
LUCAS (a1, a2, . . . , ak = ±1) PSEUDOPRIMES

LAWRENCE SOMER AND CURTIS COOPER

Abstract. Cooper and Somer define a Lucas (a1, a2, . . . , ak = ±1) sequence {Gn} for all
integers n as

Gn = xn
1 + xn

2 + · · ·+ xn
k ,

where x1, x2, . . . , xk are roots of the equation

xk = a1x
k−1 + a2x

k−2 + · · ·+ ak

with integer coefficients. Then they define Lucas (a1, a2, . . . , ak = ±1) pseudoprimes to be
composite n such that

Gn ≡ G1 (mod n) and G−n ≡ G−1 (mod n).

Adams and Shanks and Szekeres had previously used negative indices in describing higher-
order pseudoprimes. In this paper, we will relate pseudoprimes occurring in different Lucas
(a1, a2, . . . , ak = ±1) sequences. And we will provide substantial numerical tables giving
Lucas (a1, a2, . . . , ak = ±1) pseudoprimes for many different Lucas (a1, a2, . . . , ak = ±1)
sequences.

1. Introduction

The concept of a pseudoprime with respect to a polynomial has been studied in the
mathematical literature by Adams and Shanks [1], Gurak [6], Szekeres [9], Atkin [2], and
Grantham [4]. We note that the Frobenius pseudoprimes of Grantham [4] generalize the
higher-order pseudoprimes of both Gurak and Szekeres. The higher-order pseudoprime test
of Atkin [2] shows some similarities to the Frobenius pseudoprime test of Grantham.

Cooper and Somer [3] define a Lucas (a1, a2, . . . , ak = ±1) sequence as follows.

Definition 1.1. A Lucas (a1, a2, . . . , ak = ±1) sequence {Gn} is defined for all integers n
as

Gn = xn
1 + xn

2 + · · ·+ xn
k ,

where x1, x2, . . . , xk are roots of the equation

xk = a1x
k−1 + a2x

k−2 + · · ·+ ak

with integer coefficients. Associated with the Lucas (a1, a2, . . . , ak = ±1) sequence {Gn} is
the characteristic polynomial

f(x) = xk − a1x
k−1 − a2x

k−2 − · · · − ak−1x− ak

with characteristic roots x1, x2, . . . , xk.

They then proved that for prime p,

Gp ≡ G1 (mod p) and G−p ≡ G−1 (mod p).

Motivated by this result, they define a Lucas (a1, a2, . . . , ak = ±1) pseudoprime as follows.
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Definition 1.2. Let {Gn} be a Lucas (a1, a2, . . . , ak = ±1) sequence. A composite n such
that

Gn ≡ G1 (mod n) and G−n ≡ G−1 (mod n)

is called a Lucas (a1, a2, . . . , ak = ±1) pseudoprime.

Adams and Shanks [1] in referring to third-order pseudoprimes and Szekeres [9] in re-
ferring to general higher-order pseudoprimes, both used positive and negative indices in
defining higher-order pseudoprimes. In addition, Adams and Shanks and Szekeres even used
additional constraints in addition to using both positive and negative indices. Adams and
Shanks used the third-order sequence A(n) and they used the signature for the 6 terms
A(−n − 1), A(−n), A(−n + 1), A(n − 1), A(n), and A(n + 1) to test the pseudoprime n.
There are three types of signatures, the S signature, the Q signature, and the I signature.
For all three signatures, Adams and Shanks have A(n) ≡ A(1) (mod n) and A(−n) ≡ A(−1)
(mod n).

In this paper we will relate pseudoprimes occurring in different Lucas (a1, a2, . . ., ak = ±1)
sequences. And we will provide substantial numerical tables giving Lucas (a1, a2, . . . , ak =
±1) pseudoprimes for many different Lucas (a1, a2, . . . , ak = ±1) sequences.

2. Second Order Lucas Pseudoprimes

We begin with a lemma concerning second-order Lucas sequences.

Lemma 2.1. Consider the Lucas (a1, a2 = ±1) sequence. If a2 = −1, then each positive
composite integer M satisfying

GM ≡ G1 (mod M) (2.1)

also satisfies

G−M ≡ G−1 (mod M). (2.2)

If a2 = 1, then each positive odd composite integer M satisfying (2.1) also satisfies (2.2).

Proof. Let x1 and x2 be the characteristic roots of the Lucas (a1, a2) sequence. Then for
n ≥ 0,

G−n = x−n
1 + x−n

2 = (xn
1 + xn

2 )/(x1x2)
n

= (xn
1 + xn

2 )/(−a2)
n = (−a2)

nGn.

The result now follows. ¤

Traditional Lucas (a1, 1) pseudoprimes are essentially Lucas (a1, 1) pseudoprimes. How-
ever, a traditional Lucas (a1, 1) pseudoprime only requires that n is composite and Gn ≡ G1

(mod n). Therefore, every Lucas (a1, 1) pseudoprime is a traditional Lucas (a1, 1) pseudo-
prime. But these pseudoprimes are different. For example, 8 is a traditional Lucas (2, 1)
pseudoprime since G8 = 1154, G1 = 2, and 1154 ≡ 2 (mod 8). However, 8 is not a Lucas
(2, 1) pseudoprime with the above definition since G−8 = 1154, G−1 = −2, and 1154 6≡ −2
(mod 8). A similar argument can be made for any 2k, where k ≥ 3.

The next theorem will give some elementary results about second order Lucas pseudo-
primes.
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Theorem 2.2. Every traditional Lucas (a1,−1) pseudoprime is a Lucas (a1,−1) pseudo-
prime. Every odd traditional Lucas (a1, 1) pseudoprime is a Lucas (a1, 1) pseudoprime. If
a1 ≡ 2 (mod 4), then 4 is a Lucas (a1,±1) pseudoprime. There are only a finite number of
even Lucas (a1, 1) pseudoprimes.

