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Abstract. It is proved that distinct positive Fibonacci sequences eventually intersperse
or else doubly intersperse. Necessary and sufficient conditions for the latter are given. A
rectangular array of infinitely many rows is called a double interspersion if every pair of
its row sequences doubly intersperse. The union of the odd-numbered columns of a double
interspersion yield, as an order array, an interspersion, as does the union of even-numbered
columns. A special example of a double interspersion whose rows are Fibonacci sequences is
examined; the columns of the associated pair of interspersions all satisfy a certain 3rd-order
linear recurrence.

1. Introduction

We begin with four definitions. Sequences s = (s1, s2, . . .) and x = (x1, x2, . . .) eventually
intersperse if there exist i and j such that

0 < si < xj < si+1 < xj+1 < si+2 < xj+2 < · · · ; (1.1)

that is, if si+h < xj+h for all h ≥ 0. Sequences s and x eventually doubly intersperse if there
exist i and j such that

0 < si < si+1 < xj < xj+1 < si+2 < si+3 < xj+2 < xj+3 < · · · . (1.2)

If i is least possible in (1.2), then x doubly intersperses s from si and xj, and we write
D(s, x) = (i, j).

A Fibonacci sequence is a sequence s = (s1, s2, . . .) of positive real numbers (not necessarily
integers) satisfying

sm = sm−1 + sm−2 (1.3)

for m ≥ 3. The classical Fibonacci sequence (Fm) is given by (1.3) using initial terms
F1 = s1 = 1 and F2 = s2 = 1.

The main result we shall prove is that each pair of distinct Fibonacci sequences eventually
intersperse or eventually doubly intersperse. We shall also examine arrays consisting of
infinitely many Fibonacci row sequences, every pair of which eventually doubly intersperse.
Double interspersions yield pairs of ordinary interspersions as defined in [1], and we consider
their fractal sequences.

2. Sequences: Interspersed, Doubly Interspersed

Lemma 1. Suppose that s and x are Fibonacci sequences satisfying

si < xj < si+1 < xj+1 < si+2 (2.1)

for some i and j. Then
si+h < xj+h < si+h+1 (2.2)

for all h ≥ 0 (so that s and x eventually intersperse).
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Proof. For h = 0 and h = 1, the inequalities (2.2) hold by hypothesis. Assume for arbitrary
h ≥ 2 that

si+h−2 < xj+h−2 < si+h−1 and si+h−1 < xj+h−1 < si+h.

Then
si+h−2 + si+h−1 < xi+h−2 + xj+h−1 < si+h−1 + si+h,

so that (2.2) holds. ¤
Lemma 2. Suppose that s and x are Fibonacci sequences satisfying xk = sk and xk+h = sk+h

for some k ≥ 1 and h ≥ 1. Then x = s.

Proof. Given that xk = sk, if xk+1 = sk+1, then clearly x = s. On the other hand, if
xk+1 < sk+1, then

xk+2 = xk + xk+1 < sk + sk+1 = sk+2,

and inductively, xk+h < sk+h for all h ≥ 1, contrary to the hypothesis. If sk+1 < xk+1 then
inductively sk+h = xk+h for all h ≥ 1, a contradiction. Therefore, x = s. ¤
Lemma 3. If s is a Fibonacci sequence, then

sn = s1Fn−3 + s2Fn−2

for all n ≥ 3, where F0 = 0.

Proof. By induction. ¤
Theorem 1. Distinct positive Fibonacci sequences s and x eventually doubly intersperse if
and only if there exist a ≥ 1 and b ≥ 1 such that

xb − sa = τ(sa+1 − xb+1), (2.3)

where τ denotes the golden ratio, (1 +
√

5)/2. Otherwise, s and x eventually intersperse.

Proof. Suppose that s and x are distinct positive Fibonacci sequences and i and j satisfy

si−1 ≤ si < xj. (2.4)

The following cases are exhaustive:
Case 1. si < xj < si+1 < xj+1 < si+2;
Case 2. si < xj < xj+1 ≤ si+1;
Case 3. si < xj < si+1 < si+2 ≤ xj+1.
In Case 1, the sequences s and x eventually intersperse by Lemma 1. In Case 3, there are

two subcases:

xj−1 ≤ si < xj < si+1 < si+2 ≤ xj+1; (2.5)

si < xj−1 < xj < si+1 < si+2 ≤ xj+1. (2.6)

However, for (2.5), the inequalities xj−1 ≤ si and xj < si+1 imply xj+1 < si+2, a contra-
diction. For (2.6), clearly si+1 < xj+1 < si+3. Now if si+3 < xj+2, then s and x eventually
intersperse by Lemma 1. On the other hand, if

si+1 < xj+1 < xj+2 ≤ si+3,

then this possibility is covered by Case 1 (with a shift of indices). Therefore all that remains
is Case 2, which breaks into two cases.

