SOME PERIODICITIES IN THE CONTINUED FRACTION EXPANSIONS OF FIBONACCI AND LUCAS DIRICHLET SERIES

CHRIS K. CALDWELL AND TAKAO KOMATSU

Abstract. In this paper we consider the Fibonacci Zeta functions $\zeta_{F}(s)=\sum_{n=1}^{\infty} F_{n}^{-s}$ and the Lucas Zeta functions $\zeta_{L}(s)=\sum_{n=0}^{\infty} L_{n}^{-s}$. The sequences $\left\{A_{\nu}\right\}_{\nu \geq 0}$ and $\left\{B_{\nu}\right\}_{\nu \geq 0}$, which are derived from $\sum_{\nu=1}^{n} F_{\nu}^{-s}=A_{n} / B_{n}$, satisfy certain recurrence formulas. We examine some properties of the periodicities of A_{n} and B_{n}. For example, let m and k be positive integers. If $n \geq m k$, then $B_{n} \equiv 0\left(\bmod F_{k}^{m}\right)\left(\right.$ with a similar result holding for $\left.A_{n}\right)$. The power of 2 which divides B_{n} is $\left\lfloor\frac{n}{6}\right\rfloor+\sum_{i=0}^{\infty}\left\lfloor\frac{n}{3 \cdot 2^{i}}\right\rfloor$.

1. Introduction

Consider the so-called Fibonacci and Lucas Zeta functions:

$$
\zeta_{F}(s)=\sum_{n=1}^{\infty} \frac{1}{F_{n}^{s}}, \quad \zeta_{L}(s)=\sum_{n=0}^{\infty} \frac{1}{L_{n}^{s}}
$$

In [13] the analytic continuation of these series is discussed. In [4] it is shown that the numbers

$$
\zeta_{F}(2), \zeta_{F}(4), \zeta_{F}(6) \quad\left(\text { respectively }, \zeta_{L}(2), \zeta_{L}(4), \zeta_{L}(6)\right)
$$

are algebraically independent, and that each of

$$
\zeta_{F}(2 s) \quad\left(\text { respectively, } \zeta_{L}(2 s)\right) \quad(s=4,5,6, \ldots)
$$

may be written as a rational (respectively, algebraic) function of these three numbers over \mathbb{Q}, e.g.

$$
\begin{aligned}
\zeta_{F}(8)-\frac{15}{14} \zeta_{F}(4)= & \frac{1}{378(4 u+5)^{2}}\left(256 u^{6}-3456 u^{5}+2880 u^{4}+1792 u^{3} v\right. \\
& \left.-11100 u^{3}+20160 u^{2} v-10125 u^{2}+7560 u v+3136 v^{2}-1050 v\right)
\end{aligned}
$$

where $u=\zeta_{F}(2)$ and $v=\zeta_{F}(6)$. Similar results are obtained in [4] for the alternating sums

$$
\zeta_{F}^{*}(2 s):=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{F_{n}^{2 s}} \quad\left(\text { respectively }, \zeta_{L}^{*}(2 s):=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{L_{n}^{2 s}}\right) \quad(s=1,2,3, \ldots)
$$

From the main theorem in [5] it follows that for any positive distinct integers s_{1}, s_{2}, s_{3} the numbers $\zeta_{F}\left(2 s_{1}\right), \zeta_{F}\left(2 s_{2}\right)$, and $\zeta_{F}\left(2 s_{3}\right)$ are algebraically independent if and only if at least one of s_{1}, s_{2}, s_{3} is even. Other types of algebraic independence, including the functions

[^0]
THE FIBONACCI QUARTERLY

$$
\sum_{n=1}^{\infty} \frac{1}{F_{2 n-1}^{s}}, \quad \sum_{n=1}^{\infty} \frac{1}{F_{2 n}^{s}}, \quad \sum_{n=1}^{\infty} \frac{1}{L_{2 n-1}^{s}}, \quad \sum_{n=1}^{\infty} \frac{1}{L_{2 n}^{s}}
$$

are discussed in [9].
On the other hand, in [8] Fibonacci zeta functions and Lucas zeta functions including

$$
\zeta_{F}(1), \zeta_{F}(2), \zeta_{F}(3), \zeta_{F}^{*}(1), \zeta_{L}(1), \zeta_{L}(2), \zeta_{L}^{*}(1)
$$

are expanded as non-regular continued fractions whose components are Fibonacci or Lucas numbers. For example, [8, Theorem 1] says