Proof. Let {Gn} be a Lucas (a1,±1) sequence. It now follows from Lemma 2.1 that ev-
ery traditional Lucas (a1,−1) pseudoprime is a Lucas (a1,−1) pseudoprime and every odd
traditional Lucas (a1, 1) pseudoprime is a Lucas (a1, 1) pseudoprime.

Next let a1 ≡ 2 (mod 4) and let a2 = ±1. Since G1 = a1, G−1 = −a2a1, and G4 = G−4 =
a4

1 + 4a2a
2
1 + 2, it follows that 4 is a Lucas (a1,±1) pseudoprime.

Finally, let n be a Lucas (a1, 1) pseudoprime. First suppose that a1 = 0. Then Gi = 0
if i is odd and Gi = 2 if i is even. It follows that there is no even traditional Lucas
(a1, 1) pseudoprime, let alone an even Lucas (a1, 1) pseudoprime. Now assume that a1 6= 0.
Since n is an even Lucas (a1, 1) pseudoprime, n is composite, Gn ≡ G1 ≡ a1 (mod n), and
G−n ≡ G−1 ≡ −a1 (mod n). And since n is even, we see from the proof of Lemma 2.1 that
Gn = G−n. Therefore, 2a1 ≡ 0 (mod n) or n|2a1. Hence, there are only a finite number of
even Lucas (a1, 1) pseudoprimes. ¤

3. Higher Order Lucas Pseudoprimes

The next theorem will give necessary and sufficient conditions for finding certain higher
order Lucas pseudoprimes.

Theorem 3.1. Consider the Lucas (0, . . . , 0, ak, 0, . . . , 0, a2k = ±1) sequence, where k ≥ 2
and ak 6= 0. The Lucas (0, . . . , 0, ak, 0, . . . , 0, a2k = ±1) pseudoprimes are precisely the
composite natural numbers relatively prime to k and the composite natural numbers km for
which m | Gm(ak, a2k).

Proof. It follows from the Newton formulas, the recursion relation defining the Lucas (0, . . . , 0,
ak, 0, . . . , 0, a2k = ±1) sequence, and by induction that

Gn = G−n = 0 if n ≥ 0 and n 6≡ 0 (mod k), (3.1)

G0 = 2k, (3.2)

Gk = kak, (3.3)

G(i+2)k = akG(i+1)k + a2kGik for i ≥ 0, (3.4)

and

G−ik = (−a2k)
iGik for i ≥ 0. (3.5)

In particular, we see by (3.1) that G1 = G−1 = 0.
Consider the second-order Lucas sequence {Gn(ak, a2k)}. Then G0(ak, a2k) = 2 and

G1(ak, a2k) = ak. Note that

G0(0, . . . , 0, ak, 0, . . . , 0, a2k) = kG0(ak, a2k) and

Gk(0, 0, . . . , 0, ak, 0, 0, . . . , 0, a2k) = kG1(ak, a2k).

It now follows from (3.4) and the second-order recursion relation defining {Gn(ak, a2k)} that

Gik(0, . . . , 0, ak, 0, . . . , 0, a2k) = k ·Gi(ak, a2k)

for i ≥ 0. The assertions concerning the Lucas (0, . . . , 0, ak, 0, . . . , 0, a2k = ±1) pseudoprimes
now follow from (3.1)-(3.5). ¤
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The paper by Somer [8] gives comprehensive criteria for determining when n|Gn(a1, 1),
which relates to Theorem 3.1.

We now present an observation that gives further insight on the Lucas (0, . . . , 0, ak,
0, . . . , 0, a2k = ±1) sequence, where k ≥ 2, and provides intuition on why Theorem 3.1
is true. Let

f(x) = x2k − akx
k − a2k

be the characteristic polynomial of the Lucas (0, . . . , 0, ak, 0, . . . , 0, a2k = ±1) sequence. Let
x1, . . . , x2k be the characteristic roots of f(x). Let y1 and y2 be the characteristic roots of
the Lucas (ak, a2k) sequence with characteristic polynomial

g(x) = x2 − akx− a2k.

Then xk
1, . . . , x

k
2k satisfy the characteristic polynomial g(x) = x2 − akx− a2k. In particular,

one can order the characteristic roots x1, . . . , x2k so that each of xk
1, . . . , x

k
k is equal to y1,

and each of xk
k+1, . . . , x

k
2k is equal to y2.

Example 3.1. Consider the 2kth-order Lucas sequence (0, 0, 2, 0, 0, 1) where k = 3. We
show that 198 | G198(2, 1). It will then follow from Theorem 3.1 that 3 · 198 = 594 is a Lucas
(0, 0, 2, 0, 0, 1) pseudoprime. It is well-known that if m|n and n/m is odd, then

Gm(a1, 1) | Gn(a1, 1).

Note that 198 = 6 · 33. Thus,

G6(2, 1) = 198 | G198(2, 1),

as desired. We also see by Theorem 3.1 that the composite numbers 4, 8, 10, 14, 16, 20, 22,
25, 26, 28, 32, 34, 35, 38, 40, 44, 46, 49, and 50 are also Lucas (0, 0, 2, 0, 0, 1) pseudoprimes,
since they are all relatively prime to k = 3.

The next theorem is an important one to help us relate Lucas pseudoprimes of different
sequences.

Theorem 3.2. Consider the Lucas (a1, a2, . . . , ak = ±1) sequence with characteristic poly-
nomial f(x) and the Lucas (b1, b2, . . . , br = ±1) sequence with characteristic polynomial g(x).
Suppose that g(x) | f(x). Suppose further that

f(x) = g(x)g1(x)g2(x) · · · gj(x),

where g1(x), g2(x), . . . , gj(x) are cyclotomic polynomials, not necessarily distinct, of orders
m1, m2, . . . ,mj, respectively. Let m = lcm(m1,m2, . . . , mj). Then the set of Lucas (b1, b2, . . . , br)
pseudoprimes relatively prime to m is equal to the set of Lucas (a1, a2, . . . , ak) pseudoprimes
relatively prime to m.

