ON DIVISIBILITY BY $\frac{a^{k}-b^{k}}{a-b}$

A. SCHINZEL

Abstract. The recent result of F. Luca on divisibility by $g^{k}-1$ is extended to divisibility by $\left(a^{k}-b^{k}\right) /(a-b)$, where $a>b$ are positive integers.
F. Luca [1] has recently proved the following theorem.

If a, k, and n are positive integers, c_{j} are non-negative integers, not all zero, and

$$
\sum_{i=0}^{k-1} a^{i} \mid \sum_{j=0}^{n-1} c_{j} a^{j},
$$

then

$$
k \leq \sum_{j=0}^{n-1} c_{j}
$$

A stronger inequality under the same assumption has been obtained by H. Pan [2]. Luca's theorem will be generalized as follows.

Theorem 1. If a, b, k, and n are positive integers, $a>b,(a, b)=1, c_{j}$ are non-negative integers, not all zero, and

$$
\begin{equation*}
\sum_{i=0}^{k-1} a^{i} b^{k-1-i} \mid \sum_{j=0}^{n-1} c_{j} a^{j} b^{n-1-j}, \tag{1}
\end{equation*}
$$

then $k \leq \sum_{j=0}^{n-1} c_{j}$.
Proof. It follows from (1) that for every integer $i \in[0, k)$

$$
\left.\frac{a^{k}-b^{k}}{a-b} \right\rvert\, \sum_{j=0}^{n-1} c_{j} a^{j+i} b^{n+k-2-i-j}
$$

Since for all non-negative integers $i<k, j<n$

$$
a^{j+i} b^{n+k-2-i-j} \equiv a^{k\left\{\frac{j+i}{k}\right\}} b^{n+k-2-k\left\{\frac{j+i}{k}\right\}} \quad\left(\bmod a^{k}-b^{k}\right),
$$

we obtain

$$
\frac{a^{k}-b^{k}}{a-b} \left\lvert\, b^{n-1} \sum_{j=0}^{n-1} c_{j} a^{k\left\{\frac{j+i}{k}\right\}} b^{k-1-k\left\{\frac{j+i}{k}\right\}} .\right.
$$

Since $\left(\frac{a^{k}-b^{k}}{a-b}, b\right)=1$, it follows that

$$
\frac{a^{k}-b^{k}}{a-b} \left\lvert\, \sum_{j=0}^{n-1} c_{j} a^{k\left\{\frac{j+i}{k}\right\}_{b^{k-1-k}\left\{\frac{j+i}{k}\right\}} \quad(i=0,1, \ldots, k-1) ~}\right.
$$

and since the above sum is positive

Since $k\{(j+i) / k\}$ runs through the complete set $\{0,1, \ldots, k-1\}$ as i runs through $\{0,1, \ldots, k-1\}$, summing over all $i<k$ we obtain

$$
k \frac{a^{k}-b^{k}}{a-b} \leq \sum_{j=0}^{n-1} c_{j} \frac{a^{k}-b^{k}}{a-b}, \quad \text { hence, } k \leq \sum_{j=0}^{n-1} c_{j} .
$$

Theorem 1 ceases to be true, if the condition $a>b>0$ is replaced by $a>|b|>0$, as shown by counterexamples

1. $\sum_{j=0}^{n-1} c_{j} x^{j}=(-b x+a) \sum_{j=0}^{n-2} d_{j} x^{j}, d_{j}$ integers, $k>(a-b) \sum_{j=0}^{n-2} d_{j}$. (Note that here

$$
\left.\sum_{j=0}^{n-1} c_{j} a^{j} b^{n-1-j}=0\right)
$$

2. $a+b= \pm 1, k$ even, $n=k-1, c_{j}=1$ (j even), $c_{j}=0$ (j odd),
which example 2 can be modified by multiplying the right-hand side of (1) by $a^{l} b^{m}$.
The computation kindly performed by Dr. M. Ulas in the range $a \leq 10, n=3$ or 4 , $k \leq 6 ; n=5$ or $6, k \leq 8$ under the assumption $\sum_{j=0}^{n-1} c_{j}<k$ produced only examples with $a-b \mid \sum_{j=0}^{n-1} c_{j}$, or $\sum_{j=0}^{n-1} c_{j} \geq k / 2$. On the other hand, we only have the following theorems.
Theorem 2. If $a>|b|>0,(a, b)=1$, and c_{j} are integers, not all zero, and (1) holds, then either

$$
a-b \mid \sum_{j=0}^{n-1} c_{j} /\left(c_{0}, \ldots, c_{n-1}\right) \text {, or } \sum_{j=0}^{n-1}\left|c_{j}\right| \geq k \frac{a^{k}-b^{k}}{a^{k}-|b|^{k}} \cdot \frac{a-|b|}{a-b} .
$$

Theorem 3. If $a>|b|>0,(a, b)=1, c_{j}$ are integers, not all zero, and (1) holds, then

$$
\begin{equation*}
(k, a-b) \mid \sum_{j=0}^{n-1} c_{j} \tag{2}
\end{equation*}
$$

and either

$$
\begin{equation*}
\left.\frac{\operatorname{rad} k}{(\operatorname{rad} k, 2)} \right\rvert\, \sum_{j=0}^{n-1} c_{j} /\left(c_{0}, \ldots, c_{n-1}\right) \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{j=0}^{n-1}\left|c_{j}\right|>\max \left\{a-|b|, \frac{a+|b|}{2}\right\} . \tag{4}
\end{equation*}
$$

Here $\operatorname{rad} k=\prod_{p \mid k, p \text { prime }} p$.
The proof is based on several lemmas.

