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A. SCHINZEL

Abstract. The recent result of F. Luca on divisibility by gk − 1 is extended to divisibility
by (ak

− bk)/(a− b), where a > b are positive integers.

F. Luca [1] has recently proved the following theorem.
If a, k, and n are positive integers, cj are non-negative integers, not all zero, and

k−1
∑

i=0

ai
∣

∣

∣

∣

n−1
∑

j=0

cja
j ,

then

k ≤

n−1
∑

j=0

cj .

A stronger inequality under the same assumption has been obtained by H. Pan [2]. Luca’s
theorem will be generalized as follows.

Theorem 1. If a, b, k, and n are positive integers, a > b, (a, b) = 1, cj are non-negative

integers, not all zero, and
k−1
∑

i=0

aibk−1−i

∣

∣

∣

∣

n−1
∑

j=0

cja
jbn−1−j, (1)

then k ≤
∑n−1

j=0
cj .

Proof. It follows from (1) that for every integer i ∈ [0, k)

ak − bk

a− b

∣

∣

∣

∣

n−1
∑

j=0

cja
j+ibn+k−2−i−j.

Since for all non-negative integers i < k, j < n

aj+ibn+k−2−i−j ≡ ak{
j+i

k }bn+k−2−k{ j+i

k } (mod ak − bk),

we obtain
ak − bk

a− b

∣

∣

∣

∣

bn−1

n−1
∑

j=0

cja
k{ j+i

k }bk−1−k{ j+i

k }.

Since
(

ak−bk

a−b
, b
)

= 1, it follows that

ak − bk

a− b

∣

∣

∣

∣

n−1
∑

j=0

cja
k{ j+i

k }bk−1−k{ j+i

k } (i = 0, 1, . . . , k − 1)
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and since the above sum is positive

ak − bk

a− b
≤

n−1
∑

j=0

cja
k{ j+i

k }bk−1−k{ j+i

k } (i = 0, 1, . . . , k − 1).

Since k{(j + i)/k} runs through the complete set {0, 1, . . . , k − 1} as i runs through
{0, 1, . . . , k − 1}, summing over all i < k we obtain

k
ak − bk

a− b
≤

n−1
∑

j=0

cj
ak − bk

a− b
, hence, k ≤

n−1
∑

j=0

cj .

Theorem 1 ceases to be true, if the condition a > b > 0 is replaced by a > |b| > 0, as shown
by counterexamples �

1.

n−1
∑

j=0

cjx
j = (−bx + a)

n−2
∑

j=0

djx
j , dj integers, k > (a − b)

n−2
∑

j=0

dj . (Note that here

n−1
∑

j=0

cja
jbn−1−j = 0).

2. a + b = ±1, k even, n = k − 1, cj = 1 (j even), cj = 0 (j odd),

which example 2 can be modified by multiplying the right-hand side of (1) by albm.
The computation kindly performed by Dr. M. Ulas in the range a ≤ 10, n = 3 or 4,

k ≤ 6; n = 5 or 6, k ≤ 8 under the assumption
∑n−1

j=0
cj < k produced only examples with

a− b |
∑n−1

j=0
cj , or

∑n−1

j=0
cj ≥ k/2. On the other hand, we only have the following theorems.

Theorem 2. If a > |b| > 0, (a, b) = 1, and cj are integers, not all zero, and (1) holds, then

either

a− b
∣

∣

∣

n−1
∑

j=0

cj

/

(c0, . . . , cn−1), or

n−1
∑

j=0

|cj | ≥ k
ak − bk

ak − |b|k
·
a− |b|

a− b
.

Theorem 3. If a > |b| > 0, (a, b) = 1, cj are integers, not all zero, and (1) holds, then

(k, a − b)
∣

∣

∣

n−1
∑

j=0

cj (2)

and either

rad k

(rad k, 2)

∣

∣

∣

∣

n−1
∑

j=0

cj

/

(c0, . . . , cn−1), (3)

or
n−1
∑

j=0

|cj | > max

{

a− |b|,
a + |b|

2

}

. (4)

Here rad k =
∏

p|k, p prime p.

The proof is based on several lemmas.
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Lemma 1. If under the assumptions of Theorem 2 for a certain i

n−1
∑

j=0

cja
k{ j+i

k }bk−1−k{ j+i

k } = 0, (5)

then

a− b
∣

∣

∣

n−1
∑

j=0

cj

/

(c0, . . . , cn−1).

Proof. It follows from (5) that
n−1
∑

j=0

cj

(a

b

)k{ j+i

k }
= 0.