Proof. Let M be a Lucas (b1, b2, . . . , br) pseudoprime relatively prime to m. We show that M
is also a Lucas (a1, a2, . . . , ak) pseudoprimes relatively prime to m. Let x1, x2, . . . , xr be the
characteristic roots of g(x). Then by the definition of a Lucas (b1, b2, . . . , br) pseudoprime,

GM(b1, b2, . . . , br) = xM
1 + xM

2 + · · ·+ xM
r ≡ G1(b1, b2, . . . , br) (3.6)

= x1 + x2 + · · ·+ xr (mod M)

and

G−M(b1, b2, . . . , br) = x−M
1 + x−M

2 + · · ·+ x−M
r ≡ G−1(b1, b2, . . . , br) (3.7)

= x−1
1 + x−1

2 + · · ·+ x−1
r (mod M).
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Let the characteristic roots of gi(x), 1 ≤ i ≤ j, be ζ1,i, ζ2,i, . . . , ζφ(mi),i, where φ is Euler’s
totient function and ζ1,i, ζ2,i, . . . , ζφ(mi),i consist of all the distinct primitive (mi)th roots of
unity. Since M is relatively prime to mi, it follows that

ζM
1,i + ζM

2,i + · · ·+ ζM
φ(mi),i

= ζ−M
1,i + ζ−M

2,i + · · ·+ ζ−M
φ(mi),i

(3.8)

= ζ1,i + ζ2,i + · · ·+ ζφ(mi),i = ζ−1
1,i + ζ−1

2,i + · · ·+ ζ−1
φ(mi),i

.

Let x1, x2, . . . , xr, xr+1, . . . , xk be the characteristic roots of f(x). It follows from (3.6)-(3.8)
that

GM(a1, a2, . . . , ak) = xM
1 + xM

2 + · · ·+ xM
r + xM

r+1 + · · ·+ xM
k (3.9)

≡ x1 + x2 + · · ·+ xr + xr+1 + · · ·+ xk = G1(a1, a2, . . . , ak) (mod M),

and

G−M(a1, a2, . . . , ak) = x−M
1 + x−M

2 + · · ·+ x−M
r + x−M

r+1 + · · ·+ x−M
k (3.10)

≡ x−1
1 + x−1

2 + · · ·+ x−1
r + x−1

r+1 + · · ·+ x−1
k = G−1(a1, a2, . . . , ak) (mod M).

Hence, M is a Lucas (a1, . . . , ak = ±1) pseudoprime relatively prime to m.
Now let N be a Lucas (a1, a2, . . . , ak = ±1) pseudoprime relatively prime to m. Note that

h(x) = f(x)/g(x) = g1(x)g2(x) · · · gj(x) = xk−r − c1x
k−r−1 − · · · − ck−r−1x− ck−r

is a monic polynomial with integer coefficients which has characteristic roots xr+1, xr+2, . . .,
xk. It follows from (3.8) that

xN
r+1 + xN

r+2 + · · ·+ xN
k = x−N

r+1 + x−N
r+2 + · · ·+ x−N

k (3.11)

= x−1
r+1 + x−1

r+2 + · · ·+ x−1
k = xr+1 + xr+2 + · · ·+ xk = c1.

We now see by (3.9), (3.10), and (3.11) that

GN(a1, a2, . . . , ak) = (xN
1 + xN

2 + · · ·+ xN
r ) + (xN

r+1 + xN
r+2 + · · ·+ xN

k ) (3.12)

= GN(b1, b2, . . . , br) + c1 ≡ G1(a1, a2, . . . , ak) = (x1 + x2 + · · ·+ xr)

+ (xr+1 + xr+2 + · · ·+ xk) = G1(b1, b2, . . . , br) + c1 (mod N),

and

G−N(a1, a2, . . . , ak) = (x−N
1 + x−N

2 + · · ·+ x−N
r ) + (x−N

r+1 + x−N
r+2 + · · ·+ x−N

k ) (3.13)

= G−N(b1, b2, . . . , br) + c1 ≡ G−1(a1, a2, . . . , ak) = (x−1
1 + x−1

2 + · · ·+ x−1
r )

+ (x−1
r+1 + x−1

r+2 + · · ·+ x−1
k ) = G−1(b1, b2, . . . , br) + c1 (mod N).

Congruences (3.12) and (3.13) together imply that GN(b1, b2, . . . , br)+c1 ≡ G1(b1, b2, . . . , br)+
c1 (mod N) and G−N(b1, b2, . . . , br) + c1 ≡ G−1(b1, b2, . . . , br) + c1 (mod N). Hence, N is
also a Lucas (b1, b2, . . . , br) pseudoprime relatively prime to m, and the result follows. ¤

Some corollaries and examples follow from this theorem.

Corollary 3.3. Let the Lucas (b1, b2, . . . , bk = ±1) sequence have characteristic polynomial
f(x) and the Lucas (a1, a2, . . . , ak+1 = ∓1) sequence have characteristic polynomial f(x)g(x),
where g(x) = x − 1. Then the sets of Lucas (b1, b2, . . . , bk = ±1) pseudoprimes and Lucas
(a1, a2, . . . , ak+1 = ∓1) pseudoprimes are equal.

Proof. This is an immediate consequence of Theorem 3.2, since x − 1 is the cyclotomic
polynomial of order 1. ¤
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Corollary 3.4. Let p be a prime. Consider the Lucas (b1, b2, . . . , br = ±1) sequence with
characteristic polynomial g(x). Let

g1(x) = xp−1 + xp−2 + · · ·+ x + 1

be the cyclotomic polynomial of order p. Let the Lucas (a1, a2, . . . , ar+p−1 = ±1) sequence
have characteristic polynomial f(x), where

f(x) = g(x)g1(x).

