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Abstract. Ramanujan stated an identity to the effect that if three sequences {an}, {bn}
and {cn} are defined by r1(x) =:

∑∞
n=0 anxn, r2(x) =:

∑∞
n=0 bnxn and r3(x) =:

∑∞
n=0 cnxn

(here each ri(x) is a certain rational function in x), then

a3
n + b3

n − c3
n = (−1)n, for all n ≥ 0.

Motivated by this amazing identity, we state and prove a more general identity involving
eleven sequences, the new identity being “more general” in the sense that equality holds not
just for the power 3 (as in Ramanujan’s identity), but for each power j, 1 ≤ j ≤ 5.

1. Introduction

In the “lost notebook” [7, page 341], Ramanujan records the following remarkable identity.
If the sequences {an}, {bn} and {cn} are defined by

1 + 53x + 9x2

1− 82x− 82x2 + x3
=:

∞∑
n=0

anx
n, (1.1)

2− 26x− 12x2

1− 82x− 82x2 + x3
=:

∞∑
n=0

bnxn,

2 + 8x− 10x2

1− 82x− 82x2 + x3
=:

∞∑
n=0

cnxn,

then
a3

n + b3
n − c3

n = (−1)n, for all n ≥ 0. (1.2)

As Hirschhorn remarks in [5], what is amazing about this identity is not only that it is
true, but that anyone could come up with it in the first place. As well as giving a proof
of the identity, Hirschhorn also gives a plausible explanation of how Ramanujan might have
discovered it. A second proof of the identity was given by Hirschhorn in [6], and a third proof
was given by Hirschhorn and Han in [4], where the authors also prove that the sequences
{an}, {bn} and {cn} may also be derived from a certain matrix equation.

Motivated by this amazing identity of Ramanujan, and Hirschhorn’s explanation of how
Ramanujan might have found it, we present a more general identity in the present paper,
one where the three sequences in (1.2) are replaced by eleven sequences, and the identity
holds not just for a single exponent (3 in the case of (1.2)), but for all integer exponents j,
1 ≤ j ≤ 5.

2. A Ramanujan-Type Identity

The identity referred to is described in the following theorem.
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Theorem 2.1. Let the sequences of integers ak, bk, ck, dk, ek, fk, pk, qk, rk, sk and tk be
defined by

x2 + 164x + 3

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

akx
k,

−5x2 + 138x + 3

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

pkx
k,

−7x2 + 134x + 1

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

bkx
k,

3x2 + 244x + 1

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

qkx
k,

−x2 + 298x− 1

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

ckx
k,

x2 + 254x− 7

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

rkx
k,

−5x2 + 228x− 7

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

dkx
k,

−7x2 + 148x− 5

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

skx
k,

3x2 + 258x− 5

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

ekx
k,

3

1− x
=:

∞∑

k=0

tkx
k,

−3x2 + 94x− 3

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

fkx
k.

Then for 1 ≤ j ≤ 5, and each k ≥ 0,

aj
k + bj

k + cj
k + dj

k + ej
k + f j

k − pj
k − qj

k − rj
k − sj

k − tjk = 1. (2.1)

We note that (2.1) differs from Ramanujan’s identity (1.2), in that (2.1) is true for each
integer exponent j, 1 ≤ j ≤ 5, in contrast to (1.2), which is true only for the fixed exponent
3. For example, one can check that

{a1, b1, c1, d1, e1, f1, p1, q1, r1, s1, t1}
= {−461,−233,−199, 465, 237, 203,−435,−343, 439, 347, 3}

and that

(−461)j + (−233)j + (−199)j + 465j + 237j + 203j

− (−435)j − (−343)j − 439j − 347j − 3j = 1, (2.2)

for 1 ≤ j ≤ 5. Like Ramanujan’s sequences, the terms in our sequences also grow arbitrarily
large (except for tk which has the constant value 3 for all k ≥ 0), while the left side of (2.1)
maintains the constant value 1.

Many readers will no doubt have recognized that what has been encoded in the various
generating functions is a sequence of ideal solutions of size 6 to what has become known as
the Prouhet-Tarry-Escott Problem (Dickson [3] referred to it as the problem of “equal sums
of like powers”). Before coming to the proof of Theorem 2.1, we briefly discuss this problem.

The Prouhet-Tarry-Escott Problem, which has a history going back to Goldbach, asks for
two distinct multisets of integers A = {a1, ..., am} and B = {b1, ..., bm} such that

m∑
i=1

ae
i =

m∑
i=1

be
i , for e = 1, 2, . . . , k, (2.3)
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for some integer k < m. We call m the size of the solution and k the degree. If k = m− 1,
such a solution is called ideal. For example, it is easy to check that

1j + 21j + 36j + 56j = 2j + 18j + 39j + 55j

holds for j = 1, 2 and 3. Thus, A = {1, 21, 36, 56} and B = {2, 18, 39, 55} provide an ideal
solution of size 4.

We write
{a1, ..., am} k

= {b1, ..., bm} (2.4)

to denote a solution of size m and degree k to the Prouhet-Tarry-Escott Problem. As regards
parametric solutions, an early example was given by Euler (see [3, page 705]), who showed
that

{a, b, c, a + b + c} 2
= {a + b, a + c, b + c, 0}.

