THE CUBIC CHARACTER OF THE TRIBONACCI ROOTS

JIŘí KLAŠKA AND LADISLAV SKULA

Abstract. If τ is any root of the Tribonacci polynomial $t(x)=x^{3}-x^{2}-x-1$ in the Galois field \mathbb{F}_{p} where p is a prime, $p \equiv 1(\bmod 3)$, then

$$
\tau^{\frac{p-1}{3}} \equiv 2^{\frac{2(p-1)}{3}} \quad(\bmod p)
$$

More generally, if χ is a root of $t(x)$ in any field extension \mathbb{G} of \mathbb{F}_{p}, then 2χ is a cubic residue of the field \mathbb{G}.

1. Introduction

The quadratic character of the root $\theta=(1+\sqrt{5}) / 2$ of the Fibonacci polynomial $f(x)=$ $x^{2}-x-1$ was examined by E. Lehmer in [2]. The way we understand Lehmer's Theorem 1 in [2, p. 137], which was written in a different form, is as follows. Let p be a prime in the form $p=a^{2}+b^{2}$ where $a, b \in \mathbb{Z}$ and $a \equiv 1(\bmod 4)$. Furthermore, suppose that θ is a root of f in the Galois field \mathbb{F}_{p}; then we have

$$
\theta^{\frac{p-1}{2}}=\left(\frac{\theta}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p=20 m+1, b \equiv 0 \quad(\bmod 5) \text { or } p=20 m+9, a \equiv 0 \quad(\bmod 5) \\
-1 & \text { if } p=20 m+1, a \equiv 0 \quad(\bmod 5) \text { or } p=20 m+9, b \equiv 0 \quad(\bmod 5) .
\end{aligned}\right.
$$

In this paper we let τ be an arbitrary root of the Tribonacci polynomial $t(x)=x^{3}-x^{2}-x-1$ in the Galois field \mathbb{F}_{p} where p is a prime, $p \equiv 1(\bmod 3)$. The purpose of our article is to prove the following identity for the cubic character of τ and 2 in \mathbb{F}_{p} :

$$
\tau^{\frac{p-1}{3}}=\left(\frac{\tau}{p}\right)_{3}=2^{\frac{2(p-1)}{3}}
$$

Moreover, if χ is a root of $t(x)$ in any field extension \mathbb{G} of \mathbb{F}_{p}, then we show that 2χ is a cubic residue of the field \mathbb{G}, i.e. there exists $\omega \in \mathbb{G}$ such that $2 \chi=\omega^{3}$.

2. Preliminaries

Let \mathbb{F} be a field in which there exists an element $\varepsilon \neq 1$ such that $\varepsilon^{3}=1$. Then char $\mathbb{F} \neq 3$ and $\varepsilon^{2}+\varepsilon+1=0$. For $a, b, c \in \mathbb{F}$, put

$$
\begin{aligned}
& w_{1}(x)=x^{3}+a x^{2}+b x+c \\
& w_{2}(x)=w_{1}(\varepsilon x)=x^{3}+\varepsilon^{2} a x^{2}+\varepsilon b x+c \\
& w_{3}(x)=w_{1}\left(\varepsilon^{2} x\right)=x^{3}+\varepsilon a x^{2}+\varepsilon^{2} b x+c
\end{aligned}
$$

By direct calculation we get the following lemma.

[^0]
THE FIBONACCI QUARTERLY

Lemma 2.1. $w_{1}(x) w_{2}(x) w_{3}(x)=x^{9}+\left(a^{3}-3 a b+3 c\right) x^{6}+\left(b^{3}-3 a b c+3 c^{2}\right) x^{3}+c^{3}$.
For $c \in \mathbb{F}$ put

$$
\begin{aligned}
A(c) & =-18 c^{2}+3 \\
B(c) & =-9 c^{2}-27 c-24 \\
C(c) & =9 c^{2}-27 c+28 \\
f(x, c) & =x^{3}+A(c) x^{2}+B(c) x+C(c) \in \mathbb{F}[x]
\end{aligned}
$$

Clearly, $f(x-1)=x^{3}-15 x^{2}-6 x+64=(x-2) g(x)$, where $g(x)=x^{2}-13 x-32$.
Furthermore, we shall consider the following polynomials over the field \mathbb{F} :

$$
t(x)=x^{3}-x^{2}-x-1, \quad u(x)=t\left(x^{3}\right)=x^{9}-x^{6}-x^{3}-1 .
$$

The polynomial $t(x)$ is the well-known Tribonacci polynomial. Let $c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$. Using the identities $c^{3}=-1, c^{4}=-c, c^{6}=1$ and $c^{-1}=-c^{2}$, we obtain the following lemma.
Lemma 2.2. For any $c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}, b \in \mathbb{F}, b \neq 0$, we have

$$
\frac{\left(b^{3}+3 c^{2}+1\right)^{3}}{27 b^{3} c^{3}}-\frac{b^{3}+3 c^{2}+1}{c}+3 c+1=-\frac{b^{9}+A(c) b^{6}+B(c) b^{3}+C(c)}{27 b^{3}}=-\frac{f\left(b^{3}, c\right)}{27 b^{3}}
$$

Theorem 2.3. Let char $\mathbb{F} \neq 2,7$. Then we have $u(x)=w_{1}(x) w_{2}(x) w_{3}(x)$ if and only if

$$
\begin{equation*}
c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}, \quad f\left(b^{3}, c\right)=0, \quad b \neq 0 \quad \text { and } \quad a=\frac{b^{3}+3 c^{2}+1}{3 b c} . \tag{2.1}
\end{equation*}
$$

Proof. Using Lemma 2.1 we have $u(x)=w_{1}(x) w_{2}(x) w_{3}(x)$ if and only if

$$
\begin{align*}
a^{3}-3 a b+3 c & =-1 \\
b^{3}-3 a b c+3 c^{2} & =-1 \tag{2.2}\\
c^{3} & =-1
\end{align*}
$$