Then the set of Lucas (b1, b2, . . . , br) pseudoprimes relatively prime to p is equal to the set
of Lucas (a1, a2, . . . , ar+p−1 = ±1) pseudoprimes relatively prime to p. Moreover, no Lucas
(a1, a2, . . . , ar+p−1 = ±1) pseudoprime divisible by p can be a Lucas (b1, b2, . . . , br = ±1)
pseudoprime.

Proof. We first observe that ar+p−1 = br = ±1, since the constant term of g1(x) is equal to
1. The first assertion of the corollary regarding pseudoprimes relatively prime to p follows
from Theorem 3.2.

Now suppose that M is divisible by p and that M is both a Lucas (a1, a2, . . . , ar+p−1

= ±1) pseudoprime and a Lucas (b1, b2, . . . , br = ±1) pseudoprime. Let x1, x2, . . . , xr,
xr+1, . . . , xr+p−1 be the characteristic roots of f(x), where x1, x2, . . . , xr are the characteristic
roots of g(x). Note that xr+1, xr+2, . . . , xr+p−1 are the characteristic roots of the cyclotomic
polynomial g1(x). Noting that M is a Lucas (a1, a2, . . . , ar+p−1 = ±1) pseudoprime, we see
by the proof of Theorem 3.2 that

GM(a1, a2, . . . , ar+p−1) = (xM
1 + xM

2 + · · ·+ xM
r ) + (xM

r+1 + xM
r+2 + · · ·+ xM

r+p−1) (3.14)

= GM(b1, b2, . . . , br) + (1 + 1 + · · ·+ 1)

= GM(b1, b2, . . . , br) + p− 1

≡ G1(a1, a2, . . . , ar+p−1)

= (x1 + x2 + · · ·+ xr) + (xr+1 + xr+2 + · · ·+ xr+p−1)

= G1(b1, b2, . . . , br) + (−1) (mod M).

Since M is also a Lucas (b1, b2, . . . , br = ±1) pseudoprime, it follows by definition that

GM(b1, b2, . . . , br) ≡ G1(b1, b2, . . . , br) (mod M). (3.15)

We now derive from (3.14) and (3.15) that

p− 1 ≡ −1 (mod M),

or
p ≡ 0 (mod M).

This is impossible, since p | M and M is composite. The result now follows. ¤
Example 3.2. Consider the Lucas (0, 1, 1, 1, 2, 1) sequence with characteristic polynomial
f(x) = x6−x4−x3−x2−2x−1 and the Lucas (1, 1) sequence with characteristic polynomial
g(x) = x2 − x− 1. Then f(x) = g(x)g1(x), where

g1(x) = x4 + x3 + x2 + x + 1

is the cyclotomic polynomial of order 5. By computation, one sees that 705, 2465, 3745,
24465, 35785, and 54705 are Lucas (1, 1) pseudoprimes but not Lucas (0, 1, 1, 1, 2, 1) pseu-
doprimes in agreement with Corollary 3.4.
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Corollary 3.5. Let p be a prime. Consider the Lucas (b1, b2, . . . , br = ±1) sequence with
characteristic polynomial g(x). Let

g1(x) = xp(p−1) + xp(p−2) + · · ·+ xp + 1

be the cyclotomic polynomial of order p2. Let the Lucas (a1, a2, . . . , ar+p(p−1) = ±1) sequence
have characteristic polynomial f(x), where

f(x) = g(x)g1(x).

Then the set of Lucas (b1, b2, . . . , br) pseudoprimes relatively prime to p2 is equal to the set of
Lucas (a1, a2, . . . , ar+p(p−1) = ±1) pseudoprimes relatively prime to p2. Moreover, no Lucas
(a1, a2, . . . , ar+p(p−1) = ±1) pseudoprime divisible by p can be a Lucas (b1, b2, . . . , br = ±1)
pseudoprime.

Proof. By Theorem 3.2, it suffices to prove that no Lucas (a1, a2, . . . , ar+p(p−1) = ±1) pseu-
doprime divisible by p is also a Lucas (b1, b2, . . . , br = ±1) pseudoprime. First suppose that
M is divisible by p2 and that M is both a Lucas (a1, a2, . . ., ar+p(p−1) = ±1) pseudoprime
and a Lucas (b1, b2, . . . , br = ±1) pseudoprime. Let x1, x2, . . . , xr, xr+1, . . . , xr+p(p−1) be the
characteristic roots of f(x), where x1, x2, . . . , xr are the characteristic roots of g(x) and
xr+1, . . . , xr+p(p−1) are the characteristic roots of g1(x). Then

GM(a1, a2, . . . , ar+p(p−1)) (3.16)

= (xM
1 + xM

2 + · · ·+ xM
r ) + (xM

r+1 + xM
r+2 + · · ·+ xM

r+p(p−1))

= GM(b1, b2, . . . , br) + (1 + 1 + · · ·+ 1)

= GM(b1, b2, . . . , br) + (p2 − p) ≡ G1(a1, a2, . . . , ar+p−1)

= (x1 + x2 + · · ·+ xr) + (xr+1 + xr+2 + · · ·+ xr+p(p−1))

= G1(b1, b2, . . . , br) + 0 (mod M).

Noting that GM(b1, b2, . . . , br) ≡ G1(b1, b2, . . . , br) (mod M), we obtain from (3.16) that

p2 − p ≡ 0 (mod M),

which is a contradiction, since p2 | M .
Now suppose that M = pi, where p - i. We note that

xM
r+1, x

M
r+2, . . . , x

M
r+p(p−1)

comprise the p− 1 primitive pth roots of unity, each repeated p times. Then

GM(a1, a2, . . . , ar+p(p−1)) (3.17)

= (xM
1 + xM

2 + · · ·+ xM
r ) + (xM

r+1 + xM
r+2 + · · ·+ xM

r+p(p−1))

= GM(b1, b2, . . . , br) + p(−1) = GM(b1, b2, . . . , br)− p

≡ G1(a1, a2, . . . , ar+p−1)

= (x1 + x2 + · · ·+ xr) + (xr+1 + xr+2 + · · ·+ xr+p(p−1))

= G1(b1, b2, . . . , br) + 0 (mod M).