Lemma 1.1. We have

$$
\zeta_{F}(1)=\frac{1}{F_{2}-\frac{F_{1}^{2}}{F_{3}-\frac{F_{2}^{2}}{F_{4}-\frac{F_{3}^{2}}{\ddots}-\frac{F_{n-1}^{2}}{F_{n+1}-\ldots}}}}
$$

and

$$
\sum_{\nu=1}^{n} \frac{1}{F_{\nu}}=\frac{A_{n}}{B_{n}}
$$

where $\left\{A_{\nu}\right\}_{\nu \geq 0}$ and $\left\{B_{\nu}\right\}_{\nu \geq 0}$ are determined by the recurrence formulas:

$$
\begin{array}{llll}
A_{\nu}=F_{\nu+1} A_{\nu-1}-F_{\nu-1}^{2} A_{\nu-2} & (\nu \geq 2), & A_{0}=0, & A_{1}=1 ; \\
B_{\nu}=F_{\nu+1} B_{\nu-1}-F_{\nu-1}^{2} B_{\nu-2} & (\nu \geq 2), & B_{0}=1, & B_{1}=1 .
\end{array}
$$

Similar continued fraction expansions with corresponding recurrence relations hold for $\zeta_{F}(2), \zeta_{F}(3), \zeta_{F}^{*}(1), \zeta_{L}(1), \zeta_{L}(2), \zeta_{L}^{*}(1)$ and related Fibonacci and Lucas Dirichlet series [8, Table 1]. In [8, Theorem 5.1] the periodicity of the sequences $\left\{A_{n}\right\}_{n \geq 0}$ and $\left\{B_{n}\right\}_{n \geq 0}$ modulo t for any integer $t \geq 2$ is considered using a result recently obtained in [7].
Lemma 1.2. Let $t \geq 2$ be any integer, and let $\left\{Y_{n}\right\}_{n \geq 0}$ be a sequence of integers satisfying the recurrence relation

$$
Y_{\nu}=T(\nu) Y_{\nu-1}+U(\nu) Y_{\nu-2} \quad(\nu \geq 2)
$$

with sequences $\{T(\nu)\}_{\nu \geq 2}$ and $\{U(\nu)\}_{\nu \geq 2}$ of integers, which are periodic modulo t. Then the sequence $\left\{Y_{n}\right\}_{n \geq 0}$ is ultimately periodic modulo t. If $U(\nu)=1$ for all $\nu \geq 2$, then the sequence $\left\{Y_{n}\right\}_{n \geq 0}$ is periodic modulo t.

By applying this lemma to the recurrence formulas for A_{n} and B_{n} in [8, Table 1], the following result is obtained in [8, Theorem 5.2].
Lemma 1.3. For any integer $t \geq 2$, the sequences $\left(A_{n}\right)_{n \geq 0}$ and $\left(B_{n}\right)_{n \geq 0}$ are ultimately periodic modulo t.

However, the exact period has not been known. In this paper we discuss the details about periodicity. For example, let m and k be positive integers. If $n \geq m k$, then $B_{n} \equiv 0$ $\left(\bmod F_{k}^{m}\right)$ (with a similar result holding for $\left.A_{n}\right)$. The power of 2 which divides B_{n} is $\left\lfloor\frac{n}{6}\right\rfloor+\sum_{i=0}^{\infty}\left\lfloor\frac{n}{3 \cdot 2^{i}}\right\rfloor$.

FRACTION EXPANSIONS OF FIBONACCI AND LUCAS DIRICHLET SERIES

2. Fibonacci-type Zeta Functions

Consider Fibonacci-type numbers $\left\{G_{n}\right\}_{n \geq 1}$ defined by

$$
G_{n}=G_{n-1}+G_{n-2} \quad(n \geq 2)
$$

with positive integral initial values G_{1} and G_{2}. Let

$$
\zeta_{G}(s)=\sum_{n=1}^{\infty} \frac{1}{G_{n}^{s}}, \quad \zeta_{G}^{*}(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{G_{n}^{s}}
$$

Continued fraction expansions of $\zeta_{G}(s)$ and $\zeta_{G}^{*}(s)$ are obtained in [8, Lemma 2, Lemma 3]. Namely,

$$
\zeta_{G}(s)=\frac{1}{G_{1}^{s}-\frac{G_{1}^{2 s}}{G_{1}^{s}+G_{2}^{s}-\frac{G_{2}^{2 s}}{G_{2}^{s}+G_{3}^{s}-\frac{G_{3}^{2 s}}{G_{3}^{s}+G_{4}^{s}-\ddots-\frac{G_{n-1}^{2 s}}{G_{n-1}^{s}+G_{n}^{s}-\cdots}}}}}
$$

and

$$
\zeta_{G}^{*}(s)=\frac{1}{G_{1}^{s}+\frac{G_{1}^{2 s}}{-G_{1}^{s}+G_{2}^{s}+\frac{G_{2}^{2 s}}{-G_{2}^{s}+G_{3}^{s}+\frac{G_{3}^{2 s}}{-G_{3}^{s}+G_{4}^{s}+\ddots+\frac{G_{n-1}^{2 s}}{-G_{n-1}^{s}+G_{n}^{s}+\cdots}}}}}
$$

