TWO MULTIPLE CONVOLUTIONS ON FIBONACCI-LIKE SEQUENCES

WENCHANG CHU AND ROBERTA R. ZHOU

Abstract. Two multiple convolutions on Fibonacci-like sequences are expressed in terms of Stirling numbers of the first kind and the second kind.

1. Introduction and Main Theorems

Let $\left\{L_{n}\right\}_{n \geq 0}$ be the classical Lucas numbers, defined by the recurrence relation

$$
L_{n}=L_{n-1}+L_{n-2}
$$

and the initial values

$$
L_{0}=2 \quad \text { and } \quad L_{1}=1
$$

Denote by \mathbb{N} and $\sigma(m, \ell)$, respectively, the set of natural numbers and

$$
\sigma(m, \ell)=\left\{\left(n_{1}, n_{2}, \cdots, n_{\ell}\right) \in \mathbb{N}^{\ell} \mid n_{1}+n_{2}+\cdots+n_{\ell}=m\right\} .
$$

Recently, Liu [4, Equation 1.4] discovered the following interesting multiple convolution formula

$$
\begin{equation*}
\sum_{\sigma(m, \ell)} \prod_{i=1}^{\ell} \frac{L_{n_{i}}}{n_{i}}=\ell!\sum_{k=\ell}^{m}(-1)^{k-\ell} \frac{s(k, \ell)}{(2 k-m)!(m-k)!} \tag{1}
\end{equation*}
$$

where $s(k, \ell)$ are the Stirling numbers of the first kind. Different multiple convolutions have been treated by Chu and Yan [1]. Motivated by the identity just displayed, this short article will investigate two multiple convolutions on the polynomial sequence $\left\{G_{n}\right\}_{n \geq 0}$ involving four parameters $\{a, b, c, d\}$, which are defined by the recurrence relation

$$
\begin{equation*}
G_{n}(a, b, c, d)=a G_{n-1}(a, b, c, d)+b G_{n-2}(a, b, c, d) \tag{2}
\end{equation*}
$$

with the initial values being given by

$$
\begin{equation*}
G_{0}(a, b, c, d)=c \quad \text { and } \quad G_{1}(a, b, c, d)=d \tag{3}
\end{equation*}
$$

For the sake of brevity, we shall further fix two symbols

$$
\begin{equation*}
\alpha=\frac{a+\sqrt{a^{2}+4 b}}{2} \quad \text { and } \quad \beta=\frac{a-\sqrt{a^{2}+4 b}}{2} . \tag{4}
\end{equation*}
$$

Then the first generalized convolution formula reads as the following theorem.
Theorem 1. Let $\{a, b, c, d\}$ be four complex numbers subject to $a^{2}+4 b>0$ and $a c=2 d$. Then there holds the following convolution formula

$$
\sum_{\sigma(m, \ell)} \prod_{i=1}^{\ell} \frac{G_{n_{i}}(a, b, c, d)}{n_{i}}=\left\{\frac{\alpha d+b c}{\alpha(\alpha-\beta)}\right\}^{\ell} \ell!\sum_{k=\ell}^{m}(-1)^{k-\ell} \frac{a^{2 k-m} b^{m-k}}{(2 k-m)!(m-k)!} s(k, \ell) .
$$

Similarly, we shall establish another generalized multiple convolution theorem.

Theorem 2. Let $\{a, b, d\}$ be three complex numbers subject to $a^{2}+4 b>0$ and $d \neq 0$. Then there holds the following convolution formula

$$
\sum_{\sigma(m, \ell)} \prod_{i=1}^{\ell} \frac{G_{n_{i}}(a, b, 0, d)}{n_{i}!}=d^{\ell} \ell!\sum_{k=\ell}^{m} \frac{(\alpha-\beta)^{k-\ell}(\beta \ell)^{m-k}}{k!(m-k)!} S(k, \ell)
$$

where $S(k, \ell)$ are the Stirling numbers of the second kind.
It is obvious that when $a=b=d=1$ and $c=2$, the corresponding $G_{n}(1,1,2,1)$ become the Lucas numbers L_{n}. Therefore, Theorem 1 in this case recovers Liu's identity (1). Instead, for $a=b=d=1$, it is trivial to see that the corresponding $G_{n}(1,1,0,1)$ are just the classical Fibonacci numbers F_{n} (see [3, Section 6.6] for example), defined by the recurrence relation

$$
F_{n}=F_{n-1}+F_{n-2}
$$

with the initial values

$$
F_{0}=0 \quad \text { and } \quad F_{1}=1
$$

In view of Theorem 2, we find the following multiple convolution identity.
Corollary 3. (Multiple convolution on Fibonacci numbers: $\gamma=\frac{1-\sqrt{5}}{2}$.)