Since GM(b1, b2, . . . , br) ≡ G1(b1, b2, . . . , br) (mod M), it follows from (3.17) that

−p ≡ 0 (mod M).

This is a contradiction, since p | M and M is composite. The result now follows. ¤
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Remark 3.6. We use the notation and definitions of Corollaries 3.4 and 3.5. We note that
the proof of Corollaries 3.4 and 3.5 show that in fact, no traditional Lucas (a1, a2, . . . , ar+φ(pj) =
±1) pseudoprime divisible by p can even be a traditional Lucas (b1, b2, . . . , br = ±1) pseudo-
prime, where j = 1 or 2.

Using Theorem 3.2, we can find higher order Lucas pseudoprimes which are equal to Lucas
(1, 1) pseudoprimes.

Corollary 3.7. Let the Lucas (a1, a2, . . . , ak = 1) sequence have the characteristic polynomial
f(x)g(x), where f(x) = x2 − x− 1 and g(x) is a product of j polynomials, each of which is
a cyclotomic polynomial of order a power of 2. We do not assume that these j cyclotomic
polynomials are necessarily distinct. Then the set of Lucas (a1, a2, . . . , ak = 1) pseudoprimes
is equal to the set of Lucas (1, 1) pseudoprimes.

Proof. First note that f(x) = x2 − x− 1 is the characteristic polynomial of the Lucas (1, 1)
sequence. Since g(x) is a product of cyclotomic polynomials, each of which is of order a
power of 2 and the Lucas (1, 1) sequence has no even pseudoprimes by [10], it suffices by
Theorem 3.2 to show that the Lucas (a1, a2, . . . , ak = 1) sequence has no even pseudoprimes.
Let Ln = Gn(1, 1) as usual, and let Gn = Gn(a1, a2, . . . , ak = 1). Let x1 = (1 +

√
5)/2 and

x2 = (1−√5)/2 be the characteristic roots of f(x) and let x3, x4, . . . , xk be the characteristic
roots of g(x). Suppose that M is an even Lucas (a1, a2, . . . , ak = ±1) pseudoprime. Let 2t

be the largest order of any of the j cyclotomic polynomials dividing g(x). Then each of
x3, x4, . . . , xk is a 2tth root of unity. Suppose that M ≡ s (mod 2t), where 0 ≤ s ≤ 2t − 1.
Note that LM = L−M by the proof of Lemma 2.1. Then

GM = (xM
1 + xM

2 ) + (xM
3 + xM

4 + · · ·+ xM
k ) (3.18)

= (xM
1 + xM

2 ) + (xs
3 + xs

4 + · · ·+ xs
k) = LM + (xs

3 + xs
4 + · · ·+ xs

k)

≡ G1 = (x1 + x2) + (x3 + x4 + · · ·+ xk) = L1 + (x3 + x4 + · · ·+ xk)

= 1 + (x3 + x4 + · · ·+ xk) (mod M)

and

G−M = (x−M
1 + x−M

2 ) + (x−M
3 + x−M

4 + · · ·+ x−M
k ) (3.19)

= (x−M
1 + x−M

2 ) + (x−s
3 + x−s

4 + · · ·+ x−s
k )

= L−M + (x−s
3 + x−s

4 + · · ·+ x−s
k ) ≡ G−1

= (x−1
1 + x−1

2 ) + (x−1
3 + x−1

4 + · · ·+ x−1
k )

= L−1 + (x−1
3 + x−1

4 + · · ·+ x−1
k )

= −1 + (x−1
3 + x−1

4 + · · ·+ x−1
k ) (mod M).

Noting that 1/xi is a root of g(x) if and only if xi is a root of g(x), and that xi and 1/xi

each occurs to the same multiplicity in g(x), where 3 ≤ i ≤ k, we see that

(xs
3 + xs

4 + · · ·+ xs
k) = (x−s

3 + x−s
4 + · · ·+ x−s

k ) (3.20)

and

(x3 + x4 + · · ·+ xk) = (x−1
3 + x−1

4 + · · ·+ x−1
k ). (3.21)

Let c1 = (xs
3 + xs

4 + · · · + xs
k) and c2 = (x3 + x4 + · · · + xk). Since (xs

3 + xs
4 + · · · + xs

k) and
(x3 + x4 + · · · + xk) are both symmetric polynomials with integer coefficients in the roots
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of the polynomial g(x), we see that each of c1 and c2 is a rational integer. It follows from
(3.18)-(3.21) that

LM + c1 ≡ L1 + c2 = 1 + c2 ≡ L−M + c1 ≡ L−1 + c2 = −1 + c2 (mod M), (3.22)

which implies that

1 ≡ −1 (mod M).

Hence, M | 2, which is a contradiction since M is composite. ¤

Example 3.3. We observe that the characteristic polynomials of the Lucas (0, 2, 1), (1, 0, 1, 1),
(1, 0, 1, 1, 2, 1), and (1, 1, 0,−1, 1, 1) sequences are (x2 − x− 1)(x + 1), (x2 − x− 1)(x2 + 1),
(x2−x−1)(x2 +1)(x+1), and (x2−x−1)(x4 +1), respectively. Hence, by Corollary 3.7, the
sets of Lucas (1, 1), (0, 2, 1), (1, 0, 1, 1), (1, 0, 1, 1, 2, 1), and (1, 1, 0,−1, 1, 1) pseudoprimes
are all equal.

We next show that certain Lucas sequences have infinitely many pseudoprimes.

Corollary 3.8. For any k ≥ 2, there exists a Lucas (a1, a2, . . . , ak = ±1) sequence having
infinitely many Lucas (a1, a2, . . . , ak = ±1) pseudoprimes.

