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Abstract. Let S1 denote a sequence of variables yn, n ∈ Z, subject to some difference
equation. Let S2 denote a sequence of n×n determinants Tn, with elements defined in terms
of the members of some sequence of type S1, in such a way that the Tn also obey a difference
equation, proved as Proposition 1. This is used to produce determinantal identities. From
a wide range of examples studied, a selection of these identities is presented, some quite
striking, in which the Fibonacci, and sometimes Lucas or Jacobsthal numbers appear in
either the yn or the Tn role, or in some cases both roles.

1. Introduction

Let S1 denote a sequence {y0, y1, y2, . . . } of real quantities yn governed by a difference
equation

yn = ayn−1 + byn−2, (1.1)

where a, b, y0, y1 are given real numbers in terms of which all yn, n ∈ Z are determined.
Let S2 denote a sequence of n× n determinants

Tn(x, y0, y1, a, b) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 · · · yn−2 yn−1 yn

−x y1 y2 · · · yn−3 yn−2 yn−1

0 −x y1 · · · yn−4 yn−3 yn−2
...

...
...

. . .
...

...
...

0 0 0 · · · y1 y2 y3

0 0 0 · · · −x y1 y2

0 0 0 . . . 0 −x y1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (1.2)

where x is an indeterminate. Here x is normally a suitably chosen real number, but Tn may
also be viewed as a polynomial of degree (n− 1) in x. The sequence S2 may be viewed as a
transform of the sequence S1 in the sense of the definition [14, 20] of the Hankel transform.

In Section 2 below, we present and prove Proposition 1 for the Tn. The purpose of this
paper is to exploit Proposition 1 to obtain identities in which the Fibonacci numbers Fn

appear in a starring role, and the Lucas numbers Ln, and the Jacobsthal numbers Jn, occur
occasionally.

The subsections of Section 3 contain various examples. Examples 1 and 2 in Sections 3.1
and 3.2 use simple sequences S1 to generate determinantal formulas for the Fn. Examples
3 and 4 use the Fn to define S1. Example 5 is an example chosen so that the Fn appear
as elements of both S1 and S2. Section 3.6 shows that Example 5 is a special case of a
class of examples wherein both S1 and S2 involve the same sequences. Section 3.7 uses the
Jacobsthal numbers to define S1, and produces determinantal formulas for the Fn in terms
of the Jn. The origin of this example, which provided the starting point of the present study,
is indicated in Section 3.7.
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Section 4 takes a brief look at what can be learned when the yn of S1 obey a third order
difference equation.

A key feature of the present studies is the systematic use of Proposition 1 in the pro-
duction of determinantal identities. It is to be noted that all of these therefore feature the
determinants of n × n matrices of Hessenberg type which are not tridiagonal. Most of the
ideas involved here are echoes of themes familiar from the existing literature. There is of
course a long tradition of work in the general area of present interest involving many types of
determinants of n×n matrices, from the early items [3, see B-24, proposed by Br. U. Alfred,
B-12 proposed by P. F. Byrd, and B-13 proposed by S. L. Basin, with solutions to B-12 and
B-13 by M. Bicknell], [15] to [4]; see also [19]. Such studies like those on the determinants
of tridiagonal matrices [8, 7, 6] however seldom, feature results that appear below or can be
recast in a form seen here. Papers in which the fact that the elements of the determinants
involved obey a recurrence relation is utilized, as here, include [12, 2, 11, 1, 13]. Contact with
the results given here should most naturally be expected in papers which explicitly focus
on Hessenberg matrices like [18, 8, 10, 5, 24]. Many results, whose value is acknowledged,
resemble results seen below but even special cases thereof which can then be found below
are few in number and of a simple nature. However the result En,t=0 = Fn arising from
Proposition 2 of [10] for t = 0 is equivalent to the result of Example 1 below; the same
applies to the result |An,0| = Fn from Proposition 2.1 of [5] for t = 0. Of course the papers
from which these two cases have been picked out contain a good range of results beyond the
simple facts mentioned but developed along lines that are different than those of the present
work.

1.1. Fibonacci, Lucas, and Jacobsthal Numbers. These well-known sequences of num-
bers occur regularly throughout the formalism of this paper. Information about each of them
can be found in [22]: go to pages 629, 1111 and 951 for the Fn, Ln, and Jn. For a com-
pendium of identities including several used below for the Fibonacci and Lucas numbers, see
[9, 21].

The Fibonacci and Lucas numbers are governed by the same difference equation

yn+2 = yn+1 + yn, yn = Fn or yn = Ln,

but different initial conditions

F0 = 0, F1 = 1, L0 = 2, L1 = 1.

