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Abstract. Let Ri = R(A,B, R0, R1) be a second order linear recurrence sequence. In
the present paper we prove that any sequence Ri = R(A,B, 0, R1) with D = A2 + 4B >
0, (A,B) 6= (0, 1) is not a balancing sequence.

1. Introduction

In 1999, A. Behera and G. K. Panda [3] defined the notion of balancing numbers. A
positive integer n is called a balancing number if

1 + 2 + · · ·+ (n− 1) = (n + 1) + (n + 2) + · · ·+ (n + k)

for some k ∈ N. Then k is called the balancer of n. It is easy to see that 6, 35, and 204 are
balancing numbers with balancers 2, 14, and 84, respectively. In [3] the authors proved that
balancing numbers fulfill the following recurrence relation

Bn+1 = 6Bn −Bn−1 (n > 1),

where B0 = 1 and B1 = 6. In [5], R. Finkelstein studied “The house problem” and introduced
the notion of first-power numerical center which coincides with the notion of balancing
numbers except for the number 1 which is a first-power numerical center but not a balancing
number.

In [8], the authors defined the notion of (k, l)-power numerical center or (k, l)-balancing
number. More precisely let y, k, l be fixed positive integers with y > 1. We call the positive
integer x, (x ≤ y), a (k, l)-power numerical center or (k, l)-balancing number for y if

1k + 2k + · · ·+ (x− 1)k = (x + 1)l + · · ·+ (y − 1)l.

In [5], R. Finkelstein proved that there are no second-power numerical centers (in this case
k = l = 2). Later on R. Steiner [13], proved that there are no third-power numerical centers
(in this case k = l = 3). (Here we mention that R. Finkelstein and R. Steiner is the same
person.) In the case k = 4 and k = 5 he conjectured a negative answer. Later on P. Ingram
in [6] using the explicit lower bounds on linear forms in elliptic logarithms, proved that there
are no nontrivial fifth-power numerical centers. In the same paper he proved that there are
only finitely many nth power numerical centers.

K. Liptai, F. Luca, Á. Pintér, and L. Szalay [8] obtained certain effective and ineffective
finiteness theorems for (k, l) numerical centers. Their results are based on Baker’s theory
and a result of Cs. Rakaczki [11], respectively. Furthermore, they proved that there exists
no (k, l) numerical center with l > k.
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In [7], K. Liptai searched for those balancing numbers which are Fibonacci numbers, too.
Using the results of A. Baker and G. Wüstholz [2] he proved that there are no Fibonacci
balancing numbers. Using another method L. Szalay [14] proved that there are no Lucas
balancing numbers.

Later G. K. Panda and P. K. Ray [9] slightly modified the definition of a balancing
number and introduced the notion of a cobalancing number. A positive integer n is called a
cobalancing number if

1 + 2 + · · ·+ (n− 1) + n = (n + 1) + (n + 2) + · · ·+ (n + K)

for some K ∈ N. In this case K is called the cobalancer of n.
They also proved that the cobalancing numbers fulfill the following recurrence relation

bn+1 = 6bn − bn−1 + 2 (n > 1),

where b0 = 1 and b1 = 6. Moreover they found that every balancer is a cobalancing number
and every cobalancer is a balancing number.

In [10], G. K. Panda gave another possible generalization of balancing numbers. Let
{am}∞m=0 be a sequence of real numbers. We call an element an of this sequence a sequence-
balancing number if

a1 + a2 + · · ·+ an−1 = an+1 + an+2 + · · ·+ an+k

for some k ∈ N. Similarly, one can define the notion of sequence cobalancing numbers. In
[10] it was proved that there does not exist any sequence balancing number in the Fibonacci
sequence. The sequence R = {Ri}∞i=0 = R(A,B, R0, R1) is called a second order linear
recurrence sequence if the recurrence relation

Ri = ARi−1 + BRi−2 (i ≥ 2)

holds, where A,B 6= 0, R0, R1 are fixed rational integers and |R0|+ |R1| > 0. The polynomial
f(x) = x2−Ax−B is called the companion polynomial of the sequence R = R(A,B, R0, R1).
Let D = A2 + 4B be the discriminant of f . The roots of the companion polynomial will be
denoted by α and β. Using this notation if D 6= 0, as it is well-known, we may write

Ri =
aαi − bβi

α− β

for i ≥ 2, where a = R1 −R0β and b = R1 −R0α.
As a generalization of the notion of a balancing number, we will call a binary recurrence

Ri = R(A, B, R0, R1) a balancing sequence if

R1 + R2 + · · ·+ Rn−1 = Rn+1 + Rn+2 + · · ·+ Rn+k (1)

holds for some k ≥ 1 and n ≥ 2.
In the present paper we prove that any sequence Ri = R(A,B, 0, R1) with D = A2 +4B >

0, (A,B) 6= (0, 1) is not a balancing sequence.