Now A_{n} (respectively B_{n}) are defined as the numerator (respectively denominator) convergent of the continued fraction expansion given for $\zeta_{G}(s)$:

$$
\frac{A_{n}}{B_{n}}=\frac{1}{G_{1}^{s}-\frac{G_{1}^{2 s}}{G_{1}^{s}+G_{2}^{s}-\frac{G_{2}^{2 s}}{G_{2}^{s}+G_{3}^{s}-\frac{G_{3}^{2 s}}{G_{3}^{s}+G_{4}^{s}-\ddots-\frac{G_{n-1}^{2 s}}{G_{n-1}^{s}+G_{n}^{s}}}}} .}
$$

Hence, $\left\{A_{\nu}\right\}_{\nu \geq 0}$ and $\left\{B_{\nu}\right\}_{\nu \geq 0}$ satisfy the following recurrence formulas.

$$
\begin{array}{llll}
A_{\nu}=\left(G_{\nu-1}^{s}+G_{\nu}^{s}\right) A_{\nu-1}-G_{\nu-1}^{2 s} A_{\nu-2} & (\nu \geq 2), & A_{0}=0, & A_{1}=1 \\
B_{\nu}=\left(G_{\nu-1}^{s}+G_{\nu}^{s}\right) B_{\nu-1}-G_{\nu-1}^{2 s} B_{\nu-2} & (\nu \geq 2), & B_{0}=1, & B_{1}=G_{1}^{s}
\end{array}
$$

In fact, A_{ν} and B_{ν} can be expressed explicitly as follows.
Lemma 2.1. For $n=1,2, \ldots$

$$
A_{n}=\left(G_{1} G_{2} \ldots G_{n}\right)^{s} \sum_{\nu=1}^{n} \frac{1}{G_{\nu}^{s}}, \quad B_{n}=\left(G_{1} G_{2} \ldots G_{n}\right)^{s}
$$

THE FIBONACCI QUARTERLY

Proof. By induction we have $B_{n}=\left(G_{1} G_{2} \ldots G_{n}\right)^{s}$. Thus,

$$
A_{n}=B_{n} \sum_{\nu=1}^{n} \frac{1}{G_{\nu}^{s}}=\left(G_{1} G_{2} \ldots G_{n}\right)^{s} \sum_{\nu=1}^{n} \frac{1}{G_{\nu}^{s}}
$$

Similarly, if A_{n}^{*} (respectively B_{n}^{*}) are defined as the numerator (respectively denominator) convergent of the continued fraction expansion given for $\zeta_{G}^{*}(s)$, then $\left\{A_{\nu}^{*}\right\}_{\nu \geq 0}$ and $\left\{B_{\nu}^{*}\right\}_{\nu \geq 0}$ satisfy the following recurrence formulas.

$$
\begin{array}{llll}
A_{\nu}^{*}=\left(-G_{\nu-1}^{s}+G_{\nu}^{s}\right) A_{\nu-1}^{*}+G_{\nu-1}^{2 s} A_{\nu-2}^{*} & (\nu \geq 2), & A_{0}^{*}=0, & A_{1}^{*}=1 \\
B_{\nu}^{*}=\left(-G_{\nu-1}^{s}+G_{\nu}^{s}\right) B_{\nu-1}^{*}+G_{\nu-1}^{2 s} B_{\nu-2}^{*} & (\nu \geq 2), & B_{0}^{*}=1, & B_{1}^{*}=G_{1}^{s}
\end{array}
$$

Similar to Lemma 2.1, we have the following.

Lemma 2.2. For $n=1,2, \ldots$

$$
A_{n}^{*}=\left(G_{1} G_{2} \ldots G_{n}\right)^{s} \sum_{\nu=1}^{n} \frac{(-1)^{\nu-1}}{G_{\nu}^{s}}, \quad B_{n}^{*}=\left(G_{1} G_{2} \ldots G_{n}\right)^{s}
$$

Some reciprocal sums of consecutive Fibonacci or Lucas numbers have been studied (e.g. $[1,14])$. For example, the reciprocal sum of $G_{n}^{s} G_{n+1}^{s}$ has the following continued fraction expansion.