First, assume that the identities (2.2) are valid. Then $c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$. If $b=0$, then from the second identity in (2.2) we get $3 c^{2}=-1$ and thus $27=-1$, which is a contradiction with char $\mathbb{F} \neq 2,7$. Consequently, $b \neq 0$ and $a=\left(b^{3}+3 c^{2}+1\right) / 3 b c$. Substituting into the first identity in (2.2), we have

$$
\frac{\left(b^{3}+3 c^{2}+1\right)^{3}}{27 b^{3} c^{3}}-\frac{b^{3}+3 c^{2}+1}{c}+3 c+1=0 .
$$

Combining Lemma 2.2 with $c^{3}=-1$, we obtain $f\left(b^{3}, c\right)=0$ and (2.1) follows.
Conversely, let $c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}, f\left(b^{3}, c\right)=0, b \neq 0$, and $a=\left(b^{3}+3 c^{2}+1\right) / 3 b c$. Then $c^{3}=-1$ and, from $a=\left(b^{3}+3 c^{2}+1\right) / 3 b c$, we have $b^{3}-3 a b c+3 c^{2}=-1$. Put $d=a^{3}-3 a b+3 c$. Then by Lemma 2.2 we have

$$
d=\frac{\left(b^{3}+3 c^{2}+1\right)^{3}}{27 b^{3} c^{3}}-\frac{b^{3}+3 c^{2}+1}{c}+3 c=-\frac{f\left(b^{3}, c\right)}{27 b^{3}}-1=-1
$$

as required.
Now we recall a well-known Stickelberger parity theorem [3] for the case of a cubic polynomial [5, p. 189]. See also Dickson's history [1, pp. 249-251] or consult [4, p. 42].

Theorem 2.4. Let N be the number of solutions of $x^{3}+A x^{2}+B x+C \equiv 0(\bmod p)$ where $A, B, C \in \mathbb{Z}$ and let

$$
\begin{equation*}
D=A^{2} B^{2}-4 B^{3}-4 A^{3} C-27 C^{2}+18 A B C \tag{2.3}
\end{equation*}
$$

be the discriminant of the cubic polynomial $x^{3}+A x^{2}+B x+C$. If p is a prime, $p>3$ and $p \nmid D$, we have:

$$
\begin{align*}
& N=1 \text { if and only if }(D / p)=-1 \\
& N=0 \text { or } N=3 \text { if and only if }(D / p)=1 . \tag{2.4}
\end{align*}
$$

Particularly, for the Tribonacci polynomial $t(x)$, we obtain the following corollary.
Corollary 2.5. Let N be the number of distinct roots of the Tribonacci polynomial $t(x)$ in the field \mathbb{F}_{p} where p is an arbitrary prime, $p \neq 2,11$. Then $t(x)$ does not have multiple roots in \mathbb{F}_{p}, and we have:

$$
\begin{align*}
& N=1 \text { if and only if }(p / 11)=-1 \\
& N=0 \text { or } N=3 \text { if and only if }(p / 11)=1 . \tag{2.5}
\end{align*}
$$

Proof. By (2.3), $D=-44=-2^{2} \cdot 11$. For $p=3$, we have (3/11) $=1$ and $N=0$. Calculating the Legendre - Jacobi symbol, we get $(-44 / p)=(p / 11)$ and (2.5) follows from (2.4).

Lemma 2.6. For $c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$, let D_{c} be the discriminant of $f(x, c)$. Then $D_{c}=$ $866052=2^{2} \cdot 3^{9} \cdot 11$ and $\left(D_{c} / p\right)=(p / 11)$.
Proof. For $c=-1$ we have $A(-1)=-15, B(-1)=-6, C(-1)=64$ and, from (2.3), it follows that $D_{-1}=866052$. For $c \in\left\{-\varepsilon,-\varepsilon^{2}\right\}$ we use the identity $c^{2}-c+1=0$ to determine D_{c}. From the quadratic reciprocity law and from further properties of the Legendre - Jacobi symbol it follows that

$$
\begin{aligned}
\left(\frac{866052}{p}\right) & =\left(\frac{3}{p}\right)\left(\frac{11}{p}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{p}{3}\right)(-1)^{\frac{5(p-1)}{2}}\left(\frac{p}{11}\right) \\
& =(-1)^{3(p-1)}\left(\frac{1}{3}\right)\left(\frac{p}{11}\right)=\left(\frac{p}{11}\right)
\end{aligned}
$$

From now on, we will assume that p is an arbitrary prime such that $p \equiv 1(\bmod 3)$ and \mathbb{F} is an arbitrary finite field with characteristic p. Then there is an $n \in \mathbb{N}$ such that $\mathbb{F}=\mathbb{F}_{p^{n}}$. Let \mathbb{F}^{\times}denote the multiplicative group of the field \mathbb{F}. This group is cyclic of order $p^{n}-1$ and its generator will be denoted by g. For any $\xi \in \mathbb{F}^{\times}$, there is exactly one integer ind ξ such that $\xi=g^{\text {ind } \xi}$ and $0 \leq$ ind $\xi \leq p^{n}-2$. Clearly, for $\xi_{1}, \xi_{2} \in \mathbb{F}^{\times}$, we have ind $\xi_{1} \xi_{2} \equiv$ ind $\xi_{1}+\operatorname{ind} \xi_{2}\left(\bmod p^{n}-1\right)$. We can assume that $\varepsilon=g^{\left(p^{n}-1\right) / 3}$. Then ind $\varepsilon=\left(p^{n}-1\right) / 3$ and ind $\varepsilon^{2}=2\left(p^{n}-1\right) / 3$. For $e \in\{0,1,2\}$ let

$$
C_{e}=\left\{\xi \in \mathbb{F}^{\times} ; \text {ind } \xi \equiv e \quad(\bmod 3)\right\}=\left\{\xi \in \mathbb{F}^{\times} ; \xi=g^{3 k+e}, k \in \mathbb{Z}, 0 \leq k<\left(p^{n}-1\right) / 3\right\} .
$$

We will call the sets C_{0}, C_{1}, C_{2} the cubic classes of the field \mathbb{F}. Clearly, $\left\{C_{0}, C_{1}, C_{2}\right\}$ is a partition of \mathbb{F}^{\times}. For $\xi \in \mathbb{F}^{\times}$we have $\xi \in C_{0}$ if and only if there exists $\omega \in \mathbb{F}^{\times}$such that $\omega^{3}=\xi$. Let us call the elements $\xi^{\prime} s$ with this property the cubic residues of the field \mathbb{F}.