2. Results

Theorem 1. There is no balancing sequence of the form Ri = R(A,B, 0, R1) with D =
A2 + 4B > 0 except for (A,B) = (0, 1) in which case (1) has infinitely many solutions
(n, k) = (n, n− 1) and (n, k) = (n, n) for n ≥ 2.
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As a consequence of Theorem 1 above, we consider the question of Lucas-sequences. As
it is well-known, a sequence

Ri = R(A,B, 0, 1) =
αi − βi

α− β

is called a Lucas-sequence, if α
β

is not a root of unity and gcd(A,B) = 1.

Corollary 1. Let Ri = R(A,B, 0, 1) be a Lucas-sequence with A2 + 4B > 0. Then Ri is not
a balancing sequence.

3. Auxiliary Results

Lemma 1. Let n ≥ 2 and k ≥ 1 be integers and consider the function F : R \ {1} → R,

F (x) =
xn+k+1 − xn+1 − xn + x

x− 1
.

Then F is strictly increasing on the interval (−∞,−1] if n + k is odd and F is strictly
decreasing on the interval (−∞,−1] if n + k is even.

Proof. The derivative F ′ of F is

F ′(x) =
(n + k)xn+k+1 − (n + k + 1)xn+k − nxn+1 + 2xn + nxn−1 − 1

(x− 1)2
.

We may suppose that x ≤ −1. Hence we have x = −|x|. Therefore F ′(x) can be rewritten
in the form

F ′(x) =
|x|n+kg(x)− |x|n+1h(x)

(x− 1)2
,

where

g(x) = (−1)n+k(−n−k−1−(n+k)|x|) and h(x) = n(−1)n+1− 2(−1)n

|x| − n(−1)n−1

|x|2 +
1

|x|n+1
.

(2)
Now, if n + k is odd, then since |x| ≥ 1 and since n + 1 and n− 1 have the same parity, by
(2) one gets

g(x) ≥ 2n + 2k + 1 and h(x) < n + 2 + 1 = n + 3.

Hence,

F ′(x) >
(n + 2k − 2)|x|n+1

(x− 1)2
,

so for k ≥ 1 and n ≥ 2 this leads to F ′(x) > 0 for x ≤ −1 and the lemma follows.
Finally, if n + k is even and |x| ≥ 1 we have

g(x) ≤ −2n− 2k − 1 and h(x) > −n− 2 + 1 = −n− 1,

so for k ≥ 1 we get

F ′(x) <
(−n− 2k)|x|n+1

(x− 1)2
.

Since n ≥ 2 and k ≥ 1 one observes that F ′(x) < 0 holds for x ≤ −1, so the lemma
follows. ¤
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4. Proof of Theorem 1

Consider the sequence Ri = R(A,B, 0, R1) with R1 6= 0, companion polynomial f(x) =
x2 − Ax − B, and positive discriminant D = A2 + 4B > 0. Since R(A, B, 0, R1) = R1 ·
R(A, B, 0, 1) one can observe that R(A,B, 0, R1) is a balancing sequence (i.e (1) holds) if
and only if R(A,B, 0, 1) is a balancing sequence. Thus we may assume that R1 = 1 that is,
in what follows we may deal without loss of generality with the sequence Ri = R(A,B, 0, 1).

We distinguish several subcases according to A = 0 or to the signs of A and B, respectively.

Case 1: A = 0.

Since 0 < D = A2 + 4B it follows that B > 0. The roots of the companion polynomial
f(x) = x2 −B are α =

√
B and β = −α = −√B. Thus we have the sequence

Ri =

√
B

i − (−√B)i

2
√

B
, i ≥ 0.

Now, if B = 1 then Ri is of the form

Ri =
1i − (−1)i

2
, i ≥ 0

which is obviously a balancing sequence. Further, the resulting equation (1) in this case has
infinitely many solutions (n, k), namely (n, k) = (n, n− 1) and (n, n) for n ≥ 2.

If B > 1 then for i ≥ 0 we have

Ri =

{
0, if i is even,

B
i−1
2 , if i is odd.

Suppose that (1) holds with n ≥ 2 odd. Since in this case Rn−1 = Rn+1 = 0 and the left

hand side of (1) is B
n−1

2 −1
B−1

, we may obviously assume that k ≥ 2. Now, for the right hand
side of (1) we have

Rn+1 + Rn+2 + · · ·+ Rn+k ≥ Rn+2 = B
n+1

2 .

But this leads to a contradiction in view of (1), B > 1, n ≥ 2 and

B
n−1

2 − 1

B − 1
< B

n+1
2 .

