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Abstract. Let R(L,M) and U(P,Q) denote the Lehmer and Lucas sequences, respec-
tively. It is shown that if R(L,M) and U(P,Q) are nondegenerate, then Rn(L,M) and
Un(P,Q) can be prime for composite n only if n ∈ {4, 6, 8, 9, 10, 14, 15, 21, 25, 26, 49, 65}.
Moreover, all instances in which Rn(L,M) or Um(P,Q) are prime are explicitly given when
n ∈ {14, 15, 21, 26, 49, 65} and m ∈ {6, 8, 10, 15, 25, 26, 65}.

1. Introduction

Consider the prime values of the Fibonacci sequence {Fn}, which is both a Lehmer and a
Lucas sequence. We observe that Fn is known to be prime for 32 prime indices, the largest of
which is n = 81839, but is prime for only one composite index, namely n = 4 (see [12]). It is
conjectured that Fn is prime for infinitely many prime indices n (see [8], pp. 362–364). We will
prove that apart from the exceptional cases in which the sequences are degenerate, there are
only 12 composite indices n for which there exists a Lehmer or Lucas number with that index
for which its value is prime, namely the indices n ∈ {4, 6, 8, 9, 10, 14, 15, 21, 25, 26, 49, 65}.
We will explicitly exhibit all the finitely many instances in which this happens when n ∈
{14, 15, 21, 26, 49, 65} in the case of the Lehmer sequences and n ∈ {6, 8, 10, 15, 25, 26, 65} in
the case of the Lucas sequences.

Throughout this paper, p will denote a prime and ε will be assumed to be a member of the
set {−1, 1}. To proceed, we will need to define the Lehmer and Lucas sequences and present
some of their properties.

Let R(L,M) = {Rn(L,M)} and S(L,M) = {Sn(L,M)} denote the Lehmer and the com-
panion Lehmer sequence, respectively, defined by

Rn =







γn−δn

γ−δ , n odd,

γn−δn

γ2−δ2 , n even,
Sn =

{

γn+δn

γ+δ , n odd,

γn + δn, n even,
(1.1)

where n ≥ 0, L and M are rational integers, and γ and δ are the roots of the equation

x2 −
√
Lx+M = 0. (1.2)

The discriminant K = K(L,M) of both R(L,M) and S(L,M) is given by K(L,M) = L−4M .
In the formulas (1.1), we assume that both K = (γ − δ)2 and L = (γ + δ)2 are nonzero. It is
easily seen that R(L,M) and S(L,M) satisfy the recursion relations

Rn+2 =

{

LRn+1 −MRn for n odd,

Rn+1 −MRn for n even
(1.3)

This paper was supported by the Project RVO 67985840.

194 VOLUME 51, NUMBER 3



PRIME LEHMER AND LUCAS NUMBERS WITH COMPOSITE INDICES

with initial terms R0 = 0, R1 = 1, and

Sn+2 =

{

Sn+1 −MSn for n odd,

LSn+1 −MSn for n even
(1.4)

with initial terms S0 = 2, S1 = 1. If K(L,M) = 0 or L = 0, we use equations (1.3) and (1.4)
to define R(L,M) and S(L,M) rather than the equations in (1.1). Unless stated otherwise,
we assume that R(L,M) and S(L,M) are nondegenerate, that is, M = γδ 6= 0 and γ/δ is not
a root of unity. Note that Rn(L,M) = 0 for some n > 0 only if R(L,M) is degenerate.

D. H. Lehmer in 1930 (see [5]), defined the Lehmer sequences R(L,M) and S(L,M) as
generalizations of the Lucas sequence U(P,Q) and companion Lucas sequence V (P,Q), defined
by

Un(P,Q) =
αn − βn

α− β
and Vn(P,Q) = αn + βn, (1.5)

where n ≥ 0, P and Q are rational integers, and α and β are the roots of

x2 − Px+Q = 0. (1.6)

The discriminant D = D(P,Q) of both U(P,Q) and V (P,Q) is given by D = P 2 − 4Q =
(α − β)2. Similarly to the case of the Lehmer sequence, we assume unless stated otherwise
that U(P,Q) and V (P,Q) are nondegenerate, i.e., Q = αβ 6= 0 and α/β is not a root of unity.
The sequences U(P,Q) and V (P,Q) both satisfy the recursion relation

Wn+2 = PWn+1 −QWn (1.7)

with initial terms U0 = 0, U1 = 1 and V0 = 2, V1 = P .
The Lucas numbers are related to the Lehmer numbers by means of the following formulas

(see [7], p. 436):

Un(P,Q) =

{

Rn(P
2, Q) for n odd,

PRn(P
2, Q) for n even

(1.8)

and

Vn(P,Q) =

{

PSn(P
2, Q) for n odd,

Sn(P
2, Q) for n even.

(1.9)

Note that Rn(1,M) = Un(1,M) and Sn(1,M) = Vn(1,M) for all n.

Example 1.1. For later reference, we make use of the recursion relations given in (1.3) and
(1.4) to derive the first seven terms of both R(L,M) and S(L,M) in terms of L and M :

R0 = 0, R1 = R2 = 1, R3 = L−M, R4 = L− 2M,

R5 = L2 − 3LM +M2, R6 = L2 − 4LM + 3M2, (1.10)

S0 = 2, S1 = 1, S2 = L− 2M, S3 = L− 3M, S4 = L2 − 4LM + 2M2,

S5 = L2 − 5LM + 5M2, S6 = L3 − 6L2M + 9LM2 − 2M3. (1.11)

The proposition below is well-known and follows from (1.1) and (1.5) (see [5], pp. 420–421).

Proposition 1.2.

(i) If m | n then Rm(L,M) | Rn(L,M) and Um(P,Q) | Un(P,Q).
(ii) If m | n and n/m is odd, then Sm(L,M) | Sn(L,M) and Vm(P,Q) | Vn(P,Q).

(iii) Rn(−L,−M) = (−1)b(n−1)/2cRn(L,M).
(iv) Un(−P,Q) = (−1)n−1Un(P,Q).
(v) R2n(L,M) = Rn(L,M)Sn(L,M).
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(vi) U2n(P,Q) = Un(P,Q)Vn(P,Q).
(vii) V2n(P,Q) = V 2

n (P,Q)− 2Qn.

Since R1(L,M) = U1(P,Q) = 1, it is clear from Proposition 1.2 (i) that |Rn(L,M)| or
|Un(P,Q)| can be prime if n is prime. However, in rare instances |Rn(L,M)| or |Un(P,Q)|
can be prime if n is a composite number. Since we are interested in when |Rn(L,M)| and
|Un(P,Q)| are prime, we will assume throughout this paper L ≥ 0 and P ≥ 0 by virtue of
Proposition 1.2 (iii) and (iv).

In the next section, along with other results, we will determine all instances in which
R(L,M) or U(P,Q) is degenerate and |Rn(L,M)| or |Un(P,Q)| is prime for composite n. For
reference, the following proposition lists all cases in which R(L,M) or U(P,Q) are degenerate.

Proposition 1.3. Consider the Lehmer sequence R(L,M) and the Lucas sequence U(P,Q).
Let N be a positive integer. Then

(i) R(L,M) is degenerate if and only if LM = 0 or (L,M) is of the form (N,N), (2N,N),
(3N,N), or (4N,N),

(ii) U(P,Q) is degenerate if and only if PQ = 0 or (P,Q) is of the form (N,N2), (2N, 2N2),
(3N, 3N2) or (2N,N2).

Proof. Part (i) is proved in [5], pp. 425–426, for the case in which gcd(L,M) = 1. The result
in which gcd(L,M) > 1 follows immediately. Part (ii) is proved in [11], p. 613. �

Lemma 1.4. Let R(L,M) be a degenerate Lehmer sequence for which gcd(L,M) = 1. Let
n ≥ 0 and k ≥ 0. Then

(i) (L,M) = (0, ε), (1, 0), (1, 1), (2, 1), (3, 1), or (4, 1).
(ii) If (L,M) = (0, ε), then R2n = n(−ε)n−1 and R2n+1 = (−ε)n.
(iii) If (L,M) = (1, 0), then R0 = 0 and Rn = 1 for n ≥ 1.
(iv) If (L,M) = (1, 1), then Rn = 0 for n = 3k and Rn = (−1)k for n = 3k + r, where

r ∈ {1, 2}.
(v) If (L,M) = (2, 1), then Rn = 0 for n = 4k and Rn = (−1)k for n = 4k + r, where

r ∈ {1, 2, 3}.
(vi) If (L,M) = (3, 1), then Rn = 0 for n = 6k, Rn = 2(−1)k for n = 6k + 3, and

Rn = (−1)k for n = 6k + r, where r ∈ {1, 2, 4, 5}.
(vii) If (L,M) = (4, 1), then R2n = n and R2n+1 = 2n + 1.