Lemma 2.7. Let $\alpha, \beta, \gamma \in \mathbb{F}$ and $\alpha \beta \gamma \in C_{0}$. Then there exists $e \in\{0,1,2\}$ such that $\{\alpha, \beta, \gamma\} \subseteq C_{e}$ or α, β, γ belong to distinct cubic classes of the field \mathbb{F}.

THE FIBONACCI QUARTERLY

Proof. Suppose that there are $e_{1}, e_{2} \in\{0,1,2\}, e_{1} \neq e_{2}$ such that $\alpha, \beta \in C_{e_{1}}, \gamma \in C_{e_{2}}$. Then ind $\alpha \beta \gamma \equiv$ ind $\alpha+$ ind $\beta+\operatorname{ind} \gamma\left(\bmod p^{n}-1\right)$ and thus ind $\alpha \beta \gamma \equiv 2 e_{1}+e_{2}(\bmod 3)$. On the other hand, we have ind $\alpha \beta \gamma \equiv 0(\bmod 3)$, which implies $2 e_{1}+e_{2} \equiv 0(\bmod 3)$. Consequently, we have $e_{1}=e_{2}$ and a contradiction follows.

For the next theorem we need the following lemma which can be verified by direct computation.

Lemma 2.8. The Tribonacci polynomial $t(x)$ has a unique root in \mathbb{F}_{7} equal to 3. In the field \mathbb{F}_{49}, the polynomial $t(x)$ has three distinct roots $3,-1+5 i,-1-5 i$ where $i \in \mathbb{F}_{49}, i^{2}=-1$. These roots belong to the same residue class of \mathbb{F}_{49} and, for any $\chi \in\{3,-1+5 i,-1-5 i\}$, we have $(2 \chi)^{\left(7^{2}-1\right) / 3}=1$. Consequently, if $t(x)$ has three distinct roots in an extension field \mathbb{F} of \mathbb{F}_{7}, then \mathbb{F} is an extension field of \mathbb{F}_{49} and $3,-1+5 i,-1-5 i$ are roots of $t(x)$ in \mathbb{F} belonging to the same cubic class of \mathbb{F}.

Theorem 2.9. Let $t(x)$ have three distinct roots $\alpha, \beta, \gamma \in \mathbb{F}$. Then
(i) There is an $e_{1} \in\{0,1,2\}$ such that $\{\alpha, \beta, \gamma\} \subseteq C_{e_{1}}$.
(ii) If char $\mathbb{F} \neq 7$, then, for each $c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$, the polynomial $f(x, c)$ has three distinct roots in \mathbb{F} belonging to the same cubic class $C_{e_{2}}$ of \mathbb{F} where $e_{2} \in\{0,1,2\}$ and $e_{1}+e_{2} \equiv 0(\bmod 3)$. In particular, for any $\tau \in\{\alpha, \beta, \gamma\}$, the element 2τ is a cubic residue of the field \mathbb{F}.
Proof. (i) For $p=7$ the first part of the theorem follows from Lemma 2.8. Let $p \neq 7$. Suppose that for some $e \in\{0,1,2\}$ the inclusion $\{\alpha, \beta, \gamma\} \subseteq C_{e}$ is not valid. From the Viète equation $\alpha \beta \gamma=1$ it follows that $\alpha \beta \gamma \in C_{0}$ and, by Lemma 2.7, the roots α, β, γ belong to distinct cubic classes of \mathbb{F}. We can assume that $\alpha \in C_{0}, \beta \in C_{1}, \gamma \in C_{2}$. Then there is $\xi_{1} \in \mathbb{F}$ such that $\alpha=\xi_{1}^{3}$ and thus $t(x)=\left(x-\xi_{1}^{3}\right)(x-\beta)(x-\gamma)$. This implies that $\xi_{1}^{3} \beta \gamma=1$.

Since $\beta \in C_{1}$, the polynomial $x^{3}-\beta$ is irreducible over \mathbb{F}. Let K be the splitting field of $x^{3}-\beta$ over \mathbb{F}. Then there is $\xi_{2} \in K$ such that $\beta=\xi_{2}^{3}$ and $x^{3}-\beta=\left(x-\xi_{2}\right)\left(x-\varepsilon \xi_{2}\right)\left(x-\varepsilon^{2} \xi_{2}\right)$. Let $\xi_{3}=1 /\left(\xi_{1} \xi_{2}\right)$. As $\xi_{1}^{3} \beta \gamma=1$, we have $\xi_{3}^{3}=1 /\left(\xi_{1}^{3} \xi_{2}^{3}\right)=1 /\left(\xi_{1}^{3} \beta\right)=\gamma$ and thus $x^{3}-\gamma=$ $\left(x-\xi_{3}\right)\left(x-\varepsilon \xi_{3}\right)\left(x-\varepsilon^{2} \xi_{3}\right)$. Let $w_{1}(x)=\left(x-\xi_{1}\right)\left(x-\xi_{2}\right)\left(x-\xi_{3}\right), w_{2}(x)=w_{1}(\varepsilon x)=$ $\left(x-\varepsilon^{2} \xi_{1}\right)\left(x-\varepsilon^{2} \xi_{2}\right)\left(x-\varepsilon^{2} \xi_{3}\right), w_{3}(x)=w_{1}\left(\varepsilon^{2} x\right)=\left(x-\varepsilon \xi_{1}\right)\left(x-\varepsilon \xi_{2}\right)\left(x-\varepsilon \xi_{3}\right)$. In K we have $t(x)=\left(x-\xi_{1}^{3}\right)\left(x-\xi_{2}^{3}\right)\left(x-\xi_{3}^{3}\right)$. Hence $u(x)=w_{1}(x) w_{2}(x) w_{3}(x)$. Let $a=-\xi_{1}-\xi_{2}-\xi_{3}$, $b=\xi_{1} \xi_{2}+\xi_{1} \xi_{3}+\xi_{2} \xi_{3}$. Then $w_{1}(x)=x^{3}+a x^{2}+b x-1, w_{2}(x)=x^{3}+\varepsilon^{2} a x^{2}+\varepsilon b x-1$, $w_{3}(x)=x^{3}+\varepsilon a x^{2}+\varepsilon^{2} b x-1$. Using Theorem 2.3 we get $b \neq 0$ and $f\left(b^{3},-1\right)=0$. After a short calculation we obtain

