of An and Bn. For example, let m and k be positive
integers. If n ≥ mk, then Bn ≡ 0 (mod Fm

k ) (with a similar result holding for An). The
power of 2 which divides Bn is

⌊
n
6

⌋
+

∑∞
i=0

⌊
n

3·2i

⌋
.

1. Introduction

Consider the so-called Fibonacci and Lucas Zeta functions:

ζF (s) =
∞∑

n=1

1

F s
n

, ζL(s) =
∞∑

n=0

1

Ls
n

.

In [13] the analytic continuation of these series is discussed. In [4] it is shown that the
numbers

ζF (2), ζF (4), ζF (6) ( respectively, ζL(2), ζL(4), ζL(6))

are algebraically independent, and that each of

ζF (2s) ( respectively, ζL(2s)) (s = 4, 5, 6, . . . )

may be written as a rational (respectively, algebraic) function of these three numbers over
Q, e.g.

ζF (8)− 15

14
ζF (4) =

1

378(4u + 5)2

(
256u6 − 3456u5 + 2880u4 + 1792u3v

− 11100u3 + 20160u2v − 10125u2 + 7560uv + 3136v2 − 1050v
)
,

where u = ζF (2) and v = ζF (6). Similar results are obtained in [4] for the alternating sums

ζ∗F (2s) :=
∞∑

n=1

(−1)n+1

F 2s
n

(
respectively, ζ∗L(2s) :=

∞∑
n=1

(−1)n+1

L2s
n

)
(s = 1, 2, 3, . . . ).

From the main theorem in [5] it follows that for any positive distinct integers s1, s2, s3 the
numbers ζF (2s1), ζF (2s2), and ζF (2s3) are algebraically independent if and only if at least
one of s1, s2, s3 is even. Other types of algebraic independence, including the functions
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∞∑
n=1

1

F s
2n−1

,

∞∑
n=1

1

F s
2n

,

∞∑
n=1

1

Ls
2n−1

,

∞∑
n=1

1

Ls
2n

are discussed in [9].
On the other hand, in [8] Fibonacci zeta functions and Lucas zeta functions including

ζF (1), ζF (2), ζF (3), ζ∗F (1), ζL(1), ζL(2), ζ∗L(1)

are expanded as non-regular continued fractions whose components are Fibonacci or Lucas
numbers. For example, [8, Theorem 1] says

Lemma 1.1. We have

ζF (1) =
1

F2 − F 2
1

F3 − F 2
2

F4 − F 2
3

. . . − F 2
n−1

Fn+1 − . . .

and
n∑

ν=1

1

Fν

=
An

Bn

,

where {Aν}ν≥0 and {Bν}ν≥0 are determined by the recurrence formulas:

Aν = Fν+1Aν−1 − F 2
ν−1Aν−2 (ν ≥ 2), A0 = 0, A1 = 1;

Bν = Fν+1Bν−1 − F 2
ν−1Bν−2 (ν ≥ 2), B0 = 1, B1 = 1.

Similar continued fraction expansions with corresponding recurrence relations hold for
ζF (2), ζF (3), ζ∗F (1), ζL(1), ζL(2), ζ∗L(1) and related Fibonacci and Lucas Dirichlet series [8,
Table 1]. In [8, Theorem 5.1] the periodicity of the sequences {An}n≥0 and {Bn}n≥0 modulo
t for any integer t ≥ 2 is considered using a result recently obtained in [7].

Lemma 1.2. Let t ≥ 2 be any integer, and let {Yn}n≥0 be a sequence of integers satisfying
the recurrence relation

Yν = T (ν)Yν−1 + U(ν)Yν−2 (ν ≥ 2)

with sequences {T (ν)}ν≥2 and {U(ν)}ν≥2 of integers, which are periodic modulo t. Then
the sequence {Yn}n≥0 is ultimately periodic modulo t. If U(ν) = 1 for all ν ≥ 2, then the
sequence {Yn}n≥0 is periodic modulo t.

By applying this lemma to the recurrence formulas for An and Bn in [8, Table 1], the
following result is obtained in [8, Theorem 5.2].

Lemma 1.3. For any integer t ≥ 2, the sequences (An)n≥0 and (Bn)n≥0 are ultimately
periodic modulo t.