For the usual Jabobsthal numbers Jn, and their relatives jn, called Jacobsthal-Lucas numbers
for an obvious reason, we have

zn+2 = zn+1 + 2zn, zn = Jn or zn = jn,

and
J0 = 0, J1 = 1, j0 = 2 j1 = 1.

n = −1 0 1 2 3 4 5 6 7 8

Fn = 1 0 1 1 2 3 5 8 13 21
Ln = −1 2 1 3 4 7 11 18 29 47

Jn = 1/2 0 1 1 3 5 11 21 43 85
jn = −1/2 2 1 5 7 17 31 65 127 257
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At various points of the developments below, identities involving elements of these se-
quences are needed. Although many of these are well-known, it is in all cases straightforward
to give a direct proof by substitution of some well-known formulas:

Fn =
λ+

n − λ−n

λ+ − λ−
, λ± = (1±

√
5)/2

Ln = λ+
n + λ−n

Jn =
2n − (−1)n

2− (−1)

jn = 2n + (−1)n. (1.3)

2. Proposition 1

Proposition 1. If the yn ∈ S1 are subject to (1.1) with x, a, b, y0, y1 all fixed real numbers,
then the determinants Tn = Tn(x, y0, y1, a, b) ∈ S2 are related by the difference equation

Tn = (y1 + ax)Tn−1 + bx(y0 + x)Tn−2. (2.1)

Proof. Expand Tn on its first column, getting

Tn = y1Tn−1 + xRn−1, (2.2)

where Rn−1 is an (n− 1)× (n− 1) determinant, whose first row is

y2, y3, y4, . . . , yn−2, yn−1, yn.

Apply (1.1) to each element of this row. This gives Rn−1 = aTn−1 + bSn−1, where Sn−1 is
another (n− 1)× (n− 1) determinant whose first row is

y0, y1, y2, . . . , yn−4, yn−3, yn−2.

Since Sn−1 = (y0 + x)Tn−2, (2.1) follows. ¤

3. Examples

3.1. Example 1. Define S1 = {0, 1, 0, 1, . . . }. Thus

y0 = 0, y1 = 1, yn = yn−2, a = 0, b = 1. (3.1)

Making the choice x = 1, the low n members Tn = Tn(1, 0, 1, 0, 1) ∈ S2 take the form

T1 = 1, T2 =

∣∣∣∣
1 0
−1 1

∣∣∣∣ , T3 =

∣∣∣∣∣∣

1 0 1
−1 1 0
0 −1 1

∣∣∣∣∣∣
, T4 =

∣∣∣∣∣∣∣∣

1 0 1 0
−1 1 0 1
0 −1 1 0
0 0 −1 1

∣∣∣∣∣∣∣∣
.

Proposition 1 yields the result

Tn = Tn−1 + Tn−2. (3.2)

Since T1 = 1, T2 = 1, it follows that

Tn = Fn. (3.3)
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3.2. Example 2. Define S1 = {0, 1, 2, 3, 4, . . . }, so that y0 = 0, y1 = 1, and

yn = 2yn−1 − yn−2, a = 2, b = −1. (3.4)

Taking x = 1, the first few Tn = Tn(x, 0, 1, 2,−1) ∈ S2 can be seen to be

T1 = 1, T2 =

∣∣∣∣
1 2
−1 1

∣∣∣∣ , T3 =

∣∣∣∣∣∣

1 2 3
−1 1 2
0 −1 1

∣∣∣∣∣∣
, T4 =

∣∣∣∣∣∣∣∣

1 2 3 4
−1 1 2 3
0 −1 1 2
0 0 −1 1

∣∣∣∣∣∣∣∣
.

Proposition 1 yields the result

Tn = 3Tn−1 − Tn−2. (3.5)

Comparing (3.5) with the easily proved result

F2n = 3F2n−2 − F2n−4, (3.6)

and noting T1 = 1 = F2, T2 = 3 = F4, it follows that

Tn = F2n. (3.7)

In equations (3.3) and (3.7), we have two families of determinantal formulas for Fibonacci
numbers. These examples are among the simplest illustrations, but they by no means exhaust
the possibilities.