$$
b^{3}=\xi_{1}^{3} \xi_{2}^{3}+\xi_{1}^{3} \xi_{3}^{3}+\xi_{2}^{3} \xi_{3}^{3}+3\left(\xi_{1}^{3} \xi_{2}^{2} \xi_{3}+\xi_{1}^{3} \xi_{2} \xi_{3}^{2}+\xi_{1}^{2} \xi_{2}^{3} \xi_{3}+\xi_{1} \xi_{2}^{3} \xi_{3}^{2}+\xi_{1}^{2} \xi_{2} \xi_{3}^{3}+\xi_{1} \xi_{2}^{2} \xi_{3}^{3}\right)+6 \xi_{1}^{2} \xi_{2}^{2} \xi_{3}^{2}
$$

Let $u=\xi_{1}^{3} \xi_{2}^{3}+\xi_{1}^{3} \xi_{3}^{3}+\xi_{2}^{3} \xi_{3}^{3}+6 \xi_{1}^{2} \xi_{2}^{2} \xi_{3}^{2}, \quad v=\xi_{1}^{3} \xi_{2}^{2} \xi_{3}+\xi_{1}^{3} \xi_{2} \xi_{3}^{2}+\xi_{1}^{2} \xi_{2}^{3} \xi_{3}+\xi_{1} \xi_{2}^{3} \xi_{3}^{2}+\xi_{1}^{2} \xi_{2} \xi_{3}^{3}+\xi_{1} \xi_{2}^{2} \xi_{3}^{3}$. Then $b^{3}=u+3 v$ and, for u, we have $u=\alpha \beta+\alpha \gamma+\beta \gamma+6=5$. Clearly, $\xi_{3}=\xi_{2}^{2} /\left(\xi_{1} \beta\right)$ and $\xi_{3}^{2}=\xi_{2} /\left(\xi_{1}^{2} \beta\right)$. This implies that
$v=\frac{\xi_{1}^{3} \xi_{2}^{4}}{\xi_{1} \beta}+\frac{\xi_{1}^{3} \xi_{2}^{2}}{\xi_{1}^{2} \beta}+\frac{\xi_{1}^{2} \beta \xi_{2}^{2}}{\xi_{1} \beta}+\frac{\xi_{1} \beta \xi_{2}}{\xi_{1}^{2} \beta}+\xi_{1}^{2} \xi_{2} \gamma+\xi_{1} \xi_{2}^{2} \gamma=\xi_{2}^{2}\left(\frac{\xi_{1}}{\beta}+\xi_{1}+\xi_{1} \gamma\right)+\xi_{2}\left(\xi_{1}^{2}+\frac{1}{\xi_{1}}+\xi_{1}^{2} \gamma\right)$.
Let $r=\xi_{1} / \beta+\xi_{1}+\xi_{1} \gamma, s=\xi_{1}^{2}+1 / \xi_{1}+\xi_{1}^{2} \gamma$. Then $r, s \in \mathbb{F}$ and $b^{3}=3 r \xi_{2}^{2}+3 s \xi_{2}+5$. Since for $b^{3} \neq 2$, we have $g\left(b^{3}\right)=0$ and $[K: \mathbb{F}]=3$, we obtain $b^{3} \in \mathbb{F}$. Clearly, the elements $1, \xi_{2}, \xi_{2}^{2} \in K$ are linear independent over \mathbb{F} and thus we have $r=s=5-b^{3}=0$. Hence $b^{3}=5$. Consequently, $5 \equiv 2(\bmod p)$ or 5 is a root of $g(x)$ in \mathbb{F}. As $g(5)=-2^{3} \cdot 3^{2}=0$, we have a contradiction with char $\mathbb{F} \neq 2,3$. This proves part (i).
(ii) According to (i) there exists $e_{1} \in\{0,1,2\}$ such that $\{\alpha, \beta, \gamma\} \subseteq C_{e_{1}}$. Therefore, there exist $\omega_{1}, \omega_{2} \in \mathbb{F}$ with the property $\beta=\alpha \omega_{1}^{3}, \gamma=\alpha \omega_{2}^{3}$ and $1 \neq \omega_{1}^{3} \neq \omega_{2}^{3} \neq 1$. Let $c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$. Since $1=\alpha \beta \gamma=\alpha^{3} \omega_{1}^{3} \omega_{2}^{3}$, we can choose the element ω_{1} such that $\alpha \omega_{1} \omega_{2}=-c$. Let K be the splitting field of $x^{3}-\alpha$ and let $\xi \in K$ such that $\xi^{3}=\alpha$. Then $\xi^{3} \omega_{1} \omega_{2}=-c$. Set $H_{1}=\omega_{1}+\omega_{2}+\omega_{1} \omega_{2}, \quad H_{2}=\omega_{1}+\varepsilon \omega_{2}+\varepsilon^{2} \omega_{1} \omega_{2}, \quad H_{3}=\omega_{1}+\varepsilon^{2} \omega_{2}+\varepsilon \omega_{1} \omega_{2}$. Using $1 \neq \omega_{1}^{3} \neq \omega_{2}^{3} \neq 1$, we can prove $H_{1}^{3} \neq H_{2}^{3} \neq H_{3}^{3} \neq H_{1}^{3}$. Furthermore, set