However, the exact period has not been known. In this paper we discuss the details
about periodicity. For example, let m and k be positive integers. If n ≥ mk, then Bn ≡ 0
(mod Fm

k ) (with a similar result holding for An). The power of 2 which divides Bn is⌊
n
6

⌋
+

∑∞
i=0

⌊
n

3·2i

⌋
.
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2. Fibonacci-type Zeta Functions

Consider Fibonacci-type numbers {Gn}n≥1 defined by

Gn = Gn−1 + Gn−2 (n ≥ 2)

with positive integral initial values G1 and G2. Let

ζG(s) =
∞∑

n=1

1

Gs
n

, ζ∗G(s) =
∞∑

n=1

(−1)n−1

Gs
n

.

Continued fraction expansions of ζG(s) and ζ∗G(s) are obtained in [8, Lemma 2, Lemma 3].
Namely,

ζG(s) =
1

Gs
1 −

G2s
1

Gs
1 + Gs

2 −
G2s

2

Gs
2 + Gs

3 −
G2s

3

Gs
3 + Gs

4 − ... − G2s
n−1

Gs
n−1 + Gs

n − · · ·
and

ζ∗G(s) =
1

Gs
1 +

G2s
1

−Gs
1 + Gs

2 +
G2s

2

−Gs
2 + Gs

3 +
G2s

3

−Gs
3 + Gs

4 + ... +
G2s

n−1

−Gs
n−1 + Gs

n + · · · .

Now An (respectively Bn) are defined as the numerator (respectively denominator) con-
vergent of the continued fraction expansion given for ζG(s):

An

Bn

=
1

Gs
1 −

G2s
1

Gs
1 + Gs

2 −
G2s

2

Gs
2 + Gs

3 −
G2s

3

Gs
3 + Gs

4 − ... − G2s
n−1

Gs
n−1 + Gs

n

.

Hence, {Aν}ν≥0 and {Bν}ν≥0 satisfy the following recurrence formulas.

Aν = (Gs
ν−1 + Gs

ν)Aν−1 −G2s
ν−1Aν−2 (ν ≥ 2), A0 = 0, A1 = 1;

Bν = (Gs
ν−1 + Gs

ν)Bν−1 −G2s
ν−1Bν−2 (ν ≥ 2), B0 = 1, B1 = Gs

1.

In fact, Aν and Bν can be expressed explicitly as follows.

Lemma 2.1. For n = 1, 2, . . .

An = (G1G2 . . . Gn)s

n∑
ν=1

1

Gs
ν

, Bn = (G1G2 . . . Gn)s.

FEBRUARY 2010 49



THE FIBONACCI QUARTERLY

Proof. By induction we have Bn = (G1G2 . . . Gn)s. Thus,

An = Bn

n∑
ν=1

1

Gs
ν

= (G1G2 . . . Gn)s

n∑
ν=1

1

Gs
ν

.

¤

Similarly, if A∗
n (respectively B∗

n) are defined as the numerator (respectively denominator)
convergent of the continued fraction expansion given for ζ∗G(s), then {A∗

ν}ν≥0 and {B∗
ν}ν≥0

satisfy the following recurrence formulas.

A∗
ν = (−Gs

ν−1 + Gs
ν)A

∗
ν−1 + G2s

ν−1A
∗
ν−2 (ν ≥ 2), A∗

0 = 0, A∗
1 = 1;

B∗
ν = (−Gs

ν−1 + Gs
ν)B

∗
ν−1 + G2s

ν−1B
∗
ν−2 (ν ≥ 2), B∗

0 = 1, B∗
1 = Gs

1.

Similar to Lemma 2.1, we have the following.

Lemma 2.2. For n = 1, 2, . . .

A∗
n = (G1G2 . . . Gn)s

n∑
ν=1

(−1)ν−1

Gs
ν

, B∗
n = (G1G2 . . . Gn)s.

Some reciprocal sums of consecutive Fibonacci or Lucas numbers have been studied (e.g.
[1, 14]). For example, the reciprocal sum of Gs

nG
s
n+1 has the following continued fraction

expansion.

Corollary 2.3.