$$
\sum_{\sigma(m, \ell)} \prod_{i=1}^{\ell} \frac{F_{n_{i}}}{n_{i}!}=\ell!\sum_{k=\ell}^{m} 5^{\frac{k-\ell}{2}} \frac{(\gamma \ell)^{m-k}}{k!(m-k)!} S(k, \ell)
$$

2. Proof of Theorem 1

For an indeterminate x, define the ordinary generating function by

$$
g(x)=\sum_{n=1}^{\infty} G_{n}(a, b, c, d) x^{n}
$$

According to (2), it is not difficult to check that $g(x)$ satisfies the equation

$$
g(x)=d x+a x g(x)+b x^{2}\{c+g(x)\}
$$

Resolving this equation gives

$$
\begin{equation*}
g(x)=\frac{d x+b c x^{2}}{1-a x-b x^{2}} \tag{5}
\end{equation*}
$$

Further, we can compute another generating function

$$
\sum_{n=1}^{\infty} \frac{G_{n}(a, b, c, d)}{n} x^{n}=\int_{0}^{x} \frac{d+b c x}{1-a x-b x^{2}} d x
$$

Taking into account of $a^{2}+4 b>0$, it can be shown that

$$
1-a x-b x^{2}=(1-\alpha x)(1-\beta x)
$$

where α and β are defined by (4). Under the condition $a c=2 d$, there holds the partial fraction decomposition

$$
\frac{d+b c x}{1-a x-b x^{2}}=\frac{d+b c x}{(1-\alpha x)(1-\beta x)}=\frac{d \alpha+b c}{\alpha(\alpha-\beta)}\left\{\frac{\alpha}{1-\alpha x}+\frac{\beta}{1-\beta x}\right\}
$$

THE FIBONACCI QUARTERLY

This leads consequently to

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{G_{n}(a, b, c, d)}{n} x^{n} & =\frac{d \alpha+b c}{\alpha(\alpha-\beta)} \int_{0}^{x}\left\{\frac{\alpha}{1-\alpha x}+\frac{\beta}{1-\beta x}\right\} d x \\
& =\frac{d \alpha+b c}{\alpha(\beta-\alpha)} \log \left(1-a x-b x^{2}\right)
\end{aligned}
$$

For an indeterminate y, define the falling factorials by

$$
(y)_{0}=1 \quad \text { and } \quad(y)_{n}=y(y-1) \cdots(y-n+1) \quad \text { for } \quad n \in \mathbb{N} .
$$

The Stirling numbers of the first kind $s(n, k)$ are defined by (cf. Comtet [2, Section 5.5]

$$
(y)_{n}=\sum_{k=0}^{n} s(n, k) y^{k}
$$

whose exponential generating function reads as

$$
\frac{\log ^{\ell}(1+y)}{\ell!}=\sum_{k=\ell}^{\infty} s(k, \ell) \frac{y^{k}}{k!} .
$$

Following Wilf [5], denote by $\left[x^{m}\right] f(x)$ the coefficient of x^{m} for the formal power series $f(x)$. Then the multiple convolution displayed in Theorem 1 can be expressed as the following coefficient

$$
\left[x^{m}\right]\left\{\sum_{n=1}^{\infty} \frac{G_{n}(a, b, c, d)}{n} x^{n}\right\}^{\ell}=\left\{\frac{d \alpha+b c}{\alpha(\beta-\alpha)}\right\}^{\ell}\left[x^{m}\right] \log ^{\ell}\left(1-a x-b x^{2}\right)
$$

The last coefficient can further be written in terms of the Stirling numbers of the first kind

$$
\begin{aligned}
{\left[x^{m}\right] \log ^{\ell}\left(1-a x-b x^{2}\right) } & =\ell!\sum_{k \geq \ell}(-1)^{k} \frac{s(k, \ell)}{k!}\left[x^{m}\right]\left(a x+b x^{2}\right)^{k} \\
& =\ell!\sum_{k=\ell}^{m}(-1)^{k} \frac{s(k, \ell)}{k!}\binom{k}{m-k} a^{2 k-m} b^{m-k}
\end{aligned}
$$

which has been justified by the binomial theorem (cf. [3, Equation 5.12]) as follows

$$
\left[x^{m}\right]\left(a x+b x^{2}\right)^{k}=\left[x^{m-k}\right](a+b x)^{k}=\binom{k}{m-k} a^{2 k-m} b^{m-k}
$$

This proves the multiple convolution formula stated in Theorem 1.