Case 2.1. xj+2 < si+2;
Case 2.2. xj+2 ≥ si+2.
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In Case 2.1, we have si−1 ≤ si < xj and si < xj+1, so that

si+1 = si−1 + si < xj + xj+1 = xj+2.

Consequently,

si < xj < xj+1 ≤ si+1 < xj+2 < si+2,

which implies

si+1 < xj+2 < si+2 < xj+3 < si+3,

so that s and x eventually intersperse by Lemma 1.
In Case 2.2, if there exists h ≥ 1 for which

si+h < xj+h < si+h+1 < xj+h+1 < si+h+2,

then s and x eventually intersperse by Lemma 1. In the remaining case that no such h exists,
we have

si < xj < xj+1 ≤ si+1 < si+2 ≤ xj+2 < xj+3 ≤ si+3 < si+4 ≤ · · · . (2.7)

Although (2.7) shows xj+h ≤ si+h for infinitely many h, at most one of these is xj+h = si+h

by Lemma 2. Likewise, at most one of the inequalities si+k ≤ xj+k in (2.7) is actually
si+k = xj+k Therefore, in (2.7) we can (and do) assume i large enough that

si < xj < xj+1 < si+1 < si+2 < xj+2 < xj+3 < si+3 < si+4 < · · · , (2.8)

which is to say that s and x eventually doubly intersperse. From (2.8) we extract two families
of inequalities:

si < xj

si + si+1 = si+2 < xj+2 = xj + xj+1

2si + 3si+1 = si+4 < xj+4 = 2xj + 3xj+1

...

Fnsi + Fn+1si+1 < Fnxj + Fn+1xj+1, for n = 1, 3, 5, · · ·
and

xj+1 < si+1

xj + 2xj+1 = xj+3 < si+3 = si + 2si+1

3xj + 5xj+1 = xj+5 < si+5 = 3si + 5si+1

...

Fnxj + Fn+1xj+1 < Fnsi + Fn+1si+1, for n = 2, 4, 6, · · · .

These two families are equivalent to the following pair:

Fn+1

Fn

<
xj − si

si+1 − xj+1

for n = 1, 3, 5, · · · ;

Fn+1

Fn

>
xj − si

si+1 − xj+1

for n = 2, 4, 6, · · · .

Taking limits as n → ∞ results in (2.3). To summarize, if s and x eventually doubly
intersperse, then (2.3) holds. The converse follows from the fact that the steps leading to
(2.3) are reversible. ¤
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According to Theorem 1, any s and x that do not eventually doubly intersperse must
eventually intersperse, and one should surely then ask “where the interspersion commences.”
A practical way to answer this question for given specific sequences is to determine the least
i for which there is a j satisfying (2.1).

To determine a and b as in (2.3), one can list the first few terms of the sequences (xn−sn),
(xn+1 − sn), (xn+2 − sn), . . ., writing all the terms in the form h− kτ . Then look for a term
h− kτ whose successor is h + k−hτ . The reason this works is that if xb− sa = h− kτ , then
xb − sa = (−τ)(h + k − hτ) so that h + k − hτ is the desired number xb+1 − sa+1.

Example 1. Define s1 = 1, s2 = 4, x1 = τ + 1, and x2 = 3, so that

s = (1, 4, 5, 9, 14, 23, . . .),

x = (τ + 1, 3, τ + 4, τ + 7, 2τ + 11, . . .),

and x doubly intersperses s from s2 = 4 and x3 = τ + 4. The necessary and sufficient
condition (2.3) holds for a = b = 1.

Corollary 1. Suppose that s and x eventually doubly intersperse and that a, b are indices
for which (2.3) holds. Then

sa+n − xb+n = (Fn+1 − τFn)(sa − xb)

for n = 0, 1, 2, . . ..

Proof. The hypothesis (2.3) is equivalent to

sa+1 − xb+1 = (1− τ)(sa − xb).