∞∑
n=1

1

Gs
nG

s
n+1

=
1

Gs
1G

s
2 −

G2s
1 Gs

2

Gs
1 + Gs

3 −
Gs

2G
s
3

Gs
2 + Gs

4 −
Gs

3G
s
4

Gs
3 + Gs

5 − ... − Gs
n−1G

s
n

Gs
n−1 + Gs

n+1 − . . .
,
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Proof. By [8, Lemma 2.1], we have

∞∑
n=1

1

Gs
nG

s
n+1

=
G−s

1 G−s
2

1− G−s
2 G−s

3

G−s
1 G−s

2 + G−s
2 G−s

3 − G−s
1 G−s

2 G−s
3 G−s

4

G−s
2 G−s

3 + G−s
3 G−s

4 − G−s
2 G−s

3 G−s
4 G−s

5

G−s
3 G−s

4 + G−s
4 G−s

5 − . . .

=
1

Gs
1G

s
2 −

Gs
1G

−s
3

G−s
1 G−s

2 + G−s
2 G−s

3 − G−s
1 G−s

2 G−s
3 G−s

4

G−s
2 G−s

3 + G−s
3 G−s

4 − G−s
2 G−s

3 G−s
4 G−s

5

G−s
3 G−s

4 + G−s
4 G−s

5 − . . .

=
1

Gs
1G

s
2 −

G2s
1 Gs

2

Gs
3 + Gs

1 −
G−s

4

G−s
2 G−s

3 + G−s
3 G−s

4 − G−s
2 G−s

3 G−s
4 G−s

5

G−s
3 G−s

4 + G−s
4 G−s

5 − . . .

=
1

Gs
1G

s
2 −

G2s
1 Gs

2

Gs
1 + Gs

3 −
Gs

2G
s
3

Gs
4 + Gs

2 −
G−s

5

G−s
3 G−s

4 + G−s
4 G−s

5 − . . .
.

¤

3. Fibonacci Zeta Functions

Let G1 = G2 = 1. Then Gn = Fn are reduced to Fibonacci numbers. Consider the
continued fraction expansion

ζF (s) =
1

F s
1 −

F 2s
1

F s
1 + F s

2 −
F 2s

2

F s
2 + F s

3 −
F 2s

3

. . . − F 2s
n−1

F s
n−1 + F s

n − . . .

and
n∑

ν=1

1

F s
ν

=
An

Bn

,
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where {Aν}ν≥0 and {Bν}ν≥0 are determined by the recurrence formulas:

Aν = (F s
ν−1 + F s

ν )Aν−1 − F 2s
ν−1Aν−2 (ν ≥ 2), A0 = 0, A1 = 1;

Bν = (F s
ν−1 + F s

ν )Bν−1 − F 2s
ν−1Bν−2 (ν ≥ 2), B0 = 1, B1 = F s

1 .

Theorem 3.1. Let m be a positive integer.

(1) For all n ≥ (dm/se+ 1)k, An ≡ 0 (mod Fm
k ).

(2) For all n ≥ dm/se k, Bn ≡ 0 (mod Fm
k ).

Remark. If s = 1 and m = 1, then this matches Theorem 5.3 in [8].

Proof. The second assertion follows from the fact Fk|Fik (i = 1, 2, . . .) (see e.g. [10, Theorem
16.1]) and by Lemma 2.1 Bn = F s

1 F s
2 . . . F s

n. On the other hand,

Fm
k

∣∣∣∣
(

F1F2 · · ·Fn

Fν

)s

holds for n ≥ dm/se k if k - ν, and for n ≥ (dm/se+ 1)k if k|ν. ¤

Next, we shall consider the periodicity modulo the power of a prime p. We may assume
s = 1 because the general case is obtained by multiplying by s. Hence, Bn = F1F2 · · ·Fn

and An = (F1F2 · · ·Fn)
∑n

ν=1 F−1
ν .

Proposition 3.2. The power of 2 which divides Bn is
⌊

n
6

⌋
+

∑∞
i=0

⌊
n

3·2i

⌋
.

Then, we have the following.