$$
\begin{aligned}
& w_{11}(x)=(x-\xi)\left(x-\xi \omega_{1}\right)\left(x-\xi \omega_{2}\right)=x^{3}+a_{1} x^{2}+b_{1} x+c \\
& w_{21}(x)=(x-\varepsilon \xi)\left(x-\varepsilon^{2} \xi \omega_{1}\right)\left(x-\xi \omega_{2}\right)=x^{3}+a_{2} x^{2}+b_{2} x+c \\
& w_{31}(x)=\left(x-\varepsilon^{2} \xi\right)\left(x-\varepsilon \xi \omega_{1}\right)\left(x-\xi \omega_{2}\right)=x^{3}+a_{3} x^{2}+b_{3} x+c
\end{aligned}
$$

and, for $i \in\{1,2,3\}$, set $w_{i 2}(x)=w_{i 1}(\varepsilon x), w_{i 3}(x)=w_{i 1}\left(\varepsilon^{2} x\right)$. Then $b_{i}=\xi^{2} H_{i}, i \in$ $\{1,2,3\}$. Since $\varepsilon^{j} \xi, \varepsilon^{j} \xi \omega_{1}, \varepsilon^{j} \xi \omega_{2}, j \in\{0,1,2\}$ are distinct roots of $u(x)$, we have $u(x)=$ $w_{i 1}(x) w_{i 2}(x) w_{i 3}(x)$ for each $i \in\{1,2,3\}$. Theorem 2.3 then implies $f\left(b_{i}^{3}, c\right)=0, b_{i} \neq 0$. Thus, $b_{i}^{3}, i \in\{1,2,3\}$ are distinct roots of $f(x, c)$. Since $b_{i}^{3} \alpha=\xi^{6} H_{i}^{3} \alpha=\left(\alpha H_{i}\right)^{3}, i \in\{1,2,3\}$, there exists $e_{2} \in\{0,1,2\}$ such that $b_{i} \in C_{e_{2}}$ for each $i \in\{1,2,3\}$ and $e_{1}+e_{2} \equiv 0(\bmod 3)$. The theorem is proved.
Remark 2.10. The second part of the proof of Theorem 2.9 gives explicit formulas for the roots of the polynomial $f(x, c)$, namely $\alpha^{2} H_{1}^{3}, \alpha^{2} H_{2}^{3}, \alpha^{2} H_{3}^{3}$.

3. The Cubic Character of the Tribonacci Roots

Let $t(x)$ be irreducible over \mathbb{F}_{p} and $p \equiv 1(\bmod 3)$. Let K be the splitting field of $t(x)$ over \mathbb{F}_{p}. Then $\left[K: \mathbb{F}_{p}\right]=3$ and the multiplicative group K^{\times}of the field K is of order $p^{3}-1=(p-1)\left(p^{2}+p+1\right)$. We denote the generator of K^{\times}by g. Let $\alpha, \beta, \gamma \in K$ satisfy $t(x)=(x-\alpha)(x-\beta)(x-\gamma)$. With respect to the automorphism $\xi \rightarrow \xi^{p}$ of the field K, we can assume that $\beta=\alpha^{p}$, $\gamma=\alpha^{p^{2}}$. Consequently, the roots α, β, γ are distinct. Let $\alpha=g^{u}$ where $u \in \mathbb{Z}, 0<u<p^{3}-1$. Then $1=\alpha^{1+p+p^{2}}=g^{u\left(1+p+p^{2}\right)}$ and thus $u\left(1+p+p^{2}\right) \equiv 0$ $\left(\bmod p^{3}-1\right)$. This implies $p-1 \mid u$ and thus there is a $k \in \mathbb{Z}, 1 \leq k<p^{2}+p+1$ such that $u=k(p-1)$. We get $\alpha=g^{k(p-1)}$ and ind $\alpha=k(p-1)$ in K. Let

$$
\xi_{\alpha}=g^{\frac{k(p-1)}{3}}, \xi_{\beta}=\xi_{\alpha}^{p}=g^{\frac{k p(p-1)}{3}}, \xi_{\gamma}=\xi_{\beta}^{p}=\xi_{\alpha}^{p^{2}}=g^{\frac{k p^{2}(p-1)}{3}} .
$$

Then $\xi_{\alpha}, \xi_{\beta}, \xi_{\gamma} \in K^{\times}, \xi_{\alpha}^{3}=\alpha, \xi_{\beta}^{3}=\beta, \xi_{\gamma}^{3}=\gamma$ and $\left(\xi_{\alpha} \xi_{\beta} \xi_{\gamma}\right)^{3}=1$. This implies that $\xi_{\alpha} \xi_{\beta} \xi_{\gamma} \in\left\{1, \varepsilon, \varepsilon^{2}\right\}$. Further, let $c(p)=-\xi_{\alpha} \xi_{\beta} \xi_{\gamma}=-\xi_{\alpha}^{1+p+p^{2}} \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$. It can be shown that $c(p)$ depends only on the prime p. By investigating the relation $C(c)=0$ for $c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$, we get the following lemma.
Lemma 3.1. If $f(0, c)=0$ for an element $c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$ of \mathbb{F}, then char $\mathbb{F}=2$ or 7 .
Theorem 3.2. Let $t(x)$ be irreducible over \mathbb{F}_{p}. Then $f(x, c(p))$ has three distinct roots in \mathbb{F}_{p} belonging to distinct cubic classes of the field \mathbb{F}_{p}.
Proof. Let $w_{1}(x)=\left(x-\xi_{\alpha}\right)\left(x-\xi_{\beta}\right)\left(x-\xi_{\gamma}\right)=x^{3}+a x^{2}+b x+c$ where $a=-\xi_{\alpha}-\xi_{\beta}-\xi_{\gamma}$, $b=\xi_{\alpha} \xi_{\beta}+\xi_{\alpha} \xi_{\gamma}+\xi_{\beta} \xi_{\gamma}, c=c(p)=-\xi_{\alpha} \xi_{\beta} \xi_{\gamma}$. Since $a^{p}=a, b^{p}=b$, we have $a, b, c \in \mathbb{F}_{p}$ and $w_{1}(x), w_{2}(x), w_{3}(x) \in \mathbb{F}_{p}[x]$ where $w_{2}(x)=w_{1}(\varepsilon x)$ and $w_{3}(x)=w_{1}\left(\varepsilon^{2} x\right)$. Furthermore, we have $w_{2}(x)=\left(x-\varepsilon^{2} \xi_{\alpha}\right)\left(x-\varepsilon^{2} \xi_{\beta}\right)\left(x-\varepsilon^{2} \xi_{\gamma}\right)$ and $w_{3}(x)=\left(x-\varepsilon \xi_{\alpha}\right)\left(x-\varepsilon \xi_{\beta}\right)\left(x-\varepsilon \xi_{\gamma}\right)$. Clearly, $\varepsilon^{i} \xi_{\alpha}, \varepsilon^{i} \xi_{\beta}, \varepsilon^{i} \xi_{\gamma}, i \in\{0,1,2\}$ are the distinct roots of $u(x)$ and $u(x)=w_{1}(x) w_{2}(x) w_{3}(x)$. By Theorem 2.3 we have $b \neq 0$ and $f\left(b^{3}, c(p)\right)=0$. From Theorem 2.4 and Lemma 2.6 it follows