Proof. Part (i) follows from Proposition 1.3 (i). Parts (ii)–(vii) can be established through
induction. �

Lemma 1.5. Let U(P,Q) be a degenerate Lucas sequence for which gcd(P,Q) = 1. Let n ≥ 0
and k ≥ 0. Then

(i) (P,Q) = (0, ε), (1, 0), (1, 1), or (2, 1).
(ii) If (P,Q) = (0, ε), then U2n = 0 and U2n+1 = (−ε)n.
(iii) If (P,Q) = (1, 0), then U0 = 0 and Un = 1 for n ≥ 1.
(iv) If (P,Q) = (1, 1), then Un = 0 for n = 3k and Un = (−1)k for n = 3k + r, where

r ∈ {1, 2}.
(v) If (P,Q) = (2, 1), then Un = n for n ≥ 0.

Proof. Part (i) follows from Proposition 1.3 (ii). Parts (ii)–(v) follow by induction. �
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2. Main Results

Theorem 2.1. Consider the Lehmer sequence R(L,M) and the Lucas sequence U(P,Q).
Suppose that gcd(L,M) = d1 > 1 and gcd(P,Q) = d2 > 1. Then

(i) |Rn(L,M)| = p for n composite only if n = 4 and |Un(P,Q)| is never prime for n
composite.

(ii) If p is any prime, then |R4(L,M)| = p if and only if p | M , M ≥ 0, L = 2M + εp, and
(M,εp) 6= (0,−p).

Proof.

(i) It follows by induction using the recursion relations defining R(L,M) and U(P,Q)
that dk1 | Rn(L,M) for n ≥ 2k + 1 and dk2 | Un(P,Q) for n ≥ 2k, where k ≥ 1. Thus,
d21 | Rn(L,M) for n ≥ 5 and d22 | Un(P,Q) for n ≥ 4. Assertion (i) now follows.

(ii) This follows upon noting that R4(L,M) = L− 2M , L ≥ 0, and gcd(L,M) > 1 if and
only if p | M .

�

In light of Theorem 2.1, we will assume from here on that gcd(L,M) = gcd(P,Q) = 1. The
remaining results not proved in this section will be proved in Section 4.

Remark 2.2. We note that by Theorem 2.1 (ii), for each prime p there are infinitely many
ordered pairs (L,M) such that L ≥ 0, gcd(L,M) > 1, and |R4(L,M)| = p.

Theorem 2.3. Let R(L,M) and U(P,Q) be degenerate sequences for which gcd(L,M) =
gcd(P,Q) = 1. Let p be a prime and let k ≥ 1.

(i) If p = 2, then |Rn(L,M)| = 2 for n composite if and only if (n,L,M) = (6k + 3, 3, 1),
(4, 0, 1), (4, 0,−1), or (4, 4, 1).

(ii) If p is an odd prime, then |Rn(L,M)| = p for n composite if and only if (n,L,M) =
(2p, 0, 1), (2p, 0,−1), or (2p, 4, 1).

(iii) Un(P,Q) is never prime for composite n.

The proof follows from Lemmas 1.4 and 1.5. By virtue of Theorem 2.3, we will assume from
now on that R(L,M) and U(P,Q) are nondegenerate.

Theorem 2.4. Consider the nondegenerate sequences R(L,M) and U(P,Q). Suppose that
gcd(L,M) = gcd(P,Q) = 1, K(L,M) = L− 4M > 0, and D(P,Q) = P 2 − 4Q > 0. Then

(i) |Rn(L,M)| or |Un(P,Q)| can be prime for composite n if and only if n = 4,
(ii) |R4(L,M)| = p if and only if p is odd, L = 2M + p, −(p− 1)/2 ≤ M ≤ (p− 1)/2, and

M 6= 0,
(iii) |U4(P,Q)| = p if and only if p is odd, P = 1, and Q = (1− p)/2.

Theorem 2.5. Consider the nondegenerate sequences R(L,M), where gcd(L,M) = 1. Then
|Rn(L,M)| can be prime for n composite only if n ∈ {4, 6, 8, 9, 10, 14, 15, 21, 25, 26, 49, 65}.
Moreover, when n ∈ {14, 15, 21, 26, 49, 65}, there are only finitely many ordered pairs (L,M)
such that |Rn(L,M)| is prime. All such instances are given as follows:

(i) R14(3, 2) = R14(5, 2) = 13,
(ii) R14(3, 4) = R14(13, 4) = −71,
(iii) R15(1, 2) = −89,
(iv) R21(3, 2) = 379,
(v) R26(1, 2) = R26(7, 2) = 181,
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(vi) R49(13, 4) = 30775052320741,
(vii) R65(1, 2) = −335257649.

Example 2.6. It is interesting that |Rn(1, 2)| is prime for 9 out of the 12 composite in-
dices for which Rn(L,M) can be prime when R(L,M) is nondegenerate and gcd(L,M) = 1.
In particular, R4(1, 2) = −3, R6(1, 2) = 5, R8(1, 2) = −3, R9(1, 2) = −17, R10(1, 2) = −11,
R15(1, 2) = −89, R25(1, 2) = −4049, R26(1, 2) = 181, and R65(1, 2) = −335257649. More-
over, |Rn(7, 2)| and |Rn(3, 2)| are each prime for 6 composite indices, and |Rn(5, 2)| is prime
for 5 composite indices. No other nondegenerate Lehmer sequences are prime for as many
composite indices. Specifically, |Rn(7, 2)| = |Rn(1, 2)| for n ∈ {4, 6, 8, 10, 26}, R6(3, 2) = −3,
R8(3, 2) = 7, R9(3, 2) = 19, R9(7, 2) = −5, R10(3, 2) = 5, R14(3, 2) = 13, R21(3, 2) = 379, and
|Rn(5, 2)| = |Rn(3, 2)| for n ∈ {6, 8, 10, 14}, |R25(5, 2)| = −4649.

Theorem 2.7. Consider the nondegenerate Lucas sequence U(P,Q), where gcd(P,Q) = 1.
Then |Un(P,Q)| can be prime for n composite only if n ∈ {4, 6, 8, 9, 10, 15, 25, 26, 65}. Fur-
thermore, when n ∈ {6, 8, 10, 15, 25, 26, 65}, there are only finitely many ordered pairs (P,Q)
such that |Un(P,Q)| is equal to a prime. All such cases are given as follows:

(i) U6(1, 2) = 5,
(ii) U8(1, 2) = −3,
(iii) U10(1, 2) = −11,
(iv) U10(1, 3) = 31,
(v) U15(1, 2) = −89,
(vi) U25(1, 2) = −4049,
(vii) U25(1, 3) = 282001,
(viii) U26(1, 2) = 181,
(ix) U65(1, 2) = −335257649.

This is proved in the proof of Theorem 3.1 on pages 254–256 of [6].

Remark 2.8. From the observations made in Example 2.6, we see that |Un(1, 2)| = |Rn(1, 2)|
is prime for all 9 possible composite indices.

Theorem 2.9. Let p be an arbitrary prime. Consider the nondegenerate Lehmer sequence
R(L,M) for which gcd(L,M) = 1. Then |R4(L,M)| = p if and only if L = 2M + εp, where
p - M , M ≥ (1− εp)/2, and (L,M) 6= (0, 1), (0,−1), or (4, 1).

Proof. Noting that R4(L,M) = L− 2M , we find that |R4(L,M)| = p if and only if

L = 2M + εp. (2.1)

Clearly, if (2.1) holds, then gcd(L,M) = 1 and L > 0 if and only if p - M and M ≥ (1− εp)/2.
By use of Theorem 2.3, we see that |R4(L,M)| = p for a degenerate Lehmer sequence R(L,M)
if and only if p = 2 and (L,M) = (0, 1), (0,−1), or (4, 1). �

Theorem 2.10. Consider the nondegenerate Lucas sequence U(P,Q) for which gcd(P,Q) = 1.
Then |U4(P,Q)| = p if and only if p is odd and one of the following conditions occurs:

(i) P = 1 and Q = (1± p)/2,
(ii) P = p and Q = (p2 ± 1)/2.

Proof. We observe that

U4(P,Q) = U2(P,Q)V2(P,Q) = P (P 2 − 2Q). (2.2)
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Thus, |U4(P,Q)| = p if and only if P = 1 or P = p. If P = 1 then P 2 − 2Q = ±p, which
implies that Q = (1 ± p)/2. If P = p then P 2 − 2Q = ±1, yielding that Q = (p2 ± 1)/2. It is
clear that p must be an odd prime and that gcd(P,Q) = 1. It follows from Theorem 2.3 (iii)
and (2.2) that U(P,Q) is nondegenerate if |U4(P,Q)| = p. �

Theorem 2.11. Consider the nondegenerate Lehmer sequence R(L,M). Then |R6(L,M)| = p
if and only if p is odd, M = (p + ε)/2, (p, ε) 6= (3,−1) and one of the following conditions is
satisfied:

(i) L = (p + 3ε)/2,
(ii) L = (3p + ε)/2.