Then

sa+2 − xb+2 = (sa+1 − xb+1) + (sa − xb)

= (F3 − τF2)(sa − xb),

and the proof follows by induction. ¤
Corollary 2. Suppose that s and x eventually doubly intersperse and that a, b are indices
for which (2.3) holds. Then

xb+n = (Fn+1 − τFn)xb + Fn(sa+1 + (τ − 1)sa) (2.9)

for n = 0, 1, 2, . . ..

Proof. By (2.3),

xb+1 = sa+1 − (1/τ)(xb − sa)

= (1− τ)xb + sa+1 + (τ − 1) sa

= (F2 − τF1)xb + F1(sa+1 + (τ − 1) sa),

and (2.9) follows by induction. ¤
Example 2. It is easy to construct sequences which eventually doubly intersperse the
Fibonacci numbers. Here we choose to insert x1 and x2 between 5 and 8. Choosing x1 = 6,
we determine the other terms of x by (2.9) using a = b = 2:

s = (5, 8, 13, 21, 34, . . .),

x = (6, 9− τ, 15− τ, 24− 2τ, 39− 3τ, . . . , Fn+4 + Fn − τFn−1, . . .).
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Having succeeded with x1 = 6, it is easy to check that if x1 = 7, there is no choice of x2 for
which (2.8) holds using i = j = 1. In order to find an upper bound for x1 in cases such as
this, we turn to another corollary.

Corollary 3. Suppose that s = (s1, s2, . . .) and x = (x1, x2 . . .) are positive Fibonacci se-
quences satisfying

s1 < x1 < x2 < s2 < s3 < x3 < x4 < s4 < s5 < · · · . (2.10)

Then

x1 < (2− τ)s1 + (τ − 1)s2.

Proof. Taking n = 1, a = 1, and b = 1 in (2.9) gives

(1− τ)x1 + s2 + (τ − 1)s1 = x2 > x1,

so that

x1 <
s2 + (τ − 1)s1

τ
= (2− τ)s1 + (τ − 1)s2.

¤

Example 3. Extending Example 2, for s = (5, 8, 13, . . .), we can make a sequence x satisfying
(2.10) (so that x doubly intersperses s from s2 and x3) by choosing any x1 in the interval
(5, 3τ + 2) and then applying (2.9). One such sequence is

x = (4τ, 5τ − 1, 9τ − 1, 14τ − 2, 23τ − 3, . . . , (Fn+3 + Fn+2)τ − Fn−1, . . .).

3. Double Interspersions

A Stolarsky interspersion [3] is an array of positive integers, each occurring exactly once,
such that the rows of the array are Fibonacci sequences, each pair of which eventually
intersperse, and such that the first column of the array is increasing. This last condition
ensures that the first row is the sequence (F2, F3, . . .) = (1, 2, 3, 5, 8, . . .) of distinct Fibonacci
numbers. Among Stolarsky interspersions are the original Stolarsky array [8], the Wythoff
array [5, 7], the golden array [2], and the Wythoff dual array [2].

An array of real numbers will be called a double interspersion if every pair of its row se-
quences eventually doubly intersperse. We shall present a double interspersion R = {R(n, k)}
in which every row is a positive Fibonacci sequence. By (2.3), R cannot consist solely of
integers; however, we shall construct from R an array which is a double interspersion con-
sisting solely of positive integers, although the rows are not Fibonacci sequences. The array
R, defined by

R(n, k) =

{
Fk+1 if n = 1

Fn+k−1 + Fk+2 − τFk+1 if n ≥ 2,
(3.1)

begins thus:

1 2 3 5 8
3− τ 5− 2τ 8− 3τ 13− 5τ 21− 8τ
4− τ 6− 2τ 10− 3τ 16− 5τ 26− 8τ
5− τ 8− 2τ 13− 3τ 21− 5τ 34− 8τ
7− τ 11− 2τ 18− 3τ 29− 5τ 47− 8τ
10− τ 16− 2τ 26− 3τ 42− 5τ 68− 8τ .
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If the numbers in R are jointly ranked in increasing order and then each is replaced by
its rank, the resulting array (A161179 in the Online Encyclopedia of Integer Sequences [6])
begins thus:

1 4 7 12 17 24 31 40 49
2 3 8 11 18 23 32 39 50
5 6 13 16 25 30 41 48 61
9 10 19 22 33 38 51 58 73
14 15 26 29 42 47 62 69 86
20 21 34 37 52 57 74 81 100 .