THE FIBONACCI QUARTERLY

that there exist $\rho, \sigma \in \mathbb{F}_{p}$ such that $\rho \neq b^{3} \neq \sigma \neq \rho, f(\rho, c(p))=f(\sigma, c(p))=0$. Suppose that there is $b^{\prime} \in \mathbb{F}_{p}, b^{\prime 3}=\rho$. Let $w_{1}^{\prime}(x)=x^{3}+a^{\prime} x^{2}+b^{\prime} x+c, c=c(p)$, where $a^{\prime}=\left(b^{\prime 3}+3 c^{2}+1\right) / 3 b^{\prime} c$, $w_{2}^{\prime}(x)=w_{1}^{\prime}(\varepsilon x), w_{3}^{\prime}(x)=w_{1}^{\prime}\left(\varepsilon^{2} x\right)$. By Theorem 2.3 we have $u(x)=w_{1}^{\prime}(x) w_{2}^{\prime}(x) w_{3}^{\prime}(x)$. Since $b^{3} \neq \rho=b^{\prime 3}$, we have $\left\{w_{1}(x), w_{2}(x), w_{3}(x)\right\} \cap\left\{w_{1}^{\prime}(x), w_{2}^{\prime}(x), w_{3}^{\prime}(x)\right\}=\emptyset$. Consequently, there exists $\tau \in \mathbb{F}_{p}$ such that $u(\tau)=0$. Hence τ^{3} is a root of $t(x)$ which is a contradiction. Therefore exactly one root of $f(x, c(p))$ is a cubic residue of \mathbb{F}_{p}. Since $C(-1)=4^{3}, C(-\varepsilon)=$ $18 \varepsilon+19=(\varepsilon+3)^{3}$ and $C\left(-\varepsilon^{2}\right)=18 \varepsilon^{2}+19=\left(\varepsilon^{2}+3\right)^{3}$, we get, using Lemma 2.7, that the roots of $f(x, c(p))$ belong to distinct cubic classes of \mathbb{F}_{p}.
Lemma 3.3. Let $t(x)$ be irreducible over $\mathbb{F}_{p}, c_{1}, c_{2} \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$ and $b_{1}, b_{2} \in \mathbb{F}_{p}$. If $f\left(b_{1}^{3}, c_{1}\right)=f\left(b_{2}^{3}, c_{2}\right)=0$, then $c_{1}=c_{2}$.
Proof. For $i \in\{1,2\}$, let $w_{i 1}(x)=x^{3}+a_{i} x^{2}+b_{i} x+c_{i}$ where $a_{i}=\left(b_{i}^{3}+3 c_{i}^{2}+1\right) / 3 b_{i} c_{i}$. Further, let $w_{i 2}(x)=w_{i 1}(\varepsilon x), \quad w_{i 3}(x)=w_{i 1}\left(\varepsilon^{2} x\right)$. Then, by Theorem 2.3, we have $u(x)=w_{i 1}(x) w_{i 2}(x) w_{i 3}(x), i \in\{1,2\}$. If $c_{1} \neq c_{2}$, then $\left\{w_{11}(x), w_{12}(x), w_{13}(x)\right\} \cap$ $\left\{w_{21}(x), w_{22}(x), w_{23}(x)\right\}=\emptyset$, and thus there is $\tau \in \mathbb{F}_{p}$ such that $u(\tau)=0$. Since τ^{3} is a root of $t(x)$ in \mathbb{F}_{p}, a contradiction follows.
Theorem 3.4. Let $c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$ and let $f(x, c)$ have three distinct roots in \mathbb{F}_{p} belonging to distinct cubic classes of \mathbb{F}_{p}. Then $t(x)$ is irreducible over \mathbb{F}_{p} and $c=c(p)$.
Proof. Let ρ be the root of $f(x, c)$ in \mathbb{F}_{p} such that $\rho \in C_{0}$. Then there is $b \in \mathbb{F}_{p}$ such that $b^{3}=\rho$. Let $a=\left(b^{3}+3 c^{2}+1\right) / 3 b c, w_{1}(x)=x^{3}+a x^{2}+b x+c, w_{2}(x)=w_{1}(\varepsilon x)$, $w_{3}(x)=w_{1}\left(\varepsilon^{2} x\right)$. By Theorem 2.3 we have $u(x)=w_{1}(x) w_{2}(x) w_{3}(x)$.