Proof. By [7], there exist infinitely many Lucas (1, 1) pseudoprimes. The result now follows
for k = 2 by using the Lucas (1, 1) sequence. Suppose that k > 2. Let the binary expansion
of k − 2 be given by

2b1 + 2b2 + · · ·+ 2br ,

where b1 > b2 > · · · > br ≥ 0. Note that x2i
+ 1 is a cyclotomic polynomial of order 2i+1 for

i ≥ 0. Then by Corollary 3.7,

(x2 − x− 1)(x2b1 + 1)(x2b2 + 1) · · · (x2br
+ 1)

is the characteristic polynomial of a Lucas (a1, a2, . . . , ak = ±1) sequence in which the set of
Lucas (1, 1) pseudoprimes is equal to the set of Lucas (a1, a2, . . . , ak = ±1) pseudoprimes. ¤

Remark 3.9. We note that it also follows from the results in [5] that for an arbitrary
k ≥ 2, any Lucas (a1, a2, . . . , ak = ±1) sequence with square-free characteristic polynomial
has infinitely many Lucas (a1, a2, . . . , ak = ±1) pseudoprimes.

4. Numerical Results

We conclude this paper with a table of Lucas (a1, a2, . . . , ak = ±1) pseudoprimes for
several different k.
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LUCAS (a1, a2, . . . , ak = ±1) PSEUDOPRIMES

k (a1, a2, . . . , ak) pseudoprimes ≤ N

2 (0, 1) 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57 ≤ 60
2 (0,−1) 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57 ≤ 60
2 (1, 1) 705, 2465, 2737, 3745, 4181, 5777, 6721 ≤ 10000
2 (1,−1) 25, 35, 49, 55, 65, 77, 85, 91, 95 ≤ 100
2 (−1, 1) ≤ 100000
2 (−1,−1) 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 ≤ 5000
2 (2, 1) 4, 169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441 ≤ 6500
2 (2,−1) 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24 ≤ 24
2 (−2, 1) 4 ≤ 100000
2 (−2,−1) 4 ≤ 100000
2 (3, 1) 33, 65, 119, 273, 377, 385, 533, 561, 649 ≤ 1000
2 (3,−1) 4, 15, 44, 105, 195, 231, 323, 377, 435, 665, 705 ≤ 800
2 (−3, 1) ≤ 100000
2 (−3,−1) ≤ 100000
2 (4, 1) 9, 85, 161, 341, 705, 897, 901, 1105, 1281, 1853 ≤ 2000
2 (4,−1) 10, 209, 230, 231, 399, 430, 455, 530, 901, 903, 923, 989 ≤ 1000
2 (−4, 1) ≤ 100000
2 (−4,−1) ≤ 100000
2 (5, 1) 9, 27, 65, 121, 145, 377, 385, 533, 1035, 1189, 1305 ≤ 1500
2 (5,−1) 15, 21, 35, 105, 161, 195, 255, 345, 385, 399, 465 ≤ 500
2 (−5, 1) ≤ 100000
2 (−5,−1) 4 ≤ 100000
3 (0, 0, 1) 4, 8, 10, 14, 16, 20, 22, 25, 26, 28, 32, 34, 35, 38, 40 ≤ 40
3 (0, 0,−1) 4, 8, 10, 14, 16, 20, 22, 25, 26, 28, 32, 34, 35, 38, 40 ≤ 40
3 (0, 1, 1) ≤ 100000
3 (0, 1,−1) ≤ 100000
3 (0,−1, 1) ≤ 100000
3 (0,−1,−1) ≤ 100000
3 (1, 0, 1) ≤ 100000
3 (1, 0,−1) ≤ 100000
3 (−1, 0, 1) ≤ 100000
3 (−1, 0,−1) ≤ 100000
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k (a1, a2, . . . , ak) pseudoprimes ≤ N

3 (0, 2, 1) 705, 2465, 2737, 3745, 4181, 5777, 6721 ≤ 10000
3 (0, 2,−1) 705, 2465, 2737, 3745, 4181, 5777, 6721 ≤ 10000
3 (0,−2, 1) ≤ 100000
3 (0,−2,−1) ≤ 100000
3 (2, 0, 1) ≤ 100000
3 (2, 0,−1) 705, 2465, 2737, 3745, 4181, 5777, 6721, 10877,≤ 13000
3 (−2, 0, 1) ≤ 100000
3 (−2, 0,−1) ≤ 100000
3 (1, 1, 1) ≤ 100000
3 (1, 1,−1) 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57 ≤ 60
3 (1,−1, 1) 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57 ≤ 60
3 (1,−1,−1) 30 ≤ 100000
3 (−1, 1, 1) 4 ≤ 100000
3 (−1, 1,−1) ≤ 100000
3 (−1,−1, 1) ≤ 100000
3 (−1,−1,−1) 4 ≤ 100000
3 (0, 3, 1) ≤ 100000
3 (0, 3,−1) ≤ 100000
3 (0,−3, 1) ≤ 100000
3 (0,−3,−1) ≤ 100000
3 (3, 0, 1) ≤ 100000
3 (3, 0,−1) ≤ 100000
3 (−3, 0, 1) ≤ 100000
3 (−3, 0,−1) ≤ 100000
3 (1, 2, 1) 4 ≤ 100000
3 (1, 2,−1) 4 ≤ 100000
3 (1,−2, 1) 4 ≤ 100000
3 (1,−2,−1) 4 ≤ 100000
3 (−1, 2, 1) ≤ 100000
3 (−1, 2,−1) ≤ 100000
3 (−1,−2, 1) ≤ 100000
3 (−1,−2,−1) ≤ 100000
3 (2, 1, 1) ≤ 100000
3 (2, 1,−1) 4 ≤ 100000
3 (2,−1, 1) 4 ≤ 100000
3 (2,−1,−1) ≤ 100000
3 (−2, 1, 1) ≤ 100000
3 (−2, 1,−1) 4 ≤ 100000
3 (−2,−1, 1) 4 ≤ 100000
3 (−2,−1,−1) ≤ 100000
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k (a1, a2, . . . , ak) pseudoprimes ≤ N