3.3. Example 3. Set out from an identity valid for each fixed integer k:

Fn+k = LkFn − (−1)kFn−k. (3.8)

Set n = rk and yr = Frk. Then

yr+1 = Lkyr − (−1)kyr−1, (3.9)

so that

y0 = 0, y1 = Fk, a = Lk, b = (−1)k+1. (3.10)

Proposition 1 shows that

Tn = Tn(x = 1, F0, Fk, Lk, (−1)k+1) ∈ S2 (3.11)

obeys

Tn = (Fk + Lk)Tn−1 + (−1)k+1Tn−2

= 2Fk+1Tn−1 + (−1)k+1Tn−2. (3.12)

Here the identity y1 + ax = Fk + Lk = 2Fk+1 has been used. Also

T1 = Fk, T2 = Fk
2 + F2k = Fk(Fk + Lk) = 2FkFk+1. (3.13)

Note also that T0 = 0 is compatible with (3.12) and (3.13).
To evaluate Tn, we note that the equation

s2 − 2Fk+1s + (−1)k = 0 (3.14)

has roots

s± = Fk+1 ±
√

Fk+1
2 − (−1)k

= Fk+1 ±
√

FkFk+2. (3.15)
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Hence (3.12) can be solved subject to the initial conditions T0 = 0; T1 = Fk. The answer
is

Tn = Fk
s+

n − s−n

s+ − s−

= Fk

∑
r=1

r odd

(
n

r

)
(FkFk+2)

(r−1)/2(Fk+1)
n−r. (3.16)

In the last result the power (r− 1)/2 takes on only integer values. It is easy to check for low
enough n, that (3.16) gives expressions consistent with output from direct use of (3.12).

3.4. Example 4. There is nice variant of Example 3 in which k = 2, but the definition of
S1 involves a shift by one of the n-value: S1 = {F−2 = −1, F0 = 0, F2, F4, . . . }. Hence,
yn = F2n−2 obeys

yn = 3yn−1 − yn−2. (3.17)

Proposition 1 now implies that Tn = Tn(1, F−2, F0, 3,−1) ∈ S2 satisfies

Tn = 3Tn−1, n ≥ 3. (3.18)

Also, T1 = F0 = 0, T2 = F2 = 1, T3 = F4 = 3, so that

Tn = 3n−2, n ≥ 2. (3.19)

Explicit formulas for some further low n-values are displayed because the determinants Tn

defined initially can systematically be simplified.

T3 =

∣∣∣∣∣∣

0 F2 F4

−1 0 F2

0 −1 0

∣∣∣∣∣∣
= F4 = 3, T4 =

∣∣∣∣∣∣∣∣

0 F2 F4 F6

−1 0 F2 F4

0 −1 0 F2

0 0 −1 0

∣∣∣∣∣∣∣∣
=

∣∣∣∣
F2 F6

−1 F2

∣∣∣∣ = 9, (3.20)

T5 =

∣∣∣∣∣∣∣∣∣∣

0 F2 F4 F6 F8

−1 0 F2 F4 F6

0 −1 0 F2 F4

0 0 −1 0 F2

0 0 0 −1 0

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

F2 F4 F8

−1 0 F4

0 −1 F2

∣∣∣∣∣∣
= 27. (3.21)

3.5. Example 5. Take yn = Fn, so that

y0 = 0, y1 = 1, a = 1, b = 1. (3.22)

If x = −1
2
,

Tn = T (−1

2
, 0, 1, 1, 1) ∈ S1, (3.23)

obeys

Tn =
1

2
Tn−1 +

1

4
Tn−2 (3.24)

and

T1 = 1, T2 =
1

2
. (3.25)

Setting Tn = Gn/(2n−1) so that

Gn = Gn−1 + Gn−2, G1 = 1, G2 = 1 (3.26)
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yields Gn = Fn and

Tn = Fn/(2
n−1). (3.27)

It is necessary to write (3.27) out in full to study it. Interesting results, illustrated for
n = 2, 4, 6, 8, arise only for even n:

0 = F2 − F1
2. (3.28)

0 = F4 − 2F3F1 − F2
2 + 6F2F1

2 − 4F1
4. (3.29)

0 = F6 − 2F5F1 − 2F4F2 + 6F4F1
2 − F3

2 + 12F3F2F1

−16F3F1
3 + 2F2

3 − 24F2
2F1

2 + 40F2F1
4 − 16F1

6. (3.30)

0 = F8 − 2F7F1 − 2F6F2 + 6F6F1
2 − 2F5F3 + 12F5F2F1

−16F5F1
3 − F4

2 + 12F4F3F1 + 6F4F2
2 − 48F4F2F1

2 + 40F4F1
4

+6F3
2F2 − 24F3

2F1
2 − 48F3F2

2F1 + 160F3F2F1
3 − 96F3F1

5

−4F2
4 + 80F2

3F1
2 − 240F2

2F1
4 + 224F2F1

6 − 64F1
8. (3.31)

The terms seen here are in exact correspondence with the partitions of n in each case, there
being 2, 5, 11, 22 distinct partitions for n = 2, 4, 6, 8. Defining the weight of the product
Fa1Fa2 . . . Fan to be

∑n
i=1 ai, then it is true for each of n = 2, 4, 6, 8, and in general that each

of the results is a linear relation among all the possible products of the Fn of weight n. No
such result emerges for odd n; in fact Fn cancels out of (3.27) for odd n.