Proof. We note that

R6(L,M) = R3(L,M)S3(L,M) = (L−M)(L− 3M).

Thus, we have either that

L−M = ε, L− 3M = ±p (2.3)

or

L−M = ±p, L− 3M = ε. (2.4)

Clearly, neither of these simultaneous equations can be solved if p = 2. Noting that L > 0
and M 6= 0, we find that if L−M = ε, then M > 0 and L− 3M < 0, whereas if L− 3M = ε,
then L−M > 0. We are now able to determine L and M uniquely for given values of p and
ε, obtaining the values for L and M given in parts (i) and (ii). It is easily seen from Theorem
2.3 (ii) that the simultaneous equations (2.3) and (2.4) lead to a case in which |R6(L,M)| = p
for a degenerate Lehmer sequence R(L,M) if and only if (p, ε) = (3,−1). �

Remark 2.12. We say that the ordered pairs of integers (L,M) and (P,Q) are standard if
L > 0, P > 0, gcd(L,M) = gcd(P,Q) = 1, and both R(L,M) and U(P,Q) are nondegenerate.
Theorem 2.9 shows that for any prime p, there exist infinitely many standard ordered pairs
(L,M) for which |R4(L,M)| = p. Theorem 2.10 demonstrates that for any odd prime p,
there exist exactly four standard ordered pairs (P,Q) for which |U4(P,Q)| = p. Theorem
2.11 shows that if p = 3, there exist exactly two standard ordered pairs (L,M) such that
R6(L,M) = p, whereas if p ≥ 5, there exist exactly four standard ordered pairs (L,M) such
that |R6(L,M)| = p.

We conjecture that for k = 8, 9, 10, or 25, there exist infinitely many standard ordered
pairs (L,M) for which |Rk(L,M)| is prime. We similarly conjecture that there exist infinitely
many standard ordered pairs (P,Q) such that |U9(P,Q)| is prime. In Section 5, we provide
support for these conjectures by means of Schinzel’s Hypothesis H and extensive computer
calculations.

Theorem 2.13. Let us consider the nondegenerate Lehmer sequence R(L,M) such that
gcd(L,M) = 1. Denote by Pn = Un(2,−1) the nth Pell number and let Qn = 1

2Vn(2,−1).
Then R8(L,M)| = p if and only if at least one of the following two conditions is satisfied:

(i) M ≥ 2, 2M2 − 1 = p, and L = 2M + ε,
(ii) k ≥ 2, Qk = p, and (L,M) = (Qk−ε, Pk).

Moreover, the set of primes p for which |R8(L,M)| = p for some standard ordered pair (L,M)
has natural density 0 in the set of primes.
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Theorem 2.14. Consider the nondegenerate Lehmer sequence R(L,M) and Lucas sequence
U(P,Q) for which gcd(L,M) = gcd(P,Q) = 1. Then |R9(L,M)| = p for some ordered pair
(L,M) if and only if one of conditions (i), (ii), or (iii) holds:

(i) (L,M) = (7, 2), p = 5,
(ii) M ≥ 2, 3M(M2 − 1)− 1 = p, and L = M − 1,
(iii) M ≥ 2, 3M(M2 − 1) + 1 = p, and L = M + 1.

In particular, |R9(M −1,M)| and |R9(M +1,M)| are twin primes when both 3M(M2−1)−1
and 3M(M2 − 1) + 1 are primes.

Furthermore, |U9(P,Q)| = p if and only if (P,Q) = (M,M2 + ε) for some M such that
(P,Q) 6= (1, 0) and

|R9(M
2,M2 + ε)| = 3(M2 + ε)((M2 + ε)2 − 1)− ε = p. (2.5)

Moreover, the set of primes p for which |R9(L,M)| or |U9(P,Q)| = p for some standard
ordered pair (L,M) or (P,Q) has natural density 0 in the set of primes.

Theorem 2.15. Let us consider the nondegenerate Lehmer sequence R(L,M) such that
gcd(L,M) = 1. As usual, let Fn = Un(1,−1) and Ln = Vn(1,−1) denote the nth Fibonacci
number and nth Lucas number, respectively. Then R10(L,M)| = p for some ordered pair
(L,M) if and only if there exists k ≥ 3 and ε such that

|S5(Fk−2ε, Fk)| = |F 2
k−2ε − 5Fk−2εFk + 5F 2

k | = p. (2.6)

Moreover, if (2.6) holds, then

|R10(Fk−2ε, Fk)| = |R10(Lk+ε, Fk)| = |R10(Fk+3ε, Fk+ε)| = |R10(Lk, Fk+ε)| = p. (2.7)

Corollary 2.16. Let R(L,M) be a nondegenerate Lehmer sequence for which gcd(L,M) = 1.
Then |R10(L,M)| = p for some ordered pair (L,M) if and only if there exists k ≥ 2 such that

S5(Fk−2, Fk) = F 2
k−2 − 5Fk−2Fk + 5F 2

k = p. (2.8)

Furthermore, the set of primes p for which |R10(L,M)| = p for some standard ordered pair
(L,M) has natural density 0 in the set of primes.

Theorem 2.17. Let us consider the nondegenerate Lehmer sequence R(L,M) such that
gcd(L,M) = 1. Then R25(L,M)| = p only if (L,M) = (Fk−2ε, Fk) for some k ≥ 3 and ε.
Moreover, the set of primes p for which |R25(L,M)| = p for some standard ordered pair (L,M)
has natural density 0 in the set of primes.

3. Preliminaries and Auxiliary Results

Definition 3.1. Let {Wn}∞n=0 be a sequence of integers. Then p is a primitive prime divisor
of Wn for n ≥ 1 if p | Wn and either n = 1 or n ≥ 2 and p - W1W2 · · ·Wn−1.

A key tool in finding composite indices n for which |Rn(L,M)| = p or |Un(P,Q)| = p is
the following theorem, which is proved in Theorems C, 1.3, and 1.4 by Bilu, Hanrot, Voutier
in [1].

Theorem 3.2. Let us consider the nondegenerate Lehmer and Lucas sequences R(L,M) and
U(P,Q) for which gcd(L,M) = gcd(P,Q) = 1. Let Pn = Un(2,−1) and Qn = 1

2Vn(2,−1).

(i) If n > 30, then both Rn and Un have a primitive prime divisor.
(ii) If n ≤ 30, then Rn has a primitive prime divisor unless

n ∈ {1, . . . , 10, 12, . . . , 15, 18, 24, 26, 30}.
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(iii) If n ≤ 30, then Un has a primitive prime divisor if it is not the case that n ∈
{1, . . . , 8, 10, 12, 13, 18, 30}.

(iv) If n ∈ {7, 9, 13, 14, 15, 18, 24, 26, 30}, then there are exactly 22 terms such that Rn(L,M)
has no primitive prime divisors. These terms are given in Table 1 below, which is ex-
tracted from Table 2 on page 78 of [1].

(v) If n ∈ {5, 8}, then there are infinitely many terms such that Rn(L,M) has no primitive
prime divisors. These terms are also given in Table 1 below, which is extracted from
Table 4 on page 79 of [1].

Table 1. Values for which Rn(L,M) has no primitive prime divisor when n = 5, 7, 8, 9,
13, 14, 15, 18, 24, 26, or 30.

n (L,M)

5 (Fk−2ε, Fk) for k ≥ 3

7 (1, 5), (3, 2), (13, 4), (14, 9)

8 (Qk−ε, Pk) for k ≥ 2

9 (5, 2), (7, 2), (7, 3)

13 (1, 2)

14 (3, 4), (5, 2), (19, 5), (22, 9)

15 (7, 2), (10, 3)

18 (1, 2), (3, 2), (5, 3)

24 (3, 2), (5, 2)

26 (7, 2)

30 (1, 2), (2, 3)

If Rn, (respectively Un) has no primitive prime divisor, we say that Rn, (respectively Un)
is defective.

Remark 3.3. As contrasted to our definition of a primitive prime divisor, Bilu, Hanrot, and
Voutier in [1] define p to be a primitive prime divisor of Rn, (respectively, Un) if p | Rn,
(respectively, p | Un), but p - KLR1R2 · · ·Rn−1 (respectively, p - DU1U2 · · ·Un−1). We will
make use of Theorem 3.2 in the following manner. Suppose that |Rn| = p, where n is composite
and k > 1 is a proper divisor of n. Then by Proposition 1.2 (i), Rk | Rn. This implies that
either |Rk| = 1 and Rk is defective, or |Rk| = p and Rn is defective. Similar considerations
will be made in seeking composite n for which |Un| = p.

The following results will be needed for the proofs of our main theorems.