Thus, f(x) :=
∑n−1

j=0
cjx

k{ j+i

k } has a zero at a
b
, and by Bézout’s Theorem

f(x) = (−bx + a)g(x),

where g ∈ Q[x]. However, (a, b) = 1, hence by Gauss’s Theorem,

C(f) = C(g),

when C(f), C(g) are, respectively, the content of f and g. Therefore,

C(f)−1

n−1
∑

j=0

cj = C(f)−1f(1) = (a− b)C(g)−1g(1)

and since (c0, . . . , cn−1) | C(f), C(g) | g(1), the lemma follows. �

Proof of Theorem 2. Arguing as in the proof of Theorem 1, we infer that

ak − bk

a− b

∣

∣

∣

∣

n−1
∑

j=0

cja
k{ j+i

k }bk−1−k{ j+i

k } (i = 0, . . . , k − 1). (6)

If, for a certain i < k, the right-hand side of (6) is 0, we have by the lemma

a− b

∣

∣

∣

∣

n−1
∑

j=0

cj/(c0, . . . , cn−1).

If, for each i < k, the right-hand side of (6) is not 0, then for a certain εi ∈ {1,−1} we have

εi

n−1
∑

j=0

cja
k{ j+i

k }bk−1−k{ j+i

k } ≥
ak − bk

a− b
(i = 0, . . . , k − 1).

Summing over all i and using for every j

k−1
∑

i=0

εia
k{ j+i

k }bk−1−k{ j+i

k } ≤
ak − |b|k

a− |b|
,

we obtain
n−1
∑

j=0

cj ≥ k ·
ak − bk

ak − |b|k
·
a− |b|

a− b
,

which completes the proof. �

Note that the right-hand side in always at least k a−|b|
a−b

.
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Remark. The proofs of Theorems 1 and 2 show that if (1) is replaced by divisibility

d

∣

∣

∣

∣

n−1
∑

j=0

cja
jbn−1−j , where d | ak − bk,

then under the other assumptions of the relevant theorem

kd
a− b

ak − bk
≤

n−1
∑

j=0

cj ,

or either

a− b

∣

∣

∣

∣

n−1
∑

j=0

cj/(c0, . . . , cn−1),

or
n−1
∑

j=0

|cj | ≥ kd
a− |b|

ak − |b|k
,

respectively.

Lemma 2. If ζp is a primitive root of unity of prime order p, cj are integers and

n−1
∑

j=0

cjζ
j
p = 0, (7)

then

p
∣

∣

∣

n−1
∑

j=0

cj/(c0, . . . , cn−1).

Proof. Let f(x) =
∑n−1

j=0
cjx

j , φp(x) = 1 + x + · · · + xp−1. Since φp(ζp) = 0 and φp is monic

and irreducible over Q, it follows from (7) that f = φpg, where g ∈ Z[x]. By Gauss’s Theorem

C(f) = C(g)

and
n−1
∑

j=0

cj/(c0, . . . , cn−1) = C(f)−1f(1) = C(g)−1φp(1)g(1) = pC(g)−1g(1).

Since C(g)−1g(1) ∈ Z, the lemma follows. �

Lemma 3. If a > |b| > 0, p is an odd prime, then

ap − bp

a− b
> max

{

a− |b|,
a + |b|

2

}p−1

. (8)

Proof. If b > 0, (8) follows at once from the inequality for φν(A,B) proved for ν > 1, A,B
positive in Section 3 of [3]. If b < 0 we have

ap − bp

a− b
= φ2p(a, |b|)

and since ϕ(2p) = p− 1 the same inequality applies. �
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A short ad hoc proof is also possible.

Proof of Theorem 3. We have

ak − bk

a− b
=

k−1
∑

i=0

aibk−1−i ≡ kbk−1 ≡ 0 (mod k, a− b)

and
n−1
∑

j=0

cja
jbn−1−j ≡ bn−1

n−1
∑

j=0

cj (mod k, a− b)

and, since (a, b) = 1, (2) follows from (1).
If, for all odd prime factors of k, (7) holds, then by Lemma 2, (3) holds.
If, for a certain odd prime factor p of k,

α =
n−1
∑

j=0

cjζ
j
p 6= 0,

then

Nα ≤





n−1
∑

j=0

|cj |





p−1

, (9)

where Nα is the norm of α from Q(ζp) to Q. On the other hand, by (1)

a− bζp

∣

∣

∣

n−1
∑

j=0

cja
jbn−1−j,

hence,

a− bζp

∣

∣

∣
bn−1

n−1
∑

j=0

cjζ
j
p

and, since (a, b) = 1,

a− bζp |α

and, by Lemma 3 and the fact that α 6= 0,

Nα ≥ N(a− bζp) =
ap − bp

a− b
> max

{

a− |b|,
a + |b|

2

}p−1

. (10)

Now, (4) follows from (9) and (10). �

Note. Computations made by A. Zab locki for k, n < 16 did not discover any example of
divisibility (1) with 16 > a > −b > 0, (a, b) = 1 and the sum of nonnegative cj nondivisible
by a− b and less than k/2.
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