Suppose that $t(x)$ is not irreducible over \mathbb{F}_{p}. Since $f(x, c)$ has three distinct roots in \mathbb{F}_{p}, then by Theorem 2.4 and Lemma 2.6, we have $(p / 11)=1$. By (2.5), there are distinct elements $\tau_{1}, \tau_{2}, \tau_{3} \in \mathbb{F}_{p}$ such that $t(x)=\left(x-\tau_{1}\right)\left(x-\tau_{2}\right)\left(x-\tau_{3}\right)$ and thus $u(x)=\left(x^{3}-\right.$ $\left.\tau_{1}\right)\left(x^{3}-\tau_{2}\right)\left(x^{3}-\tau_{3}\right)$. For any $i \in\{1,2,3\}$, there is $k=k(i) \in\{1,2,3\}$ such that $1 \leq$ $\operatorname{deg}\left(\operatorname{gcd}\left(x^{3}-\tau_{i}, w_{k}(x)\right)\right) \leq 2$. Thus there is $\xi_{i} \in \mathbb{F}_{p}$ which is the root of $x^{3}-\tau_{i}$. Since $\varepsilon \xi_{1}$, $\varepsilon^{2} \xi_{i}$ are also the roots of $x^{3}-\tau_{i}$, we have $x^{3}-\tau_{i}=\left(x-\xi_{i}\right)\left(x-\varepsilon \xi_{i}\right)\left(x-\varepsilon^{2} \xi_{i}\right)$ for $i \in\{1,2,3\}$. This implies that $u(x)$ completely splits over \mathbb{F}_{p} into the product of the linear terms $x-\varepsilon^{i} \xi_{j}$, $i \in\{0,1,2\}, j \in\{1,2,3\}$. We can assume

$$
\begin{aligned}
& w_{1}(x)=\left(x-\xi_{1}\right)\left(x-\xi_{2}\right)\left(x-\xi_{3}\right), \\
& w_{2}(x)=w_{1}(\varepsilon x)=\left(x-\varepsilon^{2} \xi_{1}\right)\left(x-\varepsilon^{2} \xi_{2}\right)\left(x-\varepsilon^{2} \xi_{3}\right), \\
& w_{3}(x)=w_{1}\left(\varepsilon^{2} x\right)=\left(x-\varepsilon \xi_{1}\right)\left(x-\varepsilon \xi_{2}\right)\left(x-\varepsilon \xi_{3}\right) .
\end{aligned}
$$

It follows that $b=\xi_{1} \xi_{2}+\xi_{1} \xi_{3}+\xi_{2} \xi_{3}$ and $c=-\xi_{1} \xi_{2} \xi_{3}$. Let

$$
\begin{aligned}
& \bar{w}_{1}(x)=\left(x-\varepsilon \xi_{1}\right)\left(x-\varepsilon^{2} \xi_{2}\right)\left(x-\xi_{3}\right), \\
& \bar{w}_{2}(x)=\bar{w}_{1}(\varepsilon x)=\left(x-\xi_{1}\right)\left(x-\varepsilon \xi_{2}\right)\left(x-\varepsilon^{2} \xi_{3}\right), \\
& \bar{w}_{3}(x)=\bar{w}_{1}\left(\varepsilon^{2} x\right)=\left(x-\varepsilon^{2} \xi_{1}\right)\left(x-\xi_{2}\right)\left(x-\varepsilon \xi_{3}\right) .
\end{aligned}
$$

Letting $\bar{a}=-\varepsilon \xi_{1}-\varepsilon^{2} \xi_{2}-\xi_{3}$ and $\bar{b}=\xi_{1} \xi_{2}+\varepsilon \xi_{1} \xi_{3}+\varepsilon^{2} \xi_{2} \xi_{3}$, we get $\bar{w}_{1}(x)=x^{3}+\bar{a} x^{2}+\bar{b} x+c$. Since $u(x)=\bar{w}_{1}(x) \bar{w}_{2}(x) \bar{w}_{3}(x)$, it follows from Theorem 2.3 that $f\left(\bar{b}^{3}, c\right)=0$.

We prove that $b \notin\left\{\bar{b}, \varepsilon \bar{b}, \varepsilon^{2} \bar{b}\right\}$. Suppose that $b=\bar{b}$. Then $\xi_{1} \xi_{2}+\xi_{1} \xi_{3}+\xi_{2} \xi_{3}=\xi_{1} \xi_{2}+\varepsilon \xi_{1} \xi_{3}+$ $\varepsilon^{2} \xi_{2} \xi_{3}$ and thus $\xi_{2} \xi_{3}\left(\varepsilon^{2}-1\right)+\xi_{1} \xi_{3}(\varepsilon-1)=0$. Hence $\xi_{2}(\varepsilon+1)=-\xi_{1}$. Since $(\varepsilon+1)^{3}=-1$ we have $\tau_{2}=\xi_{2}^{3}=\xi_{1}^{3}=\tau_{1}$, which is a contradiction. Similarly we can prove that $b \neq \varepsilon \bar{b}$ and $b \neq \varepsilon^{2} \bar{b}$. Hence $b \notin\left\{\bar{b}, \varepsilon \bar{b}, \varepsilon^{2} \bar{b}\right\}$, and thus $b^{3} \neq \bar{b}^{3}$. Consequently, the roots b^{3}, \bar{b}^{3} of $f(x, c)$

THE CUBIC CHARACTER OF THE TRIBONACCI ROOTS

belong to the same cubic class and a contradiction follows. Thus $t(x)$ is irreducible over \mathbb{F}_{p}. From Theorem 3.2 we get that $f(x, c(p))$ has a root b_{1}^{3} where $b_{1} \in \mathbb{F}_{p}$ and Lemma 3.3 implies $c=c(p)$.

Theorem 3.5. Let $t(x)$ have exactly one root τ in the field \mathbb{F}_{p} and $p \neq 7$. Then, for any $c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$, there exists the unique $\rho=\rho(c) \in \mathbb{F}_{p}$ such that $f(\rho, c)=0$. Furthermore, $\rho \tau$ is a cubic residue of the field \mathbb{F}_{p}.
Proof. According to Corollary 2.5 we have $(p / 11)=-1$. Let $\mathbb{F}=\mathbb{F}_{p^{2}}$. Then $t(x)$ has three distinct roots $\tau, \alpha, \beta \in \mathbb{F}$ and $t(x)=(x-\tau)(x-\alpha)(x-\beta)$. Let $c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$. Using Theorem 2.9, we get that τ, α, β belong to the same cubic class $C_{e_{1}}$ of the field \mathbb{F} and $f(x, c)$ has three distinct roots in \mathbb{F} which belong to the same cubic class $C_{e_{2}}, e_{2} \in\{0,1,2\}$ of \mathbb{F} and $e_{1}+e_{2} \equiv 0(\bmod 3)$.