Denoting this order array by R̂, we find inductively that

R̂(n, k) =





(k2 + 2k − 1)/2 if k is odd and n = 1
(k2 + 2k)/2 if k is even and n = 1
[n2 + (2k − 1)n + k2 − 2k − 1]/2 if k is odd and n ≥ 2
[n2 + (2k − 3)n + k2 − 2k]/2 if k is even and n ≥ 2.

(3.2)

The arrays R(n, k) and R̂(n, k) are clearly double interspersions which share the same
commencement function D, defined just after (1.2). This function, one can easily show, is
given by

D(n, k) =

{
(2, 3) if (n, k) = (1, 1)

(k − n, 1) otherwise.

4. From Double to Two Singles

An arbitrary double interspersion R necessarily splits into two interspersions R̂1 and R̂2

in the following way: R̂1 is the order array of the union of the odd-numbered columns of R,

and R̂2 is the order array of the union of the even-numbered columns of R after the first two
rows have been swapped. Taking R to be the array (3.1), or equivalently, taking R to the

array R̂ in (3.2), we find inductively that

R̂1(n, k) =





k2 if n = 1
k2 + (n− 2)k + (n2 − 2n + 4)/4 if n is even
k2 + (n− 2)k + (n2 − 2n + 1)/4 if n is odd and n ≥ 3;

this array is indexed [6] as A163253. Shown here is a corner of R̂1 :

1 4 9 16 25 36 49 64 81
2 5 10 17 26 37 50 65 82
3 7 13 21 31 43 57 73 91
6 11 18 27 38 51 66 83 102
8 14 22 32 44 58 74 92 112
12 19 28 39 52 67 84 103 124 .

The columns of R̂1, beginning with row 5, satisfy a 3rd-order recurrence:

an = an−1 + an−2 − an−3 + 1. (4.1)

It is noteworthy that the set of non-squares (A000037 in [6]) can be partitioned into a set

of sequences satisfying (4.1). To do so, merely remove the first row from R̂1, obtaining
A163254, of which the order array is an interspersion, A163255.
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The array R̂2 is given by

R̂2(n, k) =





k2 + k − 1 if n = 1
k2 + k if n = 2
k2 + (n− 1)k + (n− 1)(n− 3)/4 if n is odd and n ≥ 3
k2 + (n− 1)k + n(n− 4)/4 if n is even and n ≥ 4.

Beginning with row 6, the columns of R̂2 satisfy (4.1). For each n, row n of R̂2 has exactly

one term that is also in row n of R̂1.
It is proved elsewhere [4] that every interspersion I(n, k) begets a fractal sequence a by

the rule
a(m) = the number n such that m = I(n, k).

The fractal sequence A163256 of R̂1 is especially simple if broken into segments beginning
with 1:

1 2 3
1 2 4 3 5
1 2 4 6 3 5 7
1 2 4 6 8 3 5 7 9
1 2 4 6 8 10 3 5 7 9 11 .

If n > 1, then row n comes from row n − 1 by inserting 2n just before 3 and 2n + 1 at the
end. The resulting sequence

(1, 2, 3, 1, 2, 4, 3, 5, 1, 2, 4, 6, 3, 5, 7, . . .)

is “fractal” in the sense that it contains infinitely many proper subsequences that are identical

to the sequence itself. (For the full definition of fractal sequence, see [4]. The array R̂2 and
its fractal sequence appear in [6] as A163257 and A163258, respectively.)

It is easy to construct other double interspersions and associated interspersions and fractal
sequences. Another particularly simple one, in some sense a dual to R, is given by

T (n, k) =

{
Fk+1 if n = 1;

τ(Fn+k−2 + 1)Fk+2 − Fk+1 if n ≥ 2,

it begins thus:

1 2 3 5 8
2τ − 2 3τ − 3 5τ − 5 8τ − 8 13τ − 13
3τ − 1 4τ − 2 7τ − 3 11τ − 5 18τ − 8
4τ − 1 6τ − 2 10τ − 3 16τ − 5 26τ − 8
6τ − 1 9τ − 2 15τ − 3 24τ − 5 39τ − 8
9τ − 1 14τ − 2 23τ − 3 37τ − 5 60τ − 8 .
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