Corollary 2.3.

$$
\sum_{n=1}^{\infty} \frac{1}{G_{n}^{s} G_{n+1}^{s}}=\frac{1}{G_{1}^{s} G_{2}^{s}-\frac{G_{1}^{2 s} G_{2}^{s}}{G_{1}^{s}+G_{3}^{s}-\frac{G_{2}^{s} G_{3}^{s}}{G_{2}^{s}+G_{4}^{s}-\frac{G_{3}^{s} G_{4}^{s}}{G_{3}^{s}+G_{5}^{s}-\cdot \ddots-\frac{G_{n-1}^{s} G_{n}^{s}}{G_{n-1}^{s}+G_{n+1}^{s}-\ldots}}}}}
$$

Proof. By [8, Lemma 2.1], we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{G_{n}^{s} G_{n+1}^{s}} \\
& =\frac{G_{1}^{-s} G_{2}^{-s}}{1-\frac{G_{2}^{-s} G_{3}^{-s}}{G_{1}^{-s} G_{2}^{-s}+G_{2}^{-s} G_{3}^{-s}-\frac{G_{1}^{-s} G_{2}^{-s} G_{3}^{-s} G_{4}^{-s}}{G_{2}^{-s} G_{3}^{-s}+G_{3}^{-s} G_{4}^{-s}-\frac{G_{2}^{-s} G_{3}^{-s} G_{4}^{-s} G_{5}^{-s}}{G_{3}^{-s} G_{4}^{-s}+G_{4}^{-s} G_{5}^{-s}-\ldots}}}} \\
& =\frac{1}{G_{1}^{s} G_{2}^{s}-\frac{G_{1}^{s} G_{3}^{-s}}{G_{1}^{-s} G_{2}^{-s}+G_{2}^{-s} G_{3}^{-s}-\frac{G_{1}^{-s} G_{2}^{-s} G_{3}^{-s} G_{4}^{-s}}{G_{2}^{-s} G_{3}^{-s}+G_{3}^{-s} G_{4}^{-s}-\frac{G_{2}^{-s} G_{3}^{-s} G_{4}^{-s} G_{5}^{-s}}{G_{3}^{-s} G_{4}^{-s}+G_{4}^{-s} G_{5}^{-s}-\ldots}}}} \\
& =\frac{1}{G_{1}^{s} G_{2}^{s}-\frac{G_{1}^{2 s} G_{2}^{s}}{G_{3}^{s}+G_{1}^{s}-\frac{G_{4}^{-s}}{G_{2}^{-s} G_{3}^{-s}+G_{3}^{-s} G_{4}^{-s}-\frac{G_{2}^{-s} G_{3}^{-s} G_{4}^{-s} G_{5}^{-s}}{G_{3}^{-s} G_{4}^{-s}+G_{4}^{-s} G_{5}^{-s}-\ldots}}}} \\
& =\frac{1}{G_{1}^{s} G_{2}^{s}-\frac{G_{1}^{2 s} G_{2}^{s}}{G_{1}^{s}+G_{3}^{s}-\frac{G_{2}^{s} G_{3}^{s}}{G_{4}^{s}+G_{2}^{s}-\frac{G_{5}^{-s}}{G_{3}^{-s} G_{4}^{-s}+G_{4}^{-s} G_{5}^{-s}-\ldots}}}} .
\end{aligned}
$$

3. Fibonacci Zeta Functions

Let $G_{1}=G_{2}=1$. Then $G_{n}=F_{n}$ are reduced to Fibonacci numbers. Consider the continued fraction expansion

$$
\zeta_{F}(s)=\frac{1}{F_{1}^{s}-\frac{F_{1}^{2 s}}{F_{1}^{s}+F_{2}^{s}-\frac{F_{2}^{2 s}}{F_{2}^{s}+F_{3}^{s}-\frac{F_{3}^{2 s}}{\ddots}-\frac{F_{n-1}^{2 s}}{F_{n-1}^{s}+F_{n}^{s}-\ldots}}}}
$$

and

$$
\sum_{\nu=1}^{n} \frac{1}{F_{\nu}^{s}}=\frac{A_{n}}{B_{n}}
$$

THE FIBONACCI QUARTERLY

where $\left\{A_{\nu}\right\}_{\nu \geq 0}$ and $\left\{B_{\nu}\right\}_{\nu \geq 0}$ are determined by the recurrence formulas:

$$
\begin{array}{llll}
A_{\nu}=\left(F_{\nu-1}^{s}+F_{\nu}^{s}\right) A_{\nu-1}-F_{\nu-1}^{2 s} A_{\nu-2} & (\nu \geq 2), & A_{0}=0, & A_{1}=1 \\
B_{\nu}=\left(F_{\nu-1}^{s}+F_{\nu}^{s}\right) B_{\nu-1}-F_{\nu-1}^{2 s} B_{\nu-2} & (\nu \geq 2), & B_{0}=1, & B_{1}=F_{1}^{s}
\end{array}
$$