Using Theorem 2.4 and Lemma 2.6, we get that there exists exactly one element $\rho=$ $\rho(c) \in \mathbb{F}_{p}$ such that $f(\rho, c)=0$. Since $\tau \in C_{e_{1}}$ and $\rho \in C_{e_{2}}$, there exists $\omega \in \mathbb{F}=\mathbb{F}_{p^{2}}$ such that $\rho \tau=\omega^{3}$. The element $\rho \tau$ belongs to \mathbb{F}_{p} and $\left[\mathbb{F}: \mathbb{F}_{p}\right]=2$, thus $\omega \in \mathbb{F}_{p}$ and the result follows.

The case $p=7$ will be investigated separately. The polynomial $t(x)$ has only one root $\tau=3$ in the field \mathbb{F}_{7}. The set $\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}=\{3,5,6\}$ and the polynomials $f(x, c), c=3,5,6$ have the following roots in \mathbb{F}_{7} :

c	$\rho=\rho(c)$	$\rho^{(p-1) / 3}=\rho^{2}$	$(\rho \tau)^{(p-1) / 3}=(\rho \tau)^{2}$
3	0	0	0
5	5	4	1
6	2	4	1

where $\rho=\rho(c)$ is the only root of $f(x, c)$ in \mathbb{F}_{7}. Therefore, we can state the following proposition.

Proposition 3.6. Let $p=7$. Then the Tribonacci polynomial $t(x)$ has a unique root $\tau=3$ in \mathbb{F}_{7} and, for $c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}-\{3\}$, there exists a unique $\rho=\rho(c) \in \mathbb{F}_{7}$ with $f(\rho, c)=0$ and $\rho \tau$ is a cubic residue in \mathbb{F}_{7}.

Combining Theorem 3.5 with Proposition 3.6, we obtain the following theorem.
Theorem 3.7. Let $t(x)$ have a unique root τ in the field \mathbb{F}_{p}. Then 2τ belongs to the cubic class C_{0} of \mathbb{F}_{p} and therefore

$$
\tau^{\frac{p-1}{3}} \equiv 2^{\frac{2(p-1)}{3}} \quad(\bmod p)
$$

Using Theorem 2.9 we get the following theorem.
Theorem 3.8. Let $t(x)$ have three distinct roots $\alpha, \beta, \gamma \in \mathbb{F}_{p}$. Then there exists $e_{1} \in\{0,1,2\}$ such that $\{\alpha, \beta, \gamma\} \subseteq C_{e_{1}}$ and any polynomial $f(x, c), c \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$ has three distinct roots in \mathbb{F}_{p} which belong to the same cubic class $C_{e_{2}}$ of \mathbb{F}_{p} where $e_{2} \in\{0,1,2\}$ and $e_{1}+e_{2} \equiv 0$ $(\bmod 3)$. In particular, for any $\tau \in\{\alpha, \beta, \gamma\}$, the element 2τ belongs to the cubic class C_{0} of \mathbb{F}_{p} and thus

$$
\tau^{\frac{p-1}{3}} \equiv 2^{\frac{2(p-1)}{3}} \quad(\bmod p) .
$$

4. Conclusion

In conclusion, we prove a theorem on the relation between the roots of $t(x)$ and the number 2 in any extension of the field \mathbb{F}_{p}.

Theorem 4.1. Let \mathbb{G} be an arbitrary extension of the field \mathbb{F}_{p} and $\chi \in \mathbb{G}$ be a root of $t(x)$ in \mathbb{G}. Then there exists $\omega \in \mathbb{G}$ such that $2 \chi=\omega^{3}$.
Proof. We will discuss three cases. (i) Let $t(x)$ be irreducible over \mathbb{F}_{p}. Then $t(x)$ has three distinct roots α, β, γ in the splitting field K over \mathbb{F}_{p}. Thus $K \subseteq \mathbb{G}$ and $\chi \in\{\alpha, \beta, \gamma\}$. Using Theorem 2.9, we see that 2χ is a cubic residue of the field K and the result follows.
(ii) Let $t(x)$ have the unique root τ in the field \mathbb{F}_{p}. By Theorem 3.7, the element 2τ is a cubic residue of the field $\mathbb{F}_{p} \subseteq \mathbb{G}$. Thus, for $\chi=\tau$, the theorem is valid. If $\chi \neq \tau$, then $\chi \in \mathbb{F}_{p^{2}}$. Since $\mathbb{F}_{p^{2}} \subseteq \mathbb{G}$, we obtain the result from Theorem 2.9 provided that $p \neq 7$. For $p=7$, we get the assertion from Lemma 2.8.
(iii) Let $t(x)$ have three distinct roots in \mathbb{F}_{p}. According to Theorem 3.8, the element 2χ is a cubic residue of the field \mathbb{F}_{p} and hence $2 \chi=\omega^{3}$ for an element $\omega \in \mathbb{F}_{p} \subseteq \mathbb{G}$. The proof is complete.

References

[1] L. E. Dickson, History of the Theory of Numbers, Vol. I, Chelsea, New York, 1952.
[2] E. Lehmer, On the quadratic character of the Fibonacci root, The Fibonacci Quarterly, 4.2 (1966), 135138.
[3] L. Stickelberger, Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper, Verhand. I. Internat. Math. Kongress, (1897), 182-193.
[4] Z.-H. Sun, Cubic and quartic congruences modulo a prime, Journal of Number Theory, 102, (2003), 41-89.
[5] G. Voronoï, Sur une propriété du discriminant des fonctions entirès, Verhand. III. Internat. Math. Kongress, (1905), 186-189.

MSC2000: 11B39, 11A15
Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic

E-mail address: klaska@fme.vutbr.cz
Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic

E-mail address: skula@fme.vutbr.cz

[^0]: The second author was supported by the Grant Agency of the Czech Republic (Algebraic, Analytic and Combinatorial Number Theory, 201/07/0191) and the results were acquired using the subsidization of the Ministry of Education, Youth and Sports of the Czech Republic, research plan MSM0021630518 "Simulation modeling of mechatronic systems".