Theorem 3.3. Let m be a positive integer, and choose σ = σ(n) to be the least positive
integer for which m ≤ ⌊

σ
6

⌋
+

∑∞
i=0

⌊
σ

3·2i

⌋
. Then Bσ−1 6≡ 0 (mod 2m) and Bk ≡ 0 (mod 2m)

for all k ≥ σ.

The proof of Proposition 3.2 depends upon the following facts.

Lemma 3.4.

2‖F6m−3 (m = 1, 2, . . . ).

For d = 3, 4, . . .

2d‖F3·2d−2(2m−1) (m = 1, 2, . . . ).

We need some more lemmas in order to prove Lemma 3.4. The proof without these lemmas
can be achieved by applying [6, Corollary 1].

Lemma 3.5. ([11], [10, Theorem 35.5])
The period of the generalized Fibonacci sequence modulo 2n is 3 · 2n−1.

Lemma 3.6. ([2], [10, Ex.35.42, Ex.35.43])
For n ≥ 1

F3·2n ≡ 2n+2 (mod 2n+3),

L3·2n ≡ 2 + 2n+2 (mod 2n+4).
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Lemma 3.7. For n = 1, 2, . . .

2 - L3n±1, 2‖L6n, 22‖L6n−3.

Proof. Note that

{Ln}n≥1 = 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . . .

The first assertion is clear because L3n−2 and L3n−1 are odd and L3n is even. Since

{Ln (mod 2)3}n≥1 = 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2︸ ︷︷ ︸
12

, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2︸ ︷︷ ︸
12

, . . .

and by Lemma 3.5 the period of the Lucas sequence modulo 23 is 12, we have the second
and the third assertions. ¤
Proof of Lemma 3.4. By Lemma 3.5 the period of the Fibonacci sequence modulo 22 is 6.
Since

{Fn (mod 2)2}n≥1 = 1, 1, 2, 3, 1, 0︸ ︷︷ ︸
6

, 1, 1, 2, 3, 1, 0︸ ︷︷ ︸
6

, . . . ,

we have 2‖F6m−3 (m = 1, 2, . . .).
Next, we shall show that F9·2d−2 ≡ 2d (mod 2d+1) (d = 3, 4, . . . ). For d = 3, F18 = 2584 ≡

8 (mod 16). By Lemma 3.7 we have L9·2d−2 ≡ 2 (mod 4) or L9·2d−2 = 2+4k′ for some integer
k′. Assume that for some integer l(≥ 3)

F9·2l−2 ≡ 2l (mod 2l+1)

or there exists an integer k such that F9·2l−2 = 2l + k · 2l+1. By F2n = FnLn (see e.g. [10,
Corollary 5.5 (5.13)]),

F9·2l−1 = F9·2l−2L9·2l−2 = (2l + k · 2l+1)(2 + 4k′)

= 2l+1 + (k + k′ + 2kk′) · 2l+2.

Hence, F9·2l−1 ≡ 2l+1 (mod 2l+2). By induction, we have F9·2d−2 ≡ 2d (mod 2d+1) (d =
3, 4, . . .).

Since by Lemma 3.5 the period of the Fibonacci sequence modulo 2d+1 is 3 · 2d, we also
have

2d‖F9·2d−2+(m−1)·3·2d = F3·2d−2(4m−1) (m = 1, 2, . . .).

Similarly, by 2d‖F3·2d−2 , we have

2d‖F3·2d−2+(m−1)·3·2d = F3·2d−2(4m−3) (m = 1, 2, . . .).

Therefore, we have the desired results. ¤
Proof of Proposition 3.2. Similarly to Lucas numbers in Lemma 3.7, 2 - Fn if and only if
3 - n. By Lemma 3.4 the power of 2 which divides Fn is 1 if 3|k and 6 - k, and is 2 more
than the power of 2 dividing n if 6|n. ¤

We need additional notation in order to address the cases where p is an odd prime. Let
νp(r) denote the exponent of the highest power of a prime p which divides r. Namely, pνp(r)‖r,
or pνp(r)|r and pνp(r)+1 - r. νp(Fn) and νp(Ln) are characterized in [12]. Let fp denote the
first positive index for which p|Ffp . This index is called the rank of apparition or Fibonacci
entry-point of p. For example, f2 = 3, f3 = 4, f5 = 5, f7 = 8, f11 = 10, f13 = 7 and f17 = 9.