Theorem 3.1. Let m be a positive integer.
(1) For all $n \geq(\lceil m / s\rceil+1) k, A_{n} \equiv 0\left(\bmod F_{k}^{m}\right)$.
(2) For all $n \geq\lceil m / s\rceil k, B_{n} \equiv 0\left(\bmod F_{k}^{m}\right)$.

Remark. If $s=1$ and $m=1$, then this matches Theorem 5.3 in [8].
Proof. The second assertion follows from the fact $F_{k} \mid F_{i k}(i=1,2, \ldots)$ (see e.g. [10, Theorem 16.1]) and by Lemma $2.1 B_{n}=F_{1}^{s} F_{2}^{s} \ldots F_{n}^{s}$. On the other hand,

$$
F_{k}^{m} \left\lvert\,\left(\frac{F_{1} F_{2} \cdots F_{n}}{F_{\nu}}\right)^{s}\right.
$$

holds for $n \geq\lceil m / s\rceil k$ if $k \nmid \nu$, and for $n \geq(\lceil m / s\rceil+1) k$ if $k \mid \nu$.
Next, we shall consider the periodicity modulo the power of a prime p. We may assume $s=1$ because the general case is obtained by multiplying by s. Hence, $B_{n}=F_{1} F_{2} \cdots F_{n}$ and $A_{n}=\left(F_{1} F_{2} \cdots F_{n}\right) \sum_{\nu=1}^{n} F_{\nu}^{-1}$.
Proposition 3.2. The power of 2 which divides B_{n} is $\left\lfloor\frac{n}{6}\right\rfloor+\sum_{i=0}^{\infty}\left\lfloor\frac{n}{3 \cdot 2^{2}}\right\rfloor$.
Then, we have the following.
Theorem 3.3. Let m be a positive integer, and choose $\sigma=\sigma(n)$ to be the least positive integer for which $m \leq\left\lfloor\frac{\sigma}{6}\right\rfloor+\sum_{i=0}^{\infty}\left\lfloor\frac{\sigma}{3 \cdot 2^{2}}\right\rfloor$. Then $B_{\sigma-1} \not \equiv 0\left(\bmod 2^{m}\right)$ and $B_{k} \equiv 0\left(\bmod 2^{m}\right)$ for all $k \geq \sigma$.

The proof of Proposition 3.2 depends upon the following facts.

Lemma 3.4.

$$
2 \| F_{6 m-3} \quad(m=1,2, \ldots)
$$

For $d=3,4, \ldots$

$$
2^{d} \| F_{3 \cdot 2^{d-2}(2 m-1)} \quad(m=1,2, \ldots)
$$

We need some more lemmas in order to prove Lemma 3.4. The proof without these lemmas can be achieved by applying [6, Corollary 1].

Lemma 3.5. ([11], [10, Theorem 35.5])
The period of the generalized Fibonacci sequence modulo 2^{n} is $3 \cdot 2^{n-1}$.
Lemma 3.6. ([2], [10, Ex.35.42, Ex.35.43])
For $n \geq 1$

$$
\begin{aligned}
& F_{3 \cdot 2^{n}} \equiv 2^{n+2} \quad\left(\bmod 2^{n+3}\right) \\
& L_{3 \cdot 2^{n}} \equiv 2+2^{n+2} \quad\left(\bmod 2^{n+4}\right)
\end{aligned}
$$

FRACTION EXPANSIONS OF FIBONACCI AND LUCAS DIRICHLET SERIES

Lemma 3.7. For $n=1,2, \ldots$

$$
2 \nmid L_{3 n \pm 1}, \quad 2\left\|L_{6 n}, \quad 2^{2}\right\| L_{6 n-3} .
$$