Finally, if equation (1) holds with n ≥ 2 even then Rn−1 = B
n−2

2 and Rn+1 = B
n
2 . Hence

the left hand side of (1) is B
n
2 −1

B−1
while for the right hand side we have the lower bound B

n
2 .

This is impossible by (1), B > 1, n ≥ 2 and

B
n
2 − 1

B − 1
< B

n
2 .

Hence, in this case there is no balancing sequence apart from B = 1.
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Case 2: A > 0.

Let α and β be the roots of the companion polynomial f(x) = x2 − Ax− B. One observes
that f has a dominant root which we will denote by α. (Note that α is a dominant root of
f if |α| > |β| ). In this case we have

α =
A +

√
A2 + 4B

2
, β =

A−√A2 + 4B

2
.

Since A ≥ 1 and D = A2+4B > 0 we obviously have α > 1. Further, since Ri = αi−βi

α−β
(i ≥ 0)

and |β| < α we get that Ri > 0 for i ≥ 1. Suppose that (1) holds for some n ≥ 2 and k ≥ 1.
We derive an upper bound for the left hand side of (1). Since

Ri =
αi − βi

α− β
<

2αi

α− β
,

we get

R1 + R2 + · · ·+ Rn−1 <
2

α− β

n−1∑
i=1

αi =

(
2α

α− β

)(
αn−1 − 1

α− 1

)
. (3)

Further, since Ri > 0 for all i ≥ 1 we get for the right hand side of (1) the lower bound

Rn+1 + Rn+2 + · · ·+ Rn+k ≥ αn+1 − βn+1

α− β
.

Suppose first that βn+1 < 0. Then

Rn+1 + Rn+2 + · · ·+ Rn+k >
αn+1

α− β
. (4)

Further, we see that βn+1 < 0 holds if and only if β < 0 (and n + 1 odd). Hence, we may
assume that B > 0. Now, by (1), (3), and (4) we obtain

αn+1

α− β
<

(
2α

α− β

) (
αn−1 − 1

α− 1

)
,

which leads to

α2 − α− 2 < − 2

αn−1
. (5)

Thus (5) implies that α = A+
√

A2+4B
2

< 2 and since A > 0 and B > 0 this can occur only if
A = B = 1. In this case the resulting sequence is the Fibonacci sequence and for it

R1 + · · ·+ Rn−1 = F1 + · · ·+ Fn = Fn+1 − 1 < Fn+1 = Rn+1. (6)

Thus (6) shows that there is no balancing sequence if βn+1 < 0.
Suppose now that βn+1 > 0 and assume that (1) holds for some n ≥ 2 and k ≥ 1. In this

case the upper bound (3) for the left-hand side of (1) remains valid. Since α > |β| for Rn+1

we get the following lower bound

Rn+1 =
αn+1 − βn+1

α− β
=

αn+1 − |β|n+1

α− β
=

(α− |β|)(αn + · · ·+ |β|n)

α− β
>

∆αn

α− β
, (7)

where ∆ = α− |β| = √
A2 + 4B. Hence, using (1), (3), and (7) we get

∆αn

α− β
<

(
2α

α− β

)(
αn−1 − 1

α− 1

)
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which leads to

∆αn+1 − (∆ + 2)αn < −2α. (8)

But (8) is a contradiction if α ≥ ∆+2
∆

= 1 + 2
∆

. Finally, if α < 1 + 2
∆

then since ∆ ≥ 1

we get that α < 3. Thus, those values of the pair (A,B) for which α = A+
√

A2+4B
2

< 3 and
A2 + 4B > 0 are the following

(A,B) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (3,−2), (3,−1)}.
Now, if (A,B) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (3,−1)} we see that ∆ ≥ √

5
and hence

α < 1 +
2√
5
, (9)

which implies that the only value of α = A+
√

A2+4B
2

for which (9) holds is A = B = 1, i.e.

α = 1+
√

5
2

. But in this case the resulting sequence is again the Fibonacci sequence for which
we have already checked that (1) cannot hold.

Finally, if (A,B) = (3,−2) the resulting sequence is Ri = 2i − 1 for i ≥ 0. Assume that
(1) holds for this sequence. One can easily see that the left hand side of (1) in this case is
2n−n− 1. Further, for the right hand side of (1) we have the lower bound Rn+1 = 2n+1− 1.
But for n ≥ 2

2n+1 − 1 > 2n − n− 1

which shows that the sequence Ri = 2i − 1 cannot be a balancing sequence. So there is no
balancing sequence with A > 0 and D = A2 + 4B > 0.

Case 3: A < 0 and B < 0.

We work as in the previous case. Let α denote the dominant root of the companion
polynomial f(x) = x2 − Ax−B. Since A < 0 and A2 + 4B > 0 we have

α =
A−√A2 + 4B

2
and β =

A +
√

A2 + 4B

2
.