FEBRUARY 2010 53



THE FIBONACCI QUARTERLY

The order of p in Ffp is denoted by ep = νp(Ffp). Namely, pep|Ffp and pep+1 - Ffp . Note that
usually ep = 1 and no exceptional prime has been found for p < 1014 [3].

Lemma 3.8. [12] Let p be an odd prime with p 6= 5. If fp|n, then νp(Fn) = νp(n) + ep. If
fp - n, then νp(Fn) = 0.

Corollary 3.9. The power of an odd prime p which divides Bn = F1F2 · · ·Fn is

(ep − 1)

⌊
n

fp

⌋
+

∞∑
i=0

⌊
n

fppi

⌋
.

Theorem 3.10. Let m be a positive integer, and choose σ = σ(n) to be the least positive

integer for which m ≤ (ep − 1)
⌊

σ
fp

⌋
+

∑∞
i=0

⌊
σ

fppi

⌋
. Then Bσ−1 6≡ 0 (mod pm) and Bn ≡ 0

(mod pm) for all n ≥ σ.

Example. For all n ≥ 5m, Bn ≡ 0 (mod 5
∑∞

i=0bm/5ic). It is easy to see this. Since f5 = 5,
5e5|F5 = 5, so e5 = 1. Setting σ = 5m yields the result.

Proposition 3.11. The power of a prime p which divides Afppm is

ep(p
m − 1) +

pm − 1

p− 1
−m.

Proof. When n = fpp
m in Corollary 3.9, we see that the power of p which divides Bfppm is

(ep − 1)pm + (pm + · · ·+ p + 1) = epp
m +

pm − 1

p− 1
.

(Note that (ep − 1)pm is usually 0.) By Lemma 3.8 we know pm+ep‖Ffppm , and pm+ep - Fi

(1 ≤ i < fpp
m). Thus, the power of p which divides the denominator of

∑fppm

i=1 F−1
i , when

written as a single reduced fraction, is pm+ep . Since Afppm = Bfppm

∑fppm

i=1 F−1
i , we have the

desired result. ¤

4. Lucas Zeta Functions

Consider the continued fraction expansion

ζL(s) =
1

Ls
1 −

L2s
1

Ls
1 + Ls

2 −
L2s

2

Ls
2 + Ls

3 −
L2s

3

. . . − L2s
n−1

Ls
n−1 + Ls

n − . . .

and
n∑

ν=1

1

Ls
ν

=
An

Bn

,

where {Aν}ν≥0 and {Bν}ν≥0 are determined by the recurrence formulas:

Aν = (Ls
ν−1 + Ls

ν)Aν−1 − L2s
ν−1Aν−2 (ν ≥ 2), A0 = 0, A1 = 1;

Bν = (Ls
ν−1 + Ls

ν)Bν−1 − L2s
ν−1Bν−2 (ν ≥ 2), B0 = 1, B1 = Ls

1.
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Theorem 4.1. Let m be a positive integer.

(1) For all n ≥ (2 dm/se+ 1)k, An ≡ 0 (mod Lm
k ).

(2) For all n ≥ (2 dm/se − 1)k, Bn ≡ 0 (mod Lm
k ).

Proof. The second statement in Theorem 4.1 is based upon the fact Lk|L(2i−1)k (i = 1, 2, . . . )(see
e.g. [10, Theorem 16.6]) and Bn = Ls

1L
s
2 . . . Ls

n. ¤
Lemma 4.2. [12] Let p be an odd prime with p 6= 5. If the period modulo p of the Fibonacci
sequences is not equal to 4fp and n ≡ fp/2 (mod fp), then νp(Ln) = νp(n)+e(p). Otherwise,
νp(Ln) = 0.

Next, we shall consider the periodicity modulo the power of a prime p. We may assume
s = 1 without loss of generality. Hence, Bn = L1L2 · · ·Ln and An = (L1L2 · · ·Ln)

∑
ν=1 L−1

ν .

Proposition 4.3. The power of 2 which divides Bn is 2
⌊

n
3

⌋− ⌊
n
6

⌋
.

Proof. It is clear from Lemma 3.7. ¤
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