Proof. Note that

$$
\left\{L_{n}\right\}_{n \geq 1}=1,3,4,7,11,18,29,47,76,123,199,322, \ldots
$$

The first assertion is clear because $L_{3 n-2}$ and $L_{3 n-1}$ are odd and $L_{3 n}$ is even. Since

$$
\left\{L_{n} \quad(\bmod 2)^{3}\right\}_{n \geq 1}=\underbrace{1,3,4,7,3,2,5,7,4,3,7,2}_{12}, \underbrace{1,3,4,7,3,2,5,7,4,3,7,2}_{12}, \ldots
$$

and by Lemma 3.5 the period of the Lucas sequence modulo 2^{3} is 12 , we have the second and the third assertions.
Proof of Lemma 3.4. By Lemma 3.5 the period of the Fibonacci sequence modulo 2^{2} is 6 . Since

$$
\left\{F_{n} \quad(\bmod 2)^{2}\right\}_{n \geq 1}=\underbrace{1,1,2,3,1,0}_{6}, \underbrace{1,1,2,3,1,0}_{6}, \ldots
$$

we have $2 \| F_{6 m-3}(m=1,2, \ldots)$.
Next, we shall show that $F_{9 \cdot 2^{d-2}} \equiv 2^{d}\left(\bmod 2^{d+1}\right)(d=3,4, \ldots)$. For $d=3, F_{18}=2584 \equiv$ $8(\bmod 16)$. By Lemma 3.7 we have $L_{9 \cdot 2^{d-2}} \equiv 2(\bmod 4)$ or $L_{9 \cdot 2^{d-2}}=2+4 k^{\prime}$ for some integer k^{\prime}. Assume that for some integer $l(\geq 3)$

$$
F_{9 \cdot 2^{l-2}} \equiv 2^{l} \quad\left(\bmod 2^{l+1}\right)
$$

or there exists an integer k such that $F_{9 \cdot 2^{l-2}}=2^{l}+k \cdot 2^{l+1}$. By $F_{2 n}=F_{n} L_{n}$ (see e.g. [10, Corollary 5.5 (5.13)]),

$$
\begin{aligned}
F_{9 \cdot 2^{l-1}} & =F_{9 \cdot 2^{l-2}} L_{9 \cdot 2^{l-2}}=\left(2^{l}+k \cdot 2^{l+1}\right)\left(2+4 k^{\prime}\right) \\
& =2^{l+1}+\left(k+k^{\prime}+2 k k^{\prime}\right) \cdot 2^{l+2}
\end{aligned}
$$

Hence, $F_{9 \cdot 2^{l-1}} \equiv 2^{l+1}\left(\bmod 2^{l+2}\right)$. By induction, we have $F_{9 \cdot 2^{d-2}} \equiv 2^{d}\left(\bmod 2^{d+1}\right)(d=$ $3,4, \ldots$.

Since by Lemma 3.5 the period of the Fibonacci sequence modulo 2^{d+1} is $3 \cdot 2^{d}$, we also have

$$
2^{d} \| F_{9 \cdot 2^{d-2}+(m-1) \cdot 3 \cdot 2^{d}}=F_{3 \cdot 2^{d-2}(4 m-1)} \quad(m=1,2, \ldots) .
$$

Similarly, by $2^{d} \| F_{3 \cdot 2^{d-2}}$, we have

$$
2^{d} \| F_{3 \cdot 2^{d-2}+(m-1) \cdot 3 \cdot 2^{d}}=F_{3 \cdot 2^{d-2}(4 m-3)} \quad(m=1,2, \ldots) .
$$

Therefore, we have the desired results.
Proof of Proposition 3.2. Similarly to Lucas numbers in Lemma 3.7, $2 \nmid F_{n}$ if and only if $3 \nmid n$. By Lemma 3.4 the power of 2 which divides F_{n} is 1 if $3 \mid k$ and $6 \nmid k$, and is 2 more than the power of 2 dividing n if $6 \mid n$.

We need additional notation in order to address the cases where p is an odd prime. Let $\nu_{p}(r)$ denote the exponent of the highest power of a prime p which divides r. Namely, $p^{\nu_{p}(r)} \| r$, or $p^{\nu_{p}(r)} \mid r$ and $p^{\nu_{p}(r)+1} \nmid r . \nu_{p}\left(F_{n}\right)$ and $\nu_{p}\left(L_{n}\right)$ are characterized in [12]. Let f_{p} denote the first positive index for which $p \mid F_{f_{p}}$. This index is called the rank of apparition or Fibonacci entry-point of p. For example, $f_{2}=3, f_{3}=4, f_{5}=5, f_{7}=8, f_{11}=10, f_{13}=7$ and $f_{17}=9$.