3. Proof of Theorem 2

When $c=0$ and $d \neq 0$, the generating function $g(x)$ displayed in (5) can similarly be decomposed into partial fractions and then expanded in formal power series

$$
\frac{d x}{1-a x-b x^{2}}=\frac{d}{\alpha-\beta}\left\{\frac{1}{1-\alpha x}-\frac{1}{1-\beta x}\right\}=\frac{d}{\alpha-\beta} \sum_{n=0}^{\infty}\left(\alpha^{n}-\beta^{n}\right) x^{n}
$$

Extracting the coefficient of x^{n} leads to the explicit formula

$$
G_{n}(a, b, 0, d)=\frac{d}{\alpha-\beta}\left(\alpha^{n}-\beta^{n}\right)
$$

Then we can compute, in turn, the exponential generating function

$$
\sum_{n=1}^{\infty} \frac{G_{n}(a, b, 0, d)}{n!} x^{n}=\frac{d}{\alpha-\beta} \sum_{n=1}^{\infty}\left(\alpha^{n}-\beta^{n}\right) \frac{x^{n}}{n!}=\frac{d}{\alpha-\beta}\left(e^{\alpha x}-e^{\beta x}\right)
$$

In order to evaluate the multiple convolution stated in Theorem 2, recall the Stirling numbers of the second kind $S(n, k)$, which are defined by (cf. Comtet [2, Section 5.2])

$$
y^{n}=\sum_{k=0}^{n} S(n, k)(y)_{k}
$$

with the exponential generating function

$$
\frac{\left(e^{y}-1\right)^{\ell}}{\ell!}=\sum_{k \geq \ell} S(k, \ell) \frac{y^{k}}{k!}
$$

Then we have the following expression

$$
\begin{aligned}
\sum_{\sigma(m, \ell)} \prod_{i=1}^{\ell} \frac{G_{n_{i}}(a, b, 0, d)}{n_{i}!} & =\left[x^{m}\right]\left\{\sum_{n=1}^{\infty} \frac{G_{n}(a, b, 0, d)}{n!} x^{n}\right\}^{\ell} \\
& =\left[x^{m}\right]\left\{\frac{d}{\alpha-\beta}\right\}^{\ell} e^{\beta \ell x}\left\{e^{(\alpha-\beta) x}-1\right\}^{\ell}
\end{aligned}
$$

Expanding the last two functions in terms of formal power series and then equating the coefficient of x^{m}, we obtain

$$
\begin{aligned}
& \left\{\frac{d}{\alpha-\beta}\right\}^{\ell}\left[x^{m}\right]\left\{e^{\beta \ell x}\left\{e^{(\alpha-\beta) x}-1\right\}^{\ell}\right\} \\
= & \ell!\left\{\frac{d}{\alpha-\beta}\right\}^{\ell}\left[x^{m}\right] \sum_{i=0}^{\infty} \frac{(\beta \ell x)^{i}}{i!} \sum_{k=\ell}^{\infty} S(k, \ell) \frac{\{(\alpha-\beta) x\}^{k}}{k!} \\
= & \ell!\left\{\frac{d}{\alpha-\beta}\right\}^{\ell} \sum_{k=\ell}^{m} \frac{(\alpha-\beta)^{k}(\beta \ell)^{m-k}}{k!(m-k)!} S(k, \ell)
\end{aligned}
$$

which is equivalent to the right hand side of the equation in Theorem 2.

References

[1] W. Chu and Q. L. Yan, Multiple convolution formulae on bivariate Fibonacci and Lucas polynomials, Utilitas Mathematica, 74 (2007), 145-153.
[2] L. Comtet, Advanced Combinatorics, Dordrecht-Holland, The Netherlands, 1974.
[3] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley Publ. Company, Reading, Massachusetts, 1989.
[4] G. D. Liu, An identity involving the Lucas numbers and Stirling numbers, The Fibonacci Quarterly, 46/47.2 (2009), 136-139.
[5] H. S. Wilf, Generatingfunctionology, second edition, Academic Press Inc., London, 1994.

THE FIBONACCI QUARTERLY
MSC2000: 11B39, 05A15
School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, P. R. China

E-mail address: chu.wenchang@unile.it
School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, P. R. China

E-mail address: zhouruiwx1983@yahoo.cn
Current address (W. Chu): Dipartimento Di Matematica, Università del salento, LecceArnesano, PO Box 193, Lecce 73100, Italy