Proposition 3.4. Consider the Lehmer sequences R(L,M) and S(L,M). Then

(i) gcd(Rm, Rn) = |Rd|, where d = gcd(m,n),
(ii) gcd(Rn, Sn) ∈ {1, 2},
(iii) R4n+1(L,M) = −LMR2

2n(L,M) +R2
2n+1(L,M).

(iv) The odd primitive prime divisors of Rn(L,M) are of the form kn± 1.
(v) If 2 is a primitive prime divisor of Rn(L,M), then n = 3 or 4.

Proof. Parts (i) and (ii) are proved on page 421 of [5]. Part (iii) follows from (1.1). Parts (iv)
and (v) are proved in [5], pp. 421 and 425. �
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Proposition 3.5. Consider the Lehmer sequences R(L,M) and S(L,M). Suppose that K(L,M) =
L− 4M < 0 and n ≥ 0. Then

(i) R2n+1(L,M) = (−1)nS2n+1(|L− 4M |,M),
(ii) R2n(L,M) = (−1)n+1R2n(|L− 4M |,M),
(iii) S2n(L,M) = (−1)nS2n(|L− 4M |,M).

Proof. Parts (i)–(iii) follow from the formulas in (1.1). �

Remark 3.6. It can be easily seen that if L > 0 and K(L,M) = L − 4M < 0, then
K(|L− 4M |,M) < 0 and |K(|L− 4M |,M)| = L.

Lemma 3.7. Consider the Lehmer sequence R(L,M). Then

(i) R2n(L,M) ≡ Ln−1 (mod M) for n ≥ 1,
(ii) R2n+1(L,M) ≡ Ln (mod M) for n ≥ 0.

Proof. Noting that R1 = R2 = 1, we find that parts (i) and (ii) follow by induction upon use
of the recursion relation (1.3) defining R(L,M). �

Proposition 3.8. Consider the Fibonacci sequence {Fn} and the Lucas sequence {Ln}. Then

(i) Fn−1 + Fn+1 = Ln,
(ii) F 2

n + F 2
n+1 = F2n+1,

(iii) L2
n + L2

n+1 = 5F2n+1,
(iv) FmLn + FnLm = 2Fm+n,
(v) Fn−kFn+k − F 2

n = −1n+k+1F 2
k ,

(vi) Fn−2Fn+2 − F 2
n = (−1)n+1.

Proof. Identities (i)–(iv) are proved in [10], pp. 176–177. Identity (v) is (I19) on page 59 of
[4] and (vi) follows from (v) upon letting k = 2. �

Lemma 3.9. Consider the Lehmer sequence R(L,M). Then

R5(Lk+ε, Fk) = −R5(Lk, Fk+ε).

Proof. It follows from Example 1.1 and parts (ii)–(iv) of Proposition 3.8 that

R5(Lk+ε, Fk) +R5(Lk, Fk+ε) = (L2
k+ε − 3Lk+εFk + F 2

k ) + (L2
k − 3LkFk+ε + F 2

k+ε)

= (L2
k+ε + L2

k) + (F 2
k+ε + F 2

k )− 3(Lk+εFk + LkFk+ε) = 5F2k+ε + F2k+ε − 6F2k+ε = 0.

�

Lemma 3.10. We have

(i) Fn − 4Fn+2 = −Ln+3,
(ii) Fn+2 − 4Fn = −Ln−1.

Proof.

(i) By Proposition 3.8 (i), we see that

Fn − 4Fn+2 = (Fn − Fn+2)− Fn+2 − 2Fn+2 = (−Fn+1 − Fn+2)− Fn+2 − Fn+2

= (−Fn+3 − Fn+2)− Fn+2 = −(Fn+4 + Fn+2) = −Ln+3.

(ii) Moreover,

Fn+2 − 4Fn = (Fn+2 − Fn)− Fn − 2Fn = (Fn+1 − Fn)− Fn − Fn

= (Fn−1 − Fn)− Fn = −(Fn−2 + Fn) = −Ln−1.
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�

Lemma 3.11. Let Pn = Un(2,−1) and Qn = 1
2Vn(2,−1). Then

(i) Qn is odd for n ≥ 0,
(ii) Qn−ε − 2Pn = −εQn,
(iii) Qn−ε − 4Pn = −Qn+ε,
(iv) Q2n = 2Q2

n − (−1)n.

Proof. Parts (i)–(iii) can be established by induction upon using the recursion relation defining
both {Pn} and {Qn}. Part (iv) follows from Proposition 1.2 (vii). �

Lemma 3.12. Consider the sequence W (P,Q) = {Wn}∞n=0 satisfying the second-order recur-
sion relation

Wn+2 = PWn+1 −QWn,

where W0, W1, P , and Q are rational integers, P > 0, and Q 6= 0. Suppose that D(P,Q) =
P 2 − 4Q > 0, W1 ≥ PW0/2, W0 ≥ 0, and W1 6= 0. Then the sequence W (P,Q) is increasing
for n ≥ 2. Moreover, if P ≥ 2, then W (P,Q) is increasing for n ≥ 1, while if P ≥ 3 then
W (P,Q) is increasing for n ≥ 0.

Lemma 3.12 follows from the proof of Lemma 3 in [3].

Lemma 3.13. Consider the Lehmer sequences R(L,M) and S(L,M), where LM 6= 0 and
K(L,M) = L−4M > 0. Let Wn = R2n, W n = S2n, Xn = R2n+1, and Xn = S2n+1 for n ≥ 0.
Then {Wn}∞n=0,{W n}∞n=0, {Xn}∞n=0, and {Xn}∞n=0 are increasing sequences.

Proof. Note that W0 = 0, W1 = 1, W 0 = 2, W 1 = L−2M , X0 = 1, X1 = L−M , and X0 = 1,
X1 = L− 3M . By (1.1)

Wn =
1

γ2 − δ2
(

γ2
)n − 1

γ2 − δ2
(

δ2
)n
,

Wn =
(

γ2
)n

+
(

δ2
)n
,

Xn =
γ

γ − δ

(

γ2
)n − δ

γ − δ

(

δ2
)n
,

and

Xn =
γ

γ + δ

(

γ2
)n

+
δ

γ + δ

(

δ2
)n
.

Thus, {Wn}, {W n}, {Xn}, and {Xn} all satisfy the second-order recursion relation

Yn+2 = (γ2 + δ2)Yn+1 − γ2δ2Yn,

where the parameters

γ2 + δ2 = (γ + δ)2 − 2γδ = (
√
L)2 − 2M = L− 2M

and γ2δ2 = M2 are positive rational integers and the discriminant

D(L− 2M,M2) = (L− 2M)2 − 4M2 = L(L− 4M) = L ·K(L,M) > 0.

Note that since L− 4M > 0, we have

W1 = 1 >
L− 2M

2
W0 = 0,

W 1 = L− 2M =
L− 2M

2
W 0,

AUGUST 2013 203



THE FIBONACCI QUARTERLY

X1 = L−M >
L− 2M

2
X0 =

L

2
−M,

X1 = L− 3M >
L− 2M

2
X0 =

L

2
−M.

Since L − 2M ≥ 3, it follows from Lemma 3.12 that {Wn}, {W n}, {Xn}, and {Xn} are all
increasing sequences. �

Lemma 3.14. Let R(L,M) and U(P,Q) be nondegenerate Lehmer and Lucas sequences for
which gcd(L,M) = gcd(P,Q) = 1.

(i) Suppose that n ≥ 4, Rn has a primitive prime divisor p and there exists an integer m
such that 2 < m < n, m | n, and |Rm| ≥ 2. Then |Rn| is not prime and Rn 6= 0.

(ii) Suppose that n ≥ 4, Un has a primitive prime divisor p and there exists an integer m
such that 2 ≤ m < n, m | n, and |Um| ≥ 2. Then |Un| is not prime and Un 6= 0.

Proof. (i) Since R(L,M) is nondegenerate, Rn 6= 0. Note that pRm | Rn. Thus, Rn is not
prime.