THE FIBONACCI QUARTERLY

The order of p in $F_{f_{p}}$ is denoted by $e_{p}=\nu_{p}\left(F_{f_{p}}\right)$. Namely, $p^{e_{p}} \mid F_{f_{p}}$ and $p^{e_{p}+1} \nmid F_{f_{p}}$. Note that usually $e_{p}=1$ and no exceptional prime has been found for $p<10^{14}$ [3].
Lemma 3.8. [12] Let p be an odd prime with $p \neq 5$. If $f_{p} \mid n$, then $\nu_{p}\left(F_{n}\right)=\nu_{p}(n)+e_{p}$. If $f_{p} \nmid n$, then $\nu_{p}\left(F_{n}\right)=0$.
Corollary 3.9. The power of an odd prime p which divides $B_{n}=F_{1} F_{2} \cdots F_{n}$ is

$$
\left(e_{p}-1\right)\left\lfloor\frac{n}{f_{p}}\right\rfloor+\sum_{i=0}^{\infty}\left\lfloor\frac{n}{f_{p} p^{i}}\right\rfloor .
$$

Theorem 3.10. Let m be a positive integer, and choose $\sigma=\sigma(n)$ to be the least positive integer for which $m \leq\left(e_{p}-1\right)\left\lfloor\frac{\sigma}{f_{p}}\right\rfloor+\sum_{i=0}^{\infty}\left\lfloor\frac{\sigma}{f_{p} p^{2}}\right\rfloor$. Then $B_{\sigma-1} \not \equiv 0\left(\bmod p^{m}\right)$ and $B_{n} \equiv 0$ $\left(\bmod p^{m}\right)$ for all $n \geq \sigma$.
Example. For all $n \geq 5 m, B_{n} \equiv 0\left(\bmod 5^{\sum_{i=0}^{\infty}\left\lfloor m / 5^{i}\right\rfloor}\right)$. It is easy to see this. Since $f_{5}=5$, $5^{e_{5}} \mid F_{5}=5$, so $e_{5}=1$. Setting $\sigma=5 m$ yields the result.
Proposition 3.11. The power of a prime p which divides $A_{f_{p} p^{m}}$ is

$$
e_{p}\left(p^{m}-1\right)+\frac{p^{m}-1}{p-1}-m
$$

Proof. When $n=f_{p} p^{m}$ in Corollary 3.9, we see that the power of p which divides $B_{f_{p} p^{m}}$ is

$$
\left(e_{p}-1\right) p^{m}+\left(p^{m}+\cdots+p+1\right)=e_{p} p^{m}+\frac{p^{m}-1}{p-1}
$$

(Note that $\left(e_{p}-1\right) p^{m}$ is usually 0 .) By Lemma 3.8 we know $p^{m+e_{p}} \| F_{f_{p} p^{m}}$, and $p^{m+e_{p}} \nmid F_{i}$ $\left(1 \leq i<f_{p} p^{m}\right)$. Thus, the power of p which divides the denominator of $\sum_{i=1}^{f_{p} p^{m}} F_{i}^{-1}$, when written as a single reduced fraction, is $p^{m+e_{p}}$. Since $A_{f_{p} p^{m}}=B_{f_{p} p^{m}} \sum_{i=1}^{f_{p} p^{m}} F_{i}^{-1}$, we have the desired result.

4. Lucas Zeta Functions

Consider the continued fraction expansion

$$
\zeta_{L}(s)=\frac{1}{L_{1}^{s}-\frac{L_{1}^{2 s}}{L_{1}^{s}+L_{2}^{s}-\frac{L_{2}^{2 s}}{L_{2}^{s}+L_{3}^{s}-\frac{L_{3}^{2 s}}{\ddots}-\frac{L_{n-1}^{2 s}}{L_{n-1}^{s}+L_{n}^{s}-\ldots}}}}
$$

and

$$
\sum_{\nu=1}^{n} \frac{1}{L_{\nu}^{s}}=\frac{A_{n}}{B_{n}}
$$

where $\left\{A_{\nu}\right\}_{\nu \geq 0}$ and $\left\{B_{\nu}\right\}_{\nu \geq 0}$ are determined by the recurrence formulas:

$$
\begin{array}{llll}
A_{\nu}=\left(L_{\nu-1}^{s}+L_{\nu}^{s}\right) A_{\nu-1}-L_{\nu-1}^{2 s} A_{\nu-2} & (\nu \geq 2), & A_{0}=0, & A_{1}=1 \\
B_{\nu}=\left(L_{\nu-1}^{s}+L_{\nu}^{s}\right) B_{\nu-1}-L_{\nu-1}^{2 s} B_{\nu-2} & (\nu \geq 2), & B_{0}=1, & B_{1}=L_{1}^{s} .
\end{array}
$$

FRACTION EXPANSIONS OF FIBONACCI AND LUCAS DIRICHLET SERIES

Theorem 4.1. Let m be a positive integer.
(1) For all $n \geq(2\lceil m / s\rceil+1) k, A_{n} \equiv 0\left(\bmod L_{k}^{m}\right)$.
(2) For all $n \geq(2\lceil m / s\rceil-1) k, B_{n} \equiv 0\left(\bmod L_{k}^{m}\right)$.