THE FIBONACCI QUARTERLY

Lemma 1. If under the assumptions of Theorem 2 for a certain i

$$
\begin{equation*}
\sum_{j=0}^{n-1} c_{j} a^{k\left\{\frac{j+i}{k}\right\}} b^{k-1-k\left\{\frac{j+i}{k}\right\}}=0 \tag{5}
\end{equation*}
$$

then

$$
a-b \mid \sum_{j=0}^{n-1} c_{j} /\left(c_{0}, \ldots, c_{n-1}\right)
$$

Proof. It follows from (5) that

$$
\sum_{j=0}^{n-1} c_{j}\left(\frac{a}{b}\right)^{k\left\{\frac{j+i}{k}\right\}}=0
$$

Thus, $f(x):=\sum_{j=0}^{n-1} c_{j} x^{k\left\{\frac{j+i}{k}\right\}}$ has a zero at $\frac{a}{b}$, and by Bézout's Theorem

$$
f(x)=(-b x+a) g(x)
$$

where $g \in \mathbb{Q}[x]$. However, $(a, b)=1$, hence by Gauss's Theorem,

$$
C(f)=C(g)
$$

when $C(f), C(g)$ are, respectively, the content of f and g. Therefore,

$$
C(f)^{-1} \sum_{j=0}^{n-1} c_{j}=C(f)^{-1} f(1)=(a-b) C(g)^{-1} g(1)
$$

and since $\left(c_{0}, \ldots, c_{n-1}\right)|C(f), C(g)| g(1)$, the lemma follows.
Proof of Theorem 2. Arguing as in the proof of Theorem 1, we infer that

$$
\begin{equation*}
\frac{a^{k}-b^{k}}{a-b} \left\lvert\, \sum_{j=0}^{n-1} c_{j} a^{k\left\{\frac{j+i}{k}\right\}} b^{k-1-k\left\{\frac{j+i}{k}\right\}} \quad(i=0, \ldots, k-1)\right. \tag{6}
\end{equation*}
$$

If, for a certain $i<k$, the right-hand side of (6) is 0 , we have by the lemma

$$
a-b \mid \sum_{j=0}^{n-1} c_{j} /\left(c_{0}, \ldots, c_{n-1}\right)
$$

If, for each $i<k$, the right-hand side of (6) is not 0 , then for a certain $\varepsilon_{i} \in\{1,-1\}$ we have

$$
\varepsilon_{i} \sum_{j=0}^{n-1} c_{j} a^{k\left\{\frac{j+i}{k}\right\}} b^{k-1-k\left\{\frac{j+i}{k}\right\}} \geq \frac{a^{k}-b^{k}}{a-b} \quad(i=0, \ldots, k-1)
$$

Summing over all i and using for every j

$$
\sum_{i=0}^{k-1} \varepsilon_{i} a^{k\left\{\frac{j+i}{k}\right\}} b^{k-1-k\left\{\frac{j+i}{k}\right\}} \leq \frac{a^{k}-|b|^{k}}{a-|b|}
$$

we obtain

$$
\sum_{j=0}^{n-1} c_{j} \geq k \cdot \frac{a^{k}-b^{k}}{a^{k}-|b|^{k}} \cdot \frac{a-|b|}{a-b}
$$

which completes the proof.
Note that the right-hand side in always at least $k \frac{a-|b|}{a-b}$.

ON DIVISIBILITY BY $\frac{a^{k}-b^{k}}{a-b}$

Remark. The proofs of Theorems 1 and 2 show that if (1) is replaced by divisibility

$$
d \mid \sum_{j=0}^{n-1} c_{j} a^{j} b^{n-1-j}, \quad \text { where } d \mid a^{k}-b^{k}
$$

then under the other assumptions of the relevant theorem

$$
k d \frac{a-b}{a^{k}-b^{k}} \leq \sum_{j=0}^{n-1} c_{j}
$$

or either

$$
a-b \mid \sum_{j=0}^{n-1} c_{j} /\left(c_{0}, \ldots, c_{n-1}\right)
$$

or

$$
\sum_{j=0}^{n-1}\left|c_{j}\right| \geq k d \frac{a-|b|}{a^{k}-|b|^{k}},
$$

respectively.
Lemma 2. If ζ_{p} is a primitive root of unity of prime order p, c_{j} are integers and