3 (0, 4, 1) 4 ≤ 100000
3 (0, 4,−1) 4 ≤ 100000
3 (0,−4, 1) 4 ≤ 100000
3 (0,−4,−1) 4 ≤ 100000
3 (4, 0, 1) 4 ≤ 100000
3 (4, 0,−1) 4 ≤ 100000
3 (−4, 0, 1) 4 ≤ 100000
3 (−4, 0,−1) 4 ≤ 100000
3 (1, 3, 1) 169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441 ≤ 6500
3 (1, 3,−1) ≤ 100000
3 (1,−3, 1) ≤ 100000
3 (1,−3,−1) 33153, 79003 ≤ 100000
3 (−1, 3, 1) ≤ 100000
3 (−1, 3,−1) 4 ≤ 100000
3 (−1,−3, 1) 4, 117 ≤ 100000
3 (−1,−3,−1) 10 ≤ 100000
3 (3, 1, 1) 4, 66, 33153, 79003 ≤ 100000
3 (3, 1,−1) ≤ 100000
3 (3,−1, 1) ≤ 100000
3 (3,−1,−1) 4, 169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441 ≤ 6500
3 (−3, 1, 1) ≤ 100000
3 (−3, 1,−1) ≤ 100000
3 (−3,−1, 1) 6, 18, 66, 198 ≤ 100000
3 (−3,−1,−1) ≤ 100000
3 (2, 2, 1) 79003 ≤ 100000
3 (2, 2,−1) 15, 105, 195, 231, 323, 377, 435, 665, 705, 1443, 1551 ≤ 1800
3 (2,−2, 1) 25, 35, 49, 55, 65, 77, 85, 91, 95, 115, 119, 121, 125, 133 ≤ 140
3 (2,−2,−1) 79003 ≤ 100000
3 (−2, 2, 1) ≤ 100000
3 (−2, 2,−1) ≤ 100000
3 (−2,−2, 1) ≤ 100000
3 (−2,−2,−1) ≤ 100000
4 (0, 0, 0, 1) 4, 6, 9, 10, 14, 15, 18, 21, 22, 25, 26, 27, 30, 33, 34, 35, 38, 39 ≤ 40
4 (0, 0, 0,−1) 4, 6, 9, 10, 14, 15, 18, 21, 22, 25, 26, 27, 30, 33, 34, 35, 38, 39 ≤ 40
4 (0, 0, 1, 1) ≤ 100000
4 (0, 0, 1,−1) 4, 34, 38, 46, 62, 94, 106, 122, 158, 166, 214, 218, 226 ≤ 270
4 (0, 0,−1, 1) 4, 34, 38, 46, 62, 94, 106, 122, 158, 166, 214, 218, 226 ≤ 270
4 (0, 0,−1,−1) ≤ 100000
4 (0, 1, 0, 1) 9, 12, 15, 21, 25, 27, 33, 35, 36, 39, 45, 49, 51, 55, 57 ≤ 60
4 (0, 1, 0,−1) 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65 ≤ 68
4 (0,−1, 0, 1) 9, 12, 15, 21, 25, 27, 33, 35, 36, 39, 45, 49, 51, 55, 57 ≤ 60
4 (0,−1, 0,−1) 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65 ≤ 68
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k (a1, a2, . . . , ak) pseudoprimes ≤ N

4 (1, 0, 0, 1) 4, 34, 38, 46, 62, 94, 106, 122, 158, 166, 214, 218, 226 ≤ 250
4 (1, 0, 0,−1) 4, 34, 38, 46, 62, 94, 106, 122, 158, 166, 214, 218, 226 ≤ 250
4 (−1, 0, 0, 1) ≤ 100000
4 (−1, 0, 0,−1) ≤ 100000
4 (0, 0, 2, 1) 6 ≤ 100000
4 (0, 0, 2,−1) ≤ 100000
4 (0, 0,−2, 1) ≤ 100000
4 (0, 0,−2,−1) 6 ≤ 100000
4 (0, 2, 0, 1) 4, 9, 12, 15, 21, 25, 27, 33, 35, 36, 39, 45, 49, 51, 55, 57, 63 ≤ 64
4 (0, 2, 0,−1) 4, 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69 ≤ 70
4 (0,−2, 0, 1) 4, 9, 12, 15, 21, 25, 27, 33, 35, 36, 39, 45, 49, 51, 55, 57, 63 ≤ 64
4 (0,−2, 0,−1) 4, 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69 ≤ 70
4 (2, 0, 0, 1) ≤ 100000
4 (2, 0, 0,−1) ≤ 100000
4 (−2, 0, 0, 1) 10, 38 ≤ 100000
4 (−2, 0, 0,−1) 10, 38 ≤ 100000
4 (0, 1, 1, 1) ≤ 100000
4 (0, 1, 1,−1) ≤ 100000
4 (0, 1,−1, 1) ≤ 100000
4 (0, 1,−1,−1) ≤ 100000
4 (0,−1, 1, 1) ≤ 100000
4 (0,−1, 1,−1) ≤ 100000
4 (0,−1,−1, 1) ≤ 100000
4 (0,−1,−1,−1) ≤ 100000
4 (1, 0, 1, 1) 705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201 ≤ 15000
4 (1, 0, 1,−1) 4, 8, 10, 14, 16, 20, 22, 25, 26, 28, 32, 34, 35, 38, 40, 44, 46 ≤ 48
4 (1, 0,−1, 1) 4, 8, 10, 14, 16, 20, 22, 25, 26, 28, 32, 34, 35, 38, 40, 44, 46 ≤ 48
4 (1, 0,−1,−1) 49, 119, 161, 497, 679, 721, 791, 1057, 1169, 1351, 1393 ≤ 1600
4 (−1, 0, 1, 1) ≤ 100000
4 (−1, 0, 1,−1) ≤ 100000
4 (−1, 0,−1, 1) ≤ 100000
4 (−1, 0,−1,−1) ≤ 100000
4 (1, 1, 0, 1) ≤ 100000
4 (1, 1, 0,−1) ≤ 100000
4 (1,−1, 0, 1) ≤ 100000
4 (1,−1, 0,−1) ≤ 100000
4 (−1, 1, 0, 1) ≤ 100000
4 (−1, 1, 0,−1) ≤ 100000
4 (−1,−1, 0, 1) ≤ 100000
4 (−1,−1, 0,−1) ≤ 100000
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k (a1, a2, . . . , ak) pseudoprimes ≤ N