Parametric ideal solutions are known for m = 1, . . . , 8 and particular numerical solutions
are known for m = 9, 10 and 12. The interested reader may find some of the early history of
this interesting problem in Chapter XXIV of [3], and some of the more recent developments
at [1] and [8].

The following parametric solution of size 6 is due to Chernick [2]. For any integers mk

and nk, if

a′k = −5m2
k + 4mknk − 3n2

k, p′k = −5m2
k + 6mknk + 3n2

k, (2.5)

b′k = −3m2
k + 6mknk + 5n2

k, q′k = −3m2
k − 4mknk − 5n2

k,

c′k = −m2
k − 10mknk − n2

k, r′k = −m2
k + 10mknk − n2

k,

d′k = 5m2
k − 4mknk + 3n2

k, s′k = 5m2
k − 6mknk − 3n2

k,

e′k = 3m2
k − 6mknk − 5n2

k, t′k = 3m2
k + 4mknk + 5n2

k,

f ′k = m2
k + 10mknk + n2

k, u′k = m2
k − 10mknk + n2

k.

then
{a′, b′, c′, d′, e′, f ′} 5

= {p′, q′, r′, s′, t′, u′}. (2.6)

The observant reader will have noticed that the twelve terms actually form 6 pairs, each
of the three pairs on each side of (2.6) consisting of a term and its negative (d′k = −a′k and
so on), so that (2.6) is trivially true for odd powers. To make our generating functions and
sequences at least superficially more interesting, we will modify these sequences using the
easily-proved fact that if

{a1, ..., am} k
= {b1, ..., bm},

then
{Ma1 + K, ..., Mam + K} k

= {Mb1 + K, ...,Mbm + K},
for constants M and K.

In the present case, we will determine particular sequences {mk}∞k=0 and {nk}∞k=0, with the
sequences a′k . . . u′k being defined by (2.5). We then set ak = a′k + 2u′k, bk = b′k + 2u′k and so
on. In particular, rk = r′k + 2u′k = −u′k + 2u′k = u′k. We will further show that u′k = rk = 1,
so that

{ak, bk, ck, dk, ek, fk} 5
= {pk, qk, 1, sk, tk, uk}

will hold automatically for each integer k ≥ 0, which gives (2.1), after a slight manipulation.
All that will remain will be to show that each of the generating functions has the stated

form. We now proceed to the proof.
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Proof of Theorem 2.1. Set h0 = 0, h1 = 1, and for k > 1, set

hk = 10hk−1 − hk−2. (2.7)

Upon solving the characteristic equation x2 − 10x + 1 = 0 and applying the stated initial
conditions, we find that

hk = −
(
5− 2

√
6
)k

4
√

6
+

(
5 + 2

√
6
)k

4
√

6
,

h2
k =

−2 +
(
49− 20

√
6
)k

+
(
49 + 20

√
6
)k

96
,

hk+1hk =
−10 +

(
5− 2

√
6
) (

49− 20
√

6
)k

+
(
5 + 2

√
6
) (

49 + 20
√

6
)k

96
.

In (2.5), we set mk = hk+1 and nk = hk, noting that (2.7) implies that

h2
k+1 − 10hk+1hk + h2

k = h2
k − 10hkhk−1 + h2

k−1 = · · · = h2
1 − 10h1h0 + h2

0 = 1,

so that rk = u′k = 1. Thus all that remains is to show, with these choices for mk and nk,
that the various generating functions have the stated forms. We do this for

∑∞
k=0 akx

k only,
since the proofs for the other generating functions are virtually identical.

Define

H1(x) :=
∞∑

k=0

h2
kx

k =
∞∑

k=0

−2 +
(
49− 20

√
6
)k

+
(
49 + 20

√
6
)k

96
xk

=
1

96

(
−2

1− x
+

1

1− (
49− 20

√
6
)
x

+
1

1− (
49 + 20

√
6
)
x

)

=
−x(x + 1)

x3 − 99x2 + 99x− 1
,

H2(x) :=
∞∑

k=0

hk+1hkx
k

=
1

96

(
−10

1− x
+

5− 2
√

6

1− (
49− 20

√
6
)
x

+
5 + 2

√
6

1− (
49 + 20

√
6
)
x

)

=
−10x

x3 − 99x2 + 99x− 1
,

H3(x) :=
∞∑

k=0

h2
k+1x

k

=
H1(x)

x
=

−x− 1

x3 − 99x2 + 99x− 1
.

These formulas for H1(x), H2(x) and H3(x) follow after using the summation formula for
an infinite geometric series a number of times, and then using a little algebra to combine the
resulting rational expressions.

Next,
ak = a′k + 2u′k = −5h2

k+1 + 4hk+1hk − 3h2
k + 2,
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so that
∞∑

k=0

akx
k =

∞∑

k=0

(−5h2
k+1 + 4hk+1hk − 3h2

k + 2)xk

= −5H3(x) + 4H2(x)− 3H1(x) +
2

1− x

=
x2 + 164x + 3

x3 − 99x2 + 99x− 1
,

as claimed in Theorem 2.1. The claimed formulas for the other generating functions follow
similarly, giving the result. ¤
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