The proof of part (ii) is completely similar. �

Theorem 3.15. Consider the nondegenerate Lehmer and Lucas sequences R(L,M), S(L,M),
U(P,Q), and V (P,Q), where gcd(L,M) = gcd(P,Q) = 1. Let Pk = Uk(2,−1), Qk =
1
2Vk(2,−1), and Fk = Uk(1,−1). Then |Rn|, |Sn|, |Un|, or |Vn| = 1 if and only if one of
the following holds:

(i) n = 1, R1 = U1 = S1 = 1,
(ii) n = 1, P = 1, V1 = 1,
(iii) n = 2, R2 = 1,
(iv) n = 2, M ≥ 2, L = 2M + ε, |S2| = 1,
(v) n = 2, P = 1, U2 = 1,

(vi) n = 2, P is odd, P ≥ 3, Q = P 2−ε
2 , |V2| = 1,

(vii) n = 3, M ≥ 2, L = M + ε, |R3| = 1,
(viii) n = 3, M ≥ 2, L = 3M + ε, |S3| = 1,
(ix) n = 3, (P, ε) 6= (1, 1), Q = P 2 − ε, |U3| = 1,
(x) n = 4, M ≥ 2, L = 2M + ε, |R4| = 1,
(xi) n = 4, (L,M) = (Qk−ε, Pk), k ≥ 2, |S4| = 1,
(xii) n = 4, (P,Q) = (1, 2), V4 = 1,
(xiii) n = 5, (L,M) = (Fk−2ε, Fk), k ≥ 3, |R5| = 1,
(xiv) n = 5, (L,M) = (|Fk−2ε − 4Fk|, Fk), k ≥ 3, |S5| = 1,
(xv) n = 5, (P,Q) = (1, 2), (1, 3), (12, 55) or (12, 377), |U5| = 1,
(xvi) n = 7, (L,M) = (1, 5), (3, 2), (13, 4), or (14, 9), |R7| = 1,
(xvii) n = 7, (L,M) = (19, 5), (5, 2), (3, 4), or (22, 9), |S7| = 1,
(xviii) n = 7, (P,Q) = (1, 5), U7 = 1,
(xix) n = 13, (L,M) = (P,Q) = (1, 2), R13(1, 2) = U13(1, 2) = −1,
(xx) n = 13, (L,M) = (7, 2), S13 = −1.

Proof. We assume throughout this proof that R(L,M), S(L,M), U(P,Q), and V (P,Q) are
all nondegenerate and that gcd(L,M) = gcd(P,Q) = 1. We prove the theorem for the Lehmer
sequences R(L,M) and S(L,M). The results for the Lucas sequences U(P,Q) and V (P,Q)
are proved as a special case of Lemma 2.21 in [6] and also follow from the results for R(L,M)
and S(L,M) upon the use of (1.8) and (1.9). We note that by Lemma 3.13, if K(L,M) > 0,
then |Rn(L,M)| ≥ 2 for n ≥ 3 and |Sn(L,M)| ≥ 2 for n ≥ 2.
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We further note that if |Rn| = 1, then Rn(L,M) has no primitive prime divisor, while the
identity R2n = RnSn implies that if |Sn| = 1 then R2n(L,M) has no primitive prime divisor.
By Theorem 3.2, it thus follows that if |Rn| = 1 then n ∈ T1 = {1, . . . , 10, 12, . . . , 15, 18, 24, 26,
30} while if |Sn| = 1, then n ∈ T2 = {1, . . . , 7, 9, 12, 13, 15}. Moreover, by Theorem 3.2 (iv)
there are exactly 22 triples (n,L,M) such that Rn(L,M) is defective (see Table 1) when

n ∈ {7, 9, 13, 14, 15, 18, 24, 26, 30}.
Observing that R1 = R2 = S1 = 1, S2 = R4 = L − 2M , R3 = L −M , and S3 = L − 3M ,

we find by use of Lemma 1.4 (i) that parts (i), (iii), (iv), (vii), (viii), and (x) give all the
possibilities for which |Rn| = 1 for n ≤ 4 and |Sn| = 1 for n ≤ 3.

We now find all instances in which |Rn(L,M)| = 1 for n ≥ 5, n odd, and n ∈ T1. By our
discussion above, we must then have that K(L,M) < 0. Since |Rn(L,M)| = |Sn(|L−4M |,M)|
if both n is odd and K(L,M) < 0 by Proposition 3.5 (i), our results concerning Rn(L,M) will
also allow us to determine all cases such that |Sn(L,M)| = 1 when n ≥ 5 is an odd integer. If
n is an odd prime, it follows from Proposition 3.4 (i) and the fact that R1 = 1 that if Rn has
no primitive prime divisor, then Rn = ±1.

Observing that if n ≥ 5 is prime and n ∈ T1, then n = 5, 7, or 13, we see by Table 1 that
parts (xiii), (xiv), (xvi), (xvii), (xix), and (xx) present all the possibilities in which n ≥ 5 is
prime and either |Rn(L,M)| = 1 or |Sn(L,M)| = 1.

The remaining cases in which n is odd and n ∈ T1 are n = 9 or 15. Examining the 5
cases which are left in Table 1 for which n ∈ {9, 15} and Rn(L,M) is defective, we find that
|Rn(L,M)| > 1 in these instances. We have now treated all the cases for which n ≥ 5 is odd
and n ∈ T1 or T2.

We now suppose that n is even and either n ∈ T1 for n ≥ 6 or n ∈ T2 for n ≥ 4. We first
search for all standard ordered pairs (L,M) for which S4(L,M) = ±1. This can occur only if
S4(L,M) is odd and R8(L,M) has no primitive divisor. First suppose that

S4(L,M) = L2 − 4LM + 2M2

is odd. This can happen if and only if L is odd.
Now suppose that R8(L,M) is defective and L is odd. We observe by Proposition 3.4 (ii)

that gcd(R4(L,M), S4(L,M)) = 1, since S4 is odd. Moreover, if d is any proper divisor of 8,
then d | 4, which implies that Rd | R4 by Proposition 1.2 (i). Hence, by Proposition 3.4 (i),
gcd(Rm(L,M), S4(L,M)) = 1 for 1 ≤ m < 8, since S4 | R8. Thus, R8(L,M) is defective when
L is odd if and only if S4(L,M) = ±1. By use of Lemma 3.11 (i) and Table 1, we see that
part (xi) gives all cases for which |S4(L,M)| = 1.

We now show that |Rn(L,M)| > 1 and |Sn(L,M)| > 1 for all the other even values of n
in T1 and T2, respectively. We first treat the companion Lehmer sequence S(L,M). Suppose
that

S6(L,M) = L3 − 6L2M + 9LM2 − 2M3 = (L− 2M)(L2 − 4LM +M2) = ±1.

Then L− 2M = ε and

L2 − 4LM +M2 = ±1. (3.1)

Substituting L = 2M + ε into (3.1), we obtain that

−3M2 + 1 = ±1,

which implies that M = 0, which is a contradiction, or M2 = 2/3, which is impossible. Thus,
|S6(L,M)| 6= 1 for all standard ordered pairs (L,M).
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The remaining even value of n in T2 is n = 12. There are exactly two standard ordered
pairs (L,M) in Table 1 for which R24(L,M) is defective. Checking both these ordered pairs,
we see that |S12(L,M)| 6= 1 in either case. We have now completely treated all the cases for
which n ∈ T2.

Now suppose that |Rn(L,M)| = 1, where n ≥ 6 is even and n ∈ T1. We first consider the
case in which |R6(L,M)| = 1. Then

R6(L,M) = R3(L,M)S3(L,M) = (L−M)(L− 3M) = ±1.

Thus, L−M = ±1 and L− 3M = ±1. Since L > 0 and M 6= 0, we have that M > 0. Hence,

R3(L,M)− S3(L,M) = 2M ∈ {−2, 0, 2},
which implies that M = 0 or (L,M) = (2, 1), both of which contradict the fact that R(L,M)
is nondegenerate. Since R6(L,M)|R6m(L,M), we see that |Rn(L,M)| = 1 never occurs for
n = 6, 12, 18, 24, or 30.

Next suppose that |R8(L,M)| = 1. Then

R8(L,M) = R4(L,M)S4(L,M) = (L− 2M)(L2 − 4LM + 2M2) = ±1.

Thus, L− 2M = ε and

L2 − 4LM + 2M2 = ±1. (3.2)

We again note that M > 0, since L > 0 and M 6= 0. Substituting L = 2M + ε into (3.2), we
get

−2M2 + 1 = ±1.

Then M = 0, which is impossible, or (L,M) = (1, 1) or (3, 1), both of which contradict the
fact that R(L,M) is nondegenerate.

We now suppose that |R10(L,M)| = 1. Then

R10(L,M) = R5(L,M)S5(L,M) = (L2 − 3LM +M2)(L2 − 5LM + 5M2) = ±1.

Hence, R5(L,M) = ±1, S5(L,M) = ±1, and

R5(L,M)− S5(L,M) = 2LM − 4M2 = 2M(L− 2M) ∈ {−2, 0, 2}.
Thus, M ∈ {−1, 0, 1}, since gcd(L,M) = 1. Clearly, M 6= 0. Hence, M = ±1. If M = 1,
then L − 2M ∈ {−1, 0, 1}, which implies that (L,M) = (2, 1), (3, 1), or (1, 1), each of which
contradicts the fact that R(L,M) is nondegenerate. If M = −1, then L < 0, which contradicts
the assumption that L > 0.

We finally suppose that |Rn(L,M)| = 1, where n = 14 or 26. By Table 1, there are five
instances in which Rn(L,M) is defective when n = 14 or 26. Examining each of these cases,
we see that |Rn(L,M)| > 1, and the proof is complete. �

4. Proofs of the Main Theorems

In this section we prove the main results of this paper which have not already been proved
in Section 2.