$$
\begin{equation*}
\sum_{j=0}^{n-1} c_{j} \zeta_{p}^{j}=0 \tag{7}
\end{equation*}
$$

then

$$
p \mid \sum_{j=0}^{n-1} c_{j} /\left(c_{0}, \ldots, c_{n-1}\right)
$$

Proof. Let $f(x)=\sum_{j=0}^{n-1} c_{j} x^{j}, \phi_{p}(x)=1+x+\cdots+x^{p-1}$. Since $\phi_{p}\left(\zeta_{p}\right)=0$ and ϕ_{p} is monic and irreducible over \mathbb{Q}, it follows from (7) that $f=\phi_{p} g$, where $g \in \mathbb{Z}[x]$. By Gauss's Theorem

$$
C(f)=C(g)
$$

and

$$
\sum_{j=0}^{n-1} c_{j} /\left(c_{0}, \ldots, c_{n-1}\right)=C(f)^{-1} f(1)=C(g)^{-1} \phi_{p}(1) g(1)=p C(g)^{-1} g(1) .
$$

Since $C(g)^{-1} g(1) \in \mathbb{Z}$, the lemma follows.
Lemma 3. If $a>|b|>0, p$ is an odd prime, then

$$
\begin{equation*}
\frac{a^{p}-b^{p}}{a-b}>\max \left\{a-|b|, \frac{a+|b|}{2}\right\}^{p-1} . \tag{8}
\end{equation*}
$$

Proof. If $b>0$, (8) follows at once from the inequality for $\phi_{\nu}(A, B)$ proved for $\nu>1, A, B$ positive in Section 3 of [3]. If $b<0$ we have

$$
\frac{a^{p}-b^{p}}{a-b}=\phi_{2 p}(a,|b|)
$$

and since $\varphi(2 p)=p-1$ the same inequality applies.

THE FIBONACCI QUARTERLY

A short ad hoc proof is also possible.
Proof of Theorem 3. We have

$$
\frac{a^{k}-b^{k}}{a-b}=\sum_{i=0}^{k-1} a^{i} b^{k-1-i} \equiv k b^{k-1} \equiv 0 \quad(\bmod k, a-b)
$$

and

$$
\sum_{j=0}^{n-1} c_{j} a^{j} b^{n-1-j} \equiv b^{n-1} \sum_{j=0}^{n-1} c_{j} \quad(\bmod k, a-b)
$$

and, since $(a, b)=1,(2)$ follows from (1).
If, for all odd prime factors of k, (7) holds, then by Lemma 2, (3) holds.
If, for a certain odd prime factor p of k,

$$
\alpha=\sum_{j=0}^{n-1} c_{j} \zeta_{p}^{j} \neq 0
$$

then

$$
\begin{equation*}
N \alpha \leq\left(\sum_{j=0}^{n-1}\left|c_{j}\right|\right)^{p-1} \tag{9}
\end{equation*}
$$

where $N \alpha$ is the norm of α from $\mathbb{Q}\left(\zeta_{p}\right)$ to \mathbb{Q}. On the other hand, by (1)

$$
a-b \zeta_{p} \mid \sum_{j=0}^{n-1} c_{j} a^{j} b^{n-1-j},
$$

hence,

$$
a-b \zeta_{p} \mid b^{n-1} \sum_{j=0}^{n-1} c_{j} \zeta_{p}^{j}
$$

and, since $(a, b)=1$,

$$
a-b \zeta_{p} \mid \alpha
$$

and, by Lemma 3 and the fact that $\alpha \neq 0$,

$$
\begin{equation*}
N \alpha \geq N\left(a-b \zeta_{p}\right)=\frac{a^{p}-b^{p}}{a-b}>\max \left\{a-|b|, \frac{a+|b|}{2}\right\}^{p-1} . \tag{10}
\end{equation*}
$$

Now, (4) follows from (9) and (10).
Note. Computations made by A. Zabłocki for $k, n<16$ did not discover any example of divisibility (1) with $16>a>-b>0,(a, b)=1$ and the sum of nonnegative c_{j} nondivisible by $a-b$ and less than $k / 2$.

Acknowledgement

Thanks are due to the referee for his suggestions incorporated in the paper.

$$
\text { ON DIVISIBILITY BY } \frac{a^{k}-b^{k}}{a-b}
$$

References

[1] F. Luca, On a problem of Bednarek, Comm. Math., (to appear).
[2] H. Pan, On the m-ary expansion of a multiple of $\left(m^{k}-1\right) /(m-1)$, Publ. Math. Debrecen, (to appear).
[3] A. Schinzel, On primitive prime factors of $a^{n}-b^{n}$, Proc. Cambridge Philos. Soc., 58 (1962), 555-562, see also Selecta, Vol. 2, 1036-1045.

MSC2010: 11A07, 11R18.
Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956 Warsaw, Poland
E-mail address: schinzel@impan.pl