It may be checked that putting the well-known values of the Fn into the right sides of
(3.28) etc., does give the answer zero.

3.6. More Examples. The example just treated is just one, perhaps the nicest, of the type
wherein S2 is forced to involve the same sequence of numbers as has already been used to
define S1.

Define S1 by means of yn = Fn+2, so that a = b = 1, y0 = 1, y1 = 2. Then, referring to
Proposition 1, require that x and f satisfy

y1 + xa = 2 + x = f, bx(y0 + x) = x(1 + x) = f 2. (3.32)

This fixes the values x = −4
3
, f = 2

3
, so that Proposition 1 implies that Tn = Tn(x, 1, 2, 1, 1) ∈

S1 satisfies

Tn+2 = fTn+1 + f 2Tn.

Then an obvious change of variable leads to the result

Tn(−4/3, F2, F3, 1, 1) = 3fnFn−2, f =
2

3
. (3.33)

Similarly, defining S1 via yn = Fn, the method just described gives x = −1
2
, f = 1

2
, so

that

Tn(−1/2, F0, F1, 1, 1) = 2fnFn, f = 1/2.

This is just (3.27) again.
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Leaving results for the Jn as a possible exercise, we note also

Tn(−9

5
, L1, L2, 1, 1) =

5

4
fnLn, f =

6

5

Tn(−4

5
, L−1, L0, 1, 1) =

5

9
fnLn+1, f =

6

5

Tn(−25

9
, j1, j2, 1, 2) =

9

8
fnjn−1, f =

20

9

Tn(−8

9
, j−1, j0, 1, 2) =

9

25
fnjn+1, f =

10

9
. (3.34)

3.7. An Example from Cellular Automaton Theory. Define S1 using the Jacobsthal
numbers Jn by means of yn = Jn+1, so that y0 = y1 = 1, a = 1, b = 2. Then for
Tn = Tn(1, 1, 1, 1, 2), n ≥ 1, for low values of n

T1 = 1, T2 = 2 · 2, T3 = 4 · 3, T4 = 8 · 5.
It follows from Proposition 1 that

Tn = 2Tn−1 + 4Tn−2, n ≥ 1. (3.35)

Set Tn = 2n−1Gn. Then (3.35) reduces to

Gn = Gn−1 + Gn−2, n ≥ 1. (3.36)

Hence, Gn = Fn+1, n ≥ 1. This gives a determinantal formula for Fn in terms of Jacobsthal
numbers Jn:

Fn =
4

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣

J2 J3 J4 · · · · · · Jn−1 Jn

−1 J2 J3 · · · · · · Jn−2 Jn−1
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 · · · · · · J2 J3

0 0 0 · · · · · · −1 J2

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.37)

Studies of one-dimensional cellular automata have their origin in the seminal paper [23].
The present paper emerged because results on this subject in [17, 16] can be rearranged to
give the result (3.37). See equations (4) and (7) in [17]. Equation (4) shows that 2NFN+2

is equal to the sum of 2N quantities of the type given by Equation (7). With the natural
variables χn of the cellular automaton context used in (7) related to the Jacobsthal numbers
via χn = Jn+2, the passage from the equations (4) and (7) of [17] to (3.37) can be checked
out. It may also be noted that the numbers Fn, Ln, Jn appear regularly in the results relating
to cellular automata.

4. More General Sequences S1

There is no reason at all for restricting S1 to sequences governed by second order difference
equations.

Consider a sequence S1 for which y0, y1, y2 are given. Then all other yn can be determined
using the difference equation

yn = ayn−1 + byn−2 + cyn−3. (4.1)
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Proposition 2. Tn = Tn(x, y0, y1, y2, a, b, c), defined by the right side of (1.2), satisfies

Tn = (y1 + xa)Tn−1 + x [b(y0 + x) + cy−1] Tn−2 + cx2(y0 + x)Tn−3. (4.2)

This is proved by adapting the method of proof of Proposition 1.

In general the Tn obey a third order difference equation. But it is clearly possible to define
the yn so that the Tn satisfy one of lower order, whenever y0 = −x.

Only one example will be given.
Define the sequence S1 = {1, 0, 1, 1, 0, 1, 1 . . . }, yn+1 = Fn (mod 2). This is governed by

the difference equation yn+3 = yn, and the initial conditions y0, y1, y2 = 1, 0, 1, Proposition 2
indicates that

Tn = Tn(−1, 1, 0, 1, 0, 0, 1) ∈ S2

satisfies Tn = −Tn−2 and Tn = −1, 1, 1,−1, −1, 1, 1,−1, . . . , for n ≥ 2.
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