Proof. The second statement in Theorem 4.1 is based upon the fact $L_{k} \mid L_{(2 i-1) k}(i=1,2, \ldots)$ (see e.g. [10, Theorem 16.6]) and $B_{n}=L_{1}^{s} L_{2}^{s} \ldots L_{n}^{s}$.

Lemma 4.2. [12] Let p be an odd prime with $p \neq 5$. If the period modulo p of the Fibonacci sequences is not equal to $4 f_{p}$ and $n \equiv f_{p} / 2\left(\bmod f_{p}\right)$, then $\nu_{p}\left(L_{n}\right)=\nu_{p}(n)+e(p)$. Otherwise, $\nu_{p}\left(L_{n}\right)=0$.

Next, we shall consider the periodicity modulo the power of a prime p. We may assume $s=1$ without loss of generality. Hence, $B_{n}=L_{1} L_{2} \cdots L_{n}$ and $A_{n}=\left(L_{1} L_{2} \cdots L_{n}\right) \sum_{\nu=1} L_{\nu}^{-1}$.
Proposition 4.3. The power of 2 which divides B_{n} is $2\left\lfloor\frac{n}{3}\right\rfloor-\left\lfloor\frac{n}{6}\right\rfloor$.
Proof. It is clear from Lemma 3.7.

References

[1] R. André-Jeannin, Lambert series and the summation of reciprocals in certain Fibonacci-Lucas-Type sequences, The Fibonacci Quarterly, 28.3 (1990), 223-226.
[2] P. S. Bruckman, Problem H-280, The Fibonacci Quarterly, 17.4 (1979), 377.
[3] A.-S. Elsenhaus and J. Jahnel, The Fibonacci sequence modulo p^{2}-an investigation by computer for $p<10^{14}$, (preprint), http://www.uni-math.gwdg.de/jahnel/Preprints/Fibams3.pdf.
[4] C. Elsner, S. Shimomura and I. Shiokawa, Algebraic relations for reciprocal sums of Fibonacci numbers, Acta Arith., 130 (2007), 37-60.
[5] C. Elsner and S. Shimomura and I. Shiokawa, Algebraic independence results for reciprocal sums of Fibonacci numbers, (preprint), http://www. carstenelsner.de/Abstract48.pdf.
[6] C. Elsner and T. Komatsu, A recurrence formula for leaping convergents of non-regular continued fractions, Linear Algebra Appl., 428 (2008), 824-833.
[7] C. Elsner and T. Komatsu, On the residue classes of integer sequences satisfying a linear three term recurrence formula, Linear Algebra Appl., 429 (2008), 933-947.
[8] T. Komatsu, On continued fraction expansions of Fibonacci and Lucas Dirichlet series, The Fibonacci Quarterly, 46/47.3 (2008/2009), 268-278.
[9] T. Komatsu, V. Laohakosol and P. Ruengsinsub, Independence measures of arithmetic functions, (preprint).
[10] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley \& Sons, New York, 2001.
[11] J. Kramer and V. E. Hoggatt Jr., Special cases of Fibonacci periodicity, The Fibonacci Quarterly, 10.6 (1972), 519-522, 530.
[12] T. Lengyel, The order of the Fibonacci and Lucas numbers, The Fibonacci Quarterly, 33.3 (1995), 234-239.
[13] L. Navas, Analytic continuation of the Fibonacci Dirichlet series, The Fibonacci Quarterly, $\mathbf{3 9 . 5}$ (2001), 409-418.
[14] T.-a. Tanaka, Algebraic independence of Fibonacci reciprocal sums associated with Newton's method, Tsukuba J. Math., 27 (2003), 375-387.

MSC2000: 11A55, 11B37, 11B39

Department of Mathematics and Statistics, University of Tennessee at Martin, Martin, TN 38238-0002

E-mail address: caldwell@utm.edu
Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, JAPAN

E-mail address: komatsu@cc.hirosaki-u.ac.jp

[^0]: The second author was supported in part by the Grant-in-Aid for Scientific Research (C) (No. 18540006), the Japan Society for the Promotion of Science.