Proof of Theorem 2.4. (i) First suppose that the Lehmer sequence R(L,M) has discriminant
K(L,M) > 0. Suppose that n > 4 and n is composite. If n 6= 2p, then n has a factor a such
that 2 < a < n and a ≡ n (mod 2). Then by Proposition 1.2 (i) and Lemma 3.13, Ra | Rn

and 1 < Ra < Rn. Hence, Rn is composite. If n = 2p, where p ≥ 3, then by Proposition 1.2
(v) and Lemma 3.13, R2p = RpSp, where Rp > 1 and Sp > 1, and Rn is again composite.
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Now suppose that the Lucas sequence U(P,Q) has discriminant D(P,Q) > 0. Assume that
n > 4 and n is composite. Then n has a factor b such that 2 < b < n. By Proposition 1.2 (i)
and Lemma 3.12, Ub | Un and 1 < Ub < Un, and Un is composite.

(ii) Note that R4 = L − 2M . Thus, |R4| = p only if L = 2M ± p. If L = 2M − p, then
M > 0, since L > 0. However, then K(L,M) = L − 4M < 0, contradicting our hypothesis.
Hence, L = 2M + p. If p = 2, then M > 0, since R(L,M) is nondegenerate and L > 0.
However, then K(L,M) = L − 4M ≤ 0, which again is a contradiction. Therefore, p is odd.
By the constraints, L > 0 and L− 4M > 0, we see that −(p− 1)/2 ≤ M ≤ (p− 1)/2.

(iii) Notice that U4 = P 3 − 2PQ = P (P 2 − 2Q). Thus, |U4| = p only if P (P 2 − 2Q) = ±p.
Since P > 0, we must have that P = 1 and P 2 − 2Q = ±p or P = p and P 2 − 2Q = ±1.
However, if P 2 − 2Q = ±1 or −p, then D(P,Q) = P 2 − 4Q < 0, which is a contradiction.
Hence, P = 1 and P 2 − 2Q = p. Consequently, p is odd. Since P 2 − 2Q = 1− 2Q = p, we see
that Q = (1−p)/2 < 0. Since Q < 0, we observe that D(P,Q) = P 2−4Q > 0, as required. �

Proof of Theorem 2.5. We assume throughout this proof that R(L,M) and S(L,M) are
both nondegenerate and that gcd(L,M) = 1. We can also assume that n ≥ 12, n is composite,
and |Rn(L,M)| is prime. We note that by Theorem 2.4 (i), we must have that K(L,M) < 0.

We first show that if n is composite, n ≥ 12, and n 6∈ {14, 15, 21, 25, 26, 49, 65}, then
Rn(L,M) is never prime. Suppose that n = 2k, where k ≥ 6 and k 6∈ {7, 13}. Then by
Theorem 3.15, |Rk(L,M)| ≥ 2 and |Sk(L,M)| ≥ 2 for all standard ordered pairs (L,M).
Thus, |R2k(L,M)| = |Rk(L,M)||Sk(L,M)| is not prime.

Now suppose that |Rn| is prime, where n is a composite odd integer such that n ≥ 27 and
n 6∈ {49, 65}. Observe that Rn(L,M) has a primitive prime divisor by Theorem 3.2. It thus
follows from Lemma 3.14 (i) that |Rm| = 1 for each proper divisor m > 1 of n. By Theorem
3.15, |Rm(L,M)| = 1 for m > 1 an odd integer only if m ∈ {3, 5, 7, 13}. It follows that the sets
of proper divisors of n which are greater than 1 are {3}, {5}, {7}, {13}, {3, 5}, {3, 7}, {3, 13},
{5, 7}, {5, 13}, or {7, 13}. We claim that it never happens that |R5(L,M)| = |R7(L,M)| = 1
or |R7(L,M)| = |R13(L,M)| = 1. If |R5(L,M)| = |R7(L,M)| = 1 then by Theorem 3.15 (xiii)
and (xvi), (L,M) = (Fk−2ε, Fk) for some k ≥ 3 and also (L,M) = (1, 5), (3, 2), (13, 4), or
(14, 9). This can never occur. If |R13(L,M)| = 1, then by Theorem 3.15 (xix), (L,M) = (1, 2).
However, R7(1, 2) = 7, and so we cannot have that |R7(L,M)| = |R13(L,M)| = 1.

Noting that n ≥ 27 and n 6∈ {49, 65}, we see that n = 39 or n = 169. In both cases, we notice
that |R13(L,M)| = 1, which implies by our observation above that (L,M) = (1, 2). However,
by the use of the computer algebra system GAP (Groups, Algorithms, and Programming), we
observe that

|R39(1, 2)| = 24569 = 79 · 311

and

|R169(1, 2)| = 3905547895493253204700049 = 264991 · 14738417136782959439.

We now find all ordered pairs (L,M) such that |Rn(L,M) is prime for n = 14, 15, 21, 26, 49,
or 65. We first treat the even cases, n = 14 and n = 26. Recall that by Proposition 3.5 (ii),
|R2k(L,M)| = |R2k(|L − 4M |,M)| when K(L,M) < 0. By our argument above, |R14(L,M)|
is prime only if |R7(L,M)| = 1 or |S7(L,M)| = 1. By Theorem 3.15 (xvi) and (xvii),
|R7(L,M)| = 1 if and only if (L,M) = (1, 5), (3, 2), (13, 4), or (14, 9), while |S7(L,M)| = 1 if
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and only if (L,M) = (19, 5), (5, 2), (3, 4), or (22, 9). We observe by inspection that

|R14(1, 5)| = |R14(19, 5)| = 559 = 13 · 43,
|R14(3, 2)| = |R14(5, 2)| = 13,

|R14(13, 4)| = |R14(3, 4)| = 71,

and
|R14(14, 9)| = |R14(22, 9)| = 1169 = 7 · 167.

Now, we will investigate the case in which |R26(L,M)| is prime. Then |R13(L,M)| = 1 or
|S13(L,M)| = 1. By Theorem 3.15 (xix) and (xx), |R13(L,M)| = 1 if and only if (L,M) =
(1, 2), whereas |S13(L,M)| = 1 if and only if (L,M) = (7, 2). We observe by inspection that
|R26(1, 2)| = |R26(7, 2)| = 181, which is prime.

We now suppose that |R15(L,M)| is prime. By Lemma 3.14 (i), we must have that
R15(L,M) has a primitive prime divisor and |R3(L,M)| = |R5(L,M)| = 1 or it is the case that
R15(L,M) has no primitive prime divisor. Suppose that R15(L,M) has no primitive prime
divisor. Then by Table 1, (L,M) = (7, 2) or (10, 3). We note that |R15(7, 2)| = 275 = 52 · 11,
while R15(10, 3) = 133 = 7 · 19. Now suppose that R15(L,M) has a primitive prime divi-
sor. We note by Theorem 3.15 (vii) and (xiii) that |R3(L,M)| = |R5(L,M)| = 1 if and
only if |L − M | = 1 and (L,M) = (Fk−2ε, Fk) for some k ≥ 3. This occurs if and only if
(L,M) = (1, 2). We now observe that R15(1, 2)| = 89, which is prime.

Next suppose that |R21(L,M)| is prime. By Theorem 3.2 (ii), R21(L,M) has a primitive
prime divisor. Thus, we must have that |R3(L,M)| = |R7(L,M)| = 1. Then by Theorem 3.15
(vii) and (xvi), we see that |L−M | = 1 and (L,M) = (1, 5), (3, 2), (13, 4), or (14, 9). Hence,
we need only consider the sequence R(3, 2). We observe that |R21(3, 2)| = 379, which is prime.

Now we suppose that |R49(L,M)| is prime. By Theorem 3.2, R49(L,M) has a primitive
prime divisor. Thus, |R7(L,M)| = 1 by Lemma 3.14 (i). According to Theorem 3.15 (xvi),
this occurs only if (L,M) = (1, 5), (3, 2), (13, 4), or (14, 9). By use of GAP and Mathematica,
we find that

|R49(1, 5)| = 3336236769680641 = 491 · 6794779571651,
|R49(3, 2)| = 13555459 = 97 · 139747,

|R49(13, 4)| = 30775052320741,

which is prime, and

|R49(14, 9)| = 765925877884715074799 = 2351 · 325787272600899649.
Finally, we treat the case in which |R65(L,M)| is prime. By Theorem 3.2, R65(L,M) has a

primitive prime divisor. Thus, |R5(L,M)| = |R13(L,M)| = 1. By Theorem 3.15 (xix), we find
that R13(L,M) = 1 if and only if (L,M) = (1, 2). By inspection we see that |R5(1, 2)| = 1
also. Using GAP, we find that |R65(1, 2)| = 335257649, which is prime. �

Proof of Theorem 2.13. Suppose that

|R8(L,M)| = |R4(L,M)||S4(L,M)| = |L− 2M ||L2 − 4LM + 2M2| = p. (4.1)

Then either R4 = L− 2M = ε or S4 = L2 − 4LM + 2M2 = ±1.
Suppose that L = 2M + ε. Then by (4.1),

|R8(L,M)| = |ε||(2M + ε)2 − 4(2M + ε)M + 2M2| = | − 2M2 + 1| = 2M2 − 1 = p.