4 (0, 0, 3, 1) 4 ≤ 100000
4 (0, 0, 3,−1) 25 ≤ 100000
4 (0, 0,−3, 1) ≤ 100000
4 (0, 0,−3,−1) 4, 25 ≤ 100000
4 (0, 3, 0, 1) 6, 9, 15, 18, 21, 25, 27, 33, 35, 39, 45, 49, 51, 54, 55, 57, 63 ≤ 64
4 (0, 3, 0,−1) 6, 9, 15, 18, 21, 25, 27, 33, 35, 39, 45, 49, 51, 54, 55, 57, 63 ≤ 64
4 (0,−3, 0, 1) 6, 9, 15, 18, 21, 25, 27, 33, 35, 39, 45, 49, 51, 54, 55, 57, 63 ≤ 64
4 (0,−3, 0,−1) 6, 9, 15, 18, 21, 25, 27, 33, 35, 39, 45, 49, 51, 54, 55, 57, 63 ≤ 64
4 (3, 0, 0, 1) ≤ 100000
4 (3, 0, 0,−1) 25 ≤ 100000
4 (−3, 0, 0, 1) 4, 46 ≤ 100000
4 (−3, 0, 0,−1) 4, 46 ≤ 100000
4 (0, 1, 2, 1) 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201 ≤ 15000
4 (0, 1, 2,−1) 49 ≤ 100000
4 (0, 1,−2, 1) 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201 ≤ 15000
4 (0, 1,−2,−1) 49 ≤ 100000
4 (0,−1, 2, 1) ≤ 100000
4 (0,−1, 2,−1) ≤ 100000
4 (0,−1,−2, 1) ≤ 100000
4 (0,−1,−2,−1) ≤ 100000
4 (1, 0, 2, 1) ≤ 100000
4 (1, 0, 2,−1) ≤ 100000
4 (1, 0,−2, 1) ≤ 100000
4 (1, 0,−2,−1) ≤ 100000
4 (−1, 0, 2, 1) ≤ 100000
4 (−1, 0, 2,−1) ≤ 100000
4 (−1, 0,−2, 1) ≤ 100000
4 (−1, 0,−2,−1) ≤ 100000
4 (1, 2, 0, 1) 4 ≤ 100000
4 (1, 2, 0,−1) 4 ≤ 100000
4 (1,−2, 0, 1) 4 ≤ 100000
4 (1,−2, 0,−1) 4 ≤ 100000
4 (−1, 2, 0, 1) ≤ 100000
4 (−1, 2, 0,−1) ≤ 100000
4 (−1,−2, 0, 1) ≤ 100000
4 (−1,−2, 0,−1) ≤ 100000
4 (0, 2, 1, 1) ≤ 100000
4 (0, 2, 1,−1) 4 ≤ 100000
4 (0, 2,−1, 1) 4 ≤ 100000
4 (0, 2,−1,−1) ≤ 100000
4 (0,−2, 1, 1) ≤ 100000
4 (0,−2, 1,−1) 4 ≤ 100000
4 (0,−2,−1, 1) 4 ≤ 100000
4 (0,−2,−1,−1) ≤ 100000
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k (a1, a2, . . . , ak) pseudoprimes ≤ N

4 (2, 0, 1, 1) ≤ 100000
4 (2, 0, 1,−1) ≤ 100000
4 (2, 0,−1, 1) ≤ 100000
4 (2, 0,−1,−1) ≤ 100000
4 (−2, 0, 1, 1) ≤ 100000
4 (−2, 0, 1,−1) 38 ≤ 100000
4 (−2, 0,−1, 1) 38 ≤ 100000
4 (−2, 0,−1,−1) ≤ 100000
4 (2, 1, 0, 1) ≤ 100000
4 (2, 1, 0,−1) 49 ≤ 100000
4 (2,−1, 0, 1) 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201 ≤ 15000
4 (2,−1, 0,−1) ≤ 100000
4 (−2, 1, 0, 1) ≤ 100000
4 (−2, 1, 0,−1) ≤ 100000
4 (−2,−1, 0, 1) ≤ 100000
4 (−2,−1, 0,−1) ≤ 100000
4 (1, 1, 1, 1) 49 ≤ 100000
4 (1, 1, 1,−1) 195, 897, 6213, 11285, 27889, 30745, 38503, 39601 ≤ 100000
4 (1, 1,−1, 1) ≤ 100000
4 (1, 1,−1,−1) 9, 33, 51, 57, 121, 123, 129, 177, 201, 219, 249, 267 ≤ 275
4 (1,−1, 1, 1) 49 ≤ 100000
4 (1,−1, 1,−1) 9, 21, 27, 33, 39, 49, 51, 57, 63, 69, 77, 81, 87, 91, 93 ≤ 95
4 (1,−1,−1, 1) ≤ 100000
4 (1,−1,−1,−1) 53021 ≤ 100000
4 (−1, 1, 1, 1) 4, 6, 8, 14, 16, 22, 32, 62, 64, 128, 256, 302, 512, 662 ≤ 900
4 (−1, 1, 1,−1) ≤ 100000
4 (−1, 1,−1, 1) 60783 ≤ 100000
4 (−1, 1,−1,−1) 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 ≤ 15000
4 (−1,−1, 1, 1) 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2045, 4096, 8192 ≤ 15000
4 (−1,−1, 1,−1) ≤ 100000
4 (−1,−1,−1, 1) ≤ 100000
4 (−1,−1,−1,−1) 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 ≤ 15000
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