Since −B = αβ we see that β < 0. Now, if Ri is a balancing sequence then by (1) and

Ri = αi−βi

α−β
we get

αn+k+1 − αn+1 − αn + α

α− 1
=

βn+k+1 − βn+1 − βn + β

β − 1
, (10)

where n ≥ 2 and k ≥ 1. Thus from (10) we have

F (α) = F (β), (11)

where F is the function defined in Section 3. Now, if β ≤ −1 then by α < β we get by
Lemma 1 that F (α) < F (β) if n + k is odd and F (α) > F (β) if n + k is even. But this
contradicts (11). Hence, we may assume that −1 < β < 0 and we may suppose without loss

of generality that α ≤ α0 = −3−√5
2

. By k ≥ 1, n ≥ 2, and |α| ≥ |α0| we have

|1− 1/αk − 1/αk+1 + 1/αn+k| > 0.4. (12)

Since −1 < β < 0 we have |β| < 1 and |β − 1| > 1. Hence we get by (10), (11), and (12)

0.4|α|n+k+1

|α|+ 1
< |F (α)| = |F (β)| < 4

|β − 1| < 4. (13)
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But (13) is a contradiction in view of n ≥ 2, k ≥ 1, and |α| ≥ |α0| = 3+
√

5
2

. Hence there are
no balancing sequences with A < 0, B < 0 and A2 + 4B > 0.

Case 4: A < 0 and B > 0.

Let us now consider the sequence Ri = R(A,B, 0, 1) with A < 0 and B > 0. We also con-
sider the corresponding sequence Qi := R(|A|, B, 0, 1). We clearly have Ri = (−1)i−1Qi (i ≥
1) and thus |Ri| = |Qi| = Qi. Further, by induction on i it is easily seen that

Q1 + Q2 + · · ·+ Qi−1 < Qi+1 for i = 2, 3, . . . . (14)

First we suppose A ≤ −2. Now the absolute value of the left hand side of (1) is

|R1 + · · ·+ Rn−1| ≤ Q1 + · · ·+ Qn−1. (15)

Further, by Qi+1 = |A|Qi +BQi−1 ≥ 2Qi we have Qi+1−Qi ≥ Qi for i ∈ N and the absolute
value of the right hand side of (1) is

|Rn+1 + · · ·+ Rn+k| = |Qn+1 −Qn+2 + · · ·+ (−1)k−1Qn+k|
and this is one of the following:

Qn+1, Qn+2 −Qn+1 ≥ Qn+1, Qn+3 −Qn+2 + Qn+1 ≥ Qn+1, . . . .

This together with (14) and (15) concludes the proof of Case 4 if A ≤ −2.
Finally, if A = −1 then Qi+1 −Qi = BQi−1 for i ∈ N. Now the absolute value of the left

hand side of (1) is

|R1 + · · ·+ Rn−1| = |Qn−1 −Qn−2 + Qn−3 −Qn−4 + · · · |
≤ (Qn−1 −Qn−2) + (Qn−3 −Qn−4) + · · ·
≤ B (Qn−3 + Qn−2 + · · ·+ Q1) < BQn−1.

(16)

On the other hand, the right hand side of (1) is again one of the following:

Qn+1 > BQn−1, Qn+2 −Qn+1 > BQn−1, Qn+3 −Qn+2 + Qn+1 > BQn−1, . . . .

This together with (14) and (16) concludes the proof of our Theorem 1.
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[8] K. Liptai, F. Luca, Á. Pintér, L. Szalay, Generalized balancing numbers, Indagationes Math. N. S. 20

(2009), 87–100.

MAY 2010 127



THE FIBONACCI QUARTERLY

[9] G. K. Panda and G. P. Ray, Cobalancing numbers and cobalancers, Int. J. Math. Math. Sci., 8 (2005),
1189–1200.

[10] G. K. Panda, Sequence balancing and cobalancing numbers, The Fibonacci Quarterly, 45.3 (2007),
265–271.

[11] Cs. Rakaczki, On the Diophantine equation Sm(x) = g(y), Publ. Math. Debrecen, 65 (2004), 439–460.
[12] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, (1986).
[13] R. Steiner, On kth-power numerical centers, The Fibonacci Quarterly, 16.5 (1978), 470–471.
[14] L. Szalay, On the resolution of simultaneous Pell equations, Annales Mathematicae et Informaticae, 34

(2007), 77–87.

MSC2010: 11B37, 11B39, 11D99

Institute of Mathematics, University of Debrecen, Number Theory Research Group, Hun-
garian Academy of Sciences and University of Debrecen, H-4010 Debrecen, PO Box 12,
Hungary

E-mail address: berczesa@math.klte.hu
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