Since L > 0 and R(L,M) is nondegenerate, we have M ≥ 2. Then |R8(L,M)| = p if and only
if 2M2 − 1 = p.
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Now suppose that L2 − 4LM + 2M2 = ±1. By Theorem 3.15 (xi) this occurs if and only if
(L,M) = (Qk−ε, Pk), where k ≥ 2. Then by Proposition 3.5 (ii) and Lemma 3.11 (ii) and (iii),

|R8(L,M)| = |R8(Qk−ε, Pk)| = |R4(Qk−ε, Pk)| = |Qk−ε − 2Pk|
= Qk = |R8(|Qk−ε − 4Pk|, Pk)| = |R8(Qk+ε, Pk)|.

Parts (i) and (ii) are now established.
We now show that the set of primes p such that |R8(L,M)| = p for some standard ordered

pair (L,M) has natural density 0 in the set of primes. Let π(N) denote the number of primes
less than or equal to N . Then by the Prime Number Theorem, π(N) ∼ N/ lnN . Let Gn

denote the nth prime of the form 2M2 − 1, where M ≥ 2. Then Gn ≥ n2 for n ≥ 1. Let Hn

denote the nth prime of the form Qk = 1
2Vk(2,−1), where k ≥ 2. Then

Qk =
1

2
(αk + βk) =

1

2
((1 +

√
2)k + (1−

√
2)k).

We observe that 1+
√
2 > 2.4 and −0.5 < 1−

√
2 < 0. Thus, |(1−

√
2)n| < 1 for n ≥ 1. Hence,

Hn ≥ 1
4 (1 +

√
2)n for n ≥ 1. Let A(N) denote the number of primes of the form 2M2 − 1

which are less than or equal to N and let B(N) denote the number of primes of the form Qk

which are less than or equal to N . Hence, by the above inequalities,

A(N) ≤
√
N

and

B(N) ≤ log1+
√
2(4N) =

ln 4 + lnN

ln(1 +
√
2)

.

Hence, the natural density in the set of primes of those primes of the form 2M2 − 1 or Qk is
less than or equal to

lim
N→∞

√
N + ln 4 + lnN

N/ lnN
= 0.

Thus, the desired natural density is indeed equal to 0. �

Proof of Theorem 2.14. Suppose that |R9(L,M)| = p. Either |R9(L,M)| has a primitive prime
divisor or R9(L,M) is defective.

Suppose first that R9(L,M) is defective. By Table 1 we must have that (L,M) = (5, 2),
(7, 2), or (7, 3). By inspection, we see that R9(5, 2) = −9, R9(7, 2) = −5,, and R9(7, 3) = 4.
Thus, |R9(L,M)| is prime and defective if and only if (i) holds.

Now suppose that R9(L,M) is nondefective. Then by Lemma 3.14 (i), R3(L,M) = L−M =
ε. If L = M − 1, then by Proposition 3.4 (iii),

|R9(L,M)| = |R9(M − 1,M)| = | −M(M − 1)R2
4(M − 1,M) +R2

5(M − 1,M)|
= | −M(M − 1)(−M − 1)2 + ((M − 1)2 − 3M(M − 1) +M2)2|
= | − 3M(M2 − 1) + 1| = 3M(M2 − 1)− 1.

If L = M + 1, then again by Proposition 3.4 (iii),

|R9(L,M)| = |R9(M + 1,M)| = | −M(M + 1)R2
4(M + 1,M) +R2

5(M + 1,M)|
= | −M(M + 1)(−M + 1)2 + ((M + 1)2 − 3M(M + 1) +M2)2|
= 3M(M2 − 1) + 1 = |R9(M − 1,M)| + 2.
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We note that M ≥ 2, since L > 0 and R(L,M) is nondegenerate. Parts (ii) and (iii) are
now established. It now immediately follows from (1.8) that |U9(P,Q)| = p if and only if
(P,Q) = (M,M2 + ε) for some M ≥ 1 such that (P,Q) 6= (1, 0), and (2.5) holds.

We now show that the set of primes p for which |R9(L,M)| = p or |U9(P,Q)| = p for some
standard ordered pair (L,M) or (P,Q) indeed has natural density 0 in the set of primes. Since
|U9(P,Q)| = |R9(P

2, Q)| by (1.8), it suffices to establish the natural density for the Lehmer
numbers |R9(L,M)| which are prime. By the earlier part of this proof, |R9(L,M)| = p only if
p = 5 or p is of the form 3M(M2 − 1)± 1.

Let Gn denote the nth prime of the form 3M(M2 − 1) − 1 and Hn denote the nth prime
of the form 3M(M2 − 1) + 1 for M ≥ 2. Then Gn ≥ n3 and Hn ≥ n3 for all n ≥ 1. Our
result on the natural density now follows from a similar argument to that given in the proof
of Theorem 2.13. �

Proof of Theorem 2.15. Suppose that |R10(L,M)| = p. Since

|R10(L,M)| = |R5(L,M)||S5(L,M)| = |L2 − 3LM +M2||L2 − 5LM + 5M2| = p,

we have |R5(L,M)| = |L2 − 3LM + M2| = 1 and |S5(L,M)| = |L2 − 5LM + 5M2| = p or
|R5(L,M)| = p and |S5(L,M)| = 1. By Theorem 3.15 (xiii), |R5(L,M)| = 1 for some standard
ordered pair (L,M) if and only if

(L,M) = (Fk−2ε, Fk) (4.2)

for some k ≥ 3. We also see by Theorem 3.15 (xiv) and Lemma 3.10 that |S5(L,M)| = 1 for
some standard ordered pair (L,M) if and only if

(L,M) = (|Fk−2ε − 4Fk|, Fk) = (Lk+ε, Fk) (4.3)

for some k ≥ 3. However, by Proposition 3.5 (i), Remark 3.6, and Lemma 3.10,

|S5(Lk+ε, Fk)| = |R5(|Lk+ε − 4Fk|, Fk) = |R5(Fk−2ε, Fk)|. (4.4)

Thus, |R10(L,M)| = p for some standard ordered pair (L,M) if and only if there exists k ≥ 3
such that

|S5(Fk−2ε, Fk)| = |F 2
k−2ε − 5Fk−2εFk + 5F 2

k | = p. (4.5)

Now suppose that (4.5) holds for some k ≥ 3. Then by (4.2), |R5(Fk−2ε, Fk)| = 1 and it
follows by Proposition 1.2 (v), (4.3), and Lemmas 3.9 and 3.10 that

p = |S5(Fk−2ε, Fk)| = |R10(Fk−2ε, Fk)| = |R5(Lk+ε, Fk)| = |R10(Lk+ε, Fk)|
= |R5(Lk, Fk+ε)| = |R10(Lk, Fk+ε)| = |R10(|Lk − 4Fk+ε|, Fk+ε)|. (4.6)

Then (2.7) will be established if we can show that

|Lk − 4Fk+ε| = Fk+3ε. (4.7)

In equation (4.6), let k = m− ε and τ = −ε. Then by Lemma 3.10, we have

Lk − 4Fk+ε = Lm−ε − 4Fm = Lm+τ − 4Fm = −Fm−2τ = −Fk+3ε,

and (4.6) holds. �

Proof of Corollary 2.16. We first establish that (2.8) holds. When k = 2, we note that while
R(F0, F2) = R(0, 1) is degenerate and |R10(0, 1)| = 5, we also find that R(5, 2) is nondegenerate
and |R10(5, 2)| = 5.

We now let k ≥ 3. Let m = k + 1. Then m ≥ 4. By Theorem 2.15, |R10(L,M)| = p if and
only if there exist Fibonacci numbers Fm−2ε and Fm such that

|S5(Fm−2ε, Fm)| = p.
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Moreover, by (4.6) and (4.7) in the proof of Theorem 2.15,

|S5(Fm+2, Fm)| = |R5(Lm, Fm−1)|
and

|Lm − 4Fm−1| = Fm−3.

It follows from Proposition 3.5 (i) that

|R5(Lm, Fm−1)| = |S5(Fm−3, Fm−1)|.
Upon substituting m in terms of k and noting that Fk > Fk−2, we obtain

S5(Fk−2, Fk) = F 2
k−2 − 5Fk−2Fk + 5F 2

k = p

for k ≥ 2 whenever |S5(Fk+3, Fk+1)| = p, and (2.8) now follows.
We now show that the set of primes p for which

|R10(L,M)| = p (4.8)

for some standard ordered pair (L,M) has natural density 0 in the set of primes. By our
discussion above, (4.8) holds if and only if

S5(Fk−2, Fk) = F 2
k−2 − 5Fk−2Fk + 5F 2

k

= F 2
k−2 + 5Fk(Fk − Fk−2) = F 2

k−2 + 5Fk−1Fk = p (4.9)

for some k ≥ 2.
Let Gn denote the nth prime of the form S5(Fk−2, Fk) for some k ≥ 2. Then by (4.9) and

the Binet formula given in (1.5),

Gn ≥ 5Fn =
5√
5

((1 +
√
5

2

)n
−

(1−
√
5

2

)n)

>

√
5

2

(1 +
√
5

2

)n
(4.10)

for n ≥ 1, since 1.6 < (1 +
√
5)/2 < 1.7, −0.7 < (1−

√
5)/2 < 0, and

∣

∣

∣

(1−
√
5

2

)n∣
∣

∣
< 1.

The result on the natural density now follows from a similar argument to that given in the
proof of Theorem 2.13. �

Proof of Theorem 2.17. By Theorem 3.2, R25(L,M) has a primitive prime divisor. It thus
follows from Lemma 3.14 that |R5(L,M)| = 1. However, according to Theorem 3.15 (xiii),
|R5(L,M)| = 1 for some standard ordered pair (L,M) if and only if (L,M) = (Fk−2ε, Fk) for
some k ≥ 3.

We now demonstrate that the set of primes p for which

|R25(L,M)| = p (4.11)

for some standard ordered pair (L,M) has natural density 0 in the set of primes. By our above
discussion, (4.11) holds only if (L,M) = (Fk−2ε, Fk) for some k ≥ 3. By Lemma 3.7 (ii) and
Proposition 3.8 (vi),

R25(Fk−2ε, Fk) ≡ F 12
k−2ε = (F 2

k−2ε)
6 ≡ (−1)6k ≡ 1 (mod Fk). (4.12)

Let Gn denote the nth prime of the form |R25(Fk−2ε, Fk)| for some k ≥ 3. By (4.12),
G2n−1 ≥ Fn − 1 and G2n ≥ Fn + 1. Since p is a primitive prime divisor of R25(L,M) if
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|R25(L,M)| = p, it follows from Proposition 3.4 (iv) and (v) that is p is odd and p ≡ ±1
(mod 50). We now see from (4.10) that

G2n > G2n−1 ≥ Fn − 1 >
1

4
√
5

(1 +
√
5

2

)n

for n ≥ 3. The result on the natural density now follows from a similar argument to that given
in the proof of Theorem 2.13. �

5. Examples and Conjectures

Following Remark 2.12, we conjectured that for k ∈ {8, 9, 10, 25}, there exist infinitely
many standard ordered pairs (L,M) for which |Rk(L,M)| is prime. We provide justification
for these conjectures by means of Schinzel’s Hypothesis H (see [9]) and computer calculations
using GAP and Mathematica.

Conjecture 5.1. (Schinzel’s Hypothesis H.)
Let f1, f2, . . . , fk be irreducible polynomials with integer coefficients such that the leading

coefficient of each fi is positive and such that for each prime p, there is some integer n with
none of f1(n), f2(n), . . . , fk(n) divisible by p. Then there are infinitely many positive integers
n such that each fi(n) is prime.

Example 5.2. (|R8(L,M)| = p.)
It follows from Theorem 2.13 that there exist infinitely many standard ordered pairs (L,M)

such that |R8(L,M)| is prime if and only if either 2M2 − 1 is prime for infinitely many M ≥ 2
or Qk is prime for infinitely many k ≥ 2. Schinzel’s Hypothesis H implies that 2M2 − 1 is
indeed prime for infinitely many values of M . It is also widely believed that Qk is prime for
infinitely many values of k (see [8], pp. 362–364).

By Theorem 2.13, we see that if p = 2M2−1 or Qk for someM ≥ 2 or k ≥ 2, then there exist
two standard ordered pairs (L,M) such that |R8(L,M)| = p. Additionally, if Qk = 2M2 − 1
for some k ≥ 2 and M ≥ 2, then there are exactly four standard ordered pairs (L,M) such
that |R8(L,M)| = p. For example, Q4 = 17 = 2 · 32 − 1 and

|R8(5, 3)| = |R8(7, 3)| = |R8(7, 12)| = |R8(41, 12)| = 17.

By Lemma 3.11 (iv), Q4k = 2Q2
2k − 1.

It follows from Proposition 1.2 (ii) and Lemma 3.12 that Qk can be prime only if k is a
prime or a power of 2. By examination, we see that Q4 = 17, Q8 = 577, and Q16 = 665867
are all primes. Additionally, Q3 = 7 = 2 · 22 − 1 is also a prime. We conjecture that these four
values are the only instances in which Qk is a prime of the form 2M2 − 1. For k odd, Qk is
of the form 2M2 − 1 only for k = 1, 3. This follows from the theorem of Fermat, proved for
example by T. Pepin (see [2], p. 487) that the system of Diophantine Equations x = 2y2 − 1,
x2 = 2z2 − 1 implies x = 1 or 7. Now, for k odd, Q2

k = 2P 2
k − 1.

We tested the positive integers M up to 5600 and found that for 1326 = 23.68% of these
values, 2M2− 1 is prime. It is known (see the website [13]) that Qk is prime for 21 values, the
largest of which is k = 9679 for which Qk has 3705 digits.

Example 5.3. (|R9(L,M)| = p and |U9(P,Q)| = p.)
By Theorem 2.14, |R9(L,M)| = p if and only if p = 5 or p is of the form

3M(M2 − 1) + ε (5.1)
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for M ≥ 2. If (5.1) holds, then by Theorem 2.14 (ii) and (iii), |R9(M + ε,M)| = p. By
Hypothesis H, there exist infinitely many pairs of twin primes (p, p + 2) such that |R9(M −
1,M)| = p and |R9(M + 1,M)| = p + 2 for M ≥ 2. A fortiori, Hypothesis H implies that
there are infinitely many primes p such that |R9(L,M)| = p for some standard ordered pair
(L,M). Moreover, by Hypothesis H and (1.8), there are infinitely many values of M such that
|U9(M,M2 + ε)| = |R9(M

2,M2 + ε)| is prime.
We tested the terms |R9(M + ε,M)| for primality for 2 ≤ M ≤ 149380. We determined

that |R9(M + ε,M)| is prime for 39928 = 13.36% of these 298758 ordered pairs (M + ε,M).
The largest prime value found for |R9(L,M)| was |R9(149373, 149372)| = 9998361674932429.
Moreover, for 2493 = 1.67% of 149379 values of M for which 2 ≤ M ≤ 149380, |R9(M−1,M)|
and |R9(M + 1,M)| form a pair of twin primes. The largest pair of twin primes found were

|R9(149271, 149272)| = 9978294320467127

and

|R9(149273, 149272)| = 9978294320467129.

By Theorem 2.14, |U9(P,Q)| = p if and only if (P,Q) = (M,M2 + ε) for some M such
that M ≥ 1, (P,Q) 6= (1, 0), and |R9(M

2,M2 + ε)| = p. We found that for 121 ordered pairs
(M2,M2 + ε) such that M ≤ 149380 and |R9(M

2,M2 + ε)| is prime. The largest prime value
found for |U9(P,Q)| was

|U9(380, 14401)| = |R9(14400, 14401)| = 9032996815106399.

Example 5.4. (|R10(L,M)| = p.)
By Corollary 2.16, |R10(L,M)| = p for some standard ordered pair (L,M) if and only if

S5(Fk−2, Fk) = F 2
k−2 − 5Fk−2Fk + 5F 2

k = p

for some k ≥ 2. We tested the expression F 2
k−2−5Fk−2Fk+5F 2

k for primality for 2 ≤ k ≤ 1000.
Twelve primes and eighteen probable primes were found. The largest prime found was

|R10(F28, F30)| = |S5(F28, F30)| = |R10(317811, 832040)| = 2240299317521.

These computer results lend some credence to our conjecture that |R10(L,M)| is prime for
infinitely many ordered pairs (L,M).

By Theorem 2.15, if |R10(L,M)| = p for some standard ordered pair (L,M), then there
exist four distinct ordered pairs (L,M) such that |R10(L,M)| = p. We verify this when p = 79.
Then by inspection we see that

|R10(F3, F5)| = |R10(2, 5)| = |R10(L6, F5)| = |R10(18, 5)| = |R10(F8, F6)|
= |R10(21, 8)| = |R10(L5, F6)| = |R10(11, 8)| = 79.

Example 5.5. (|R25(L,M)| = p.)
By Theorem 2.17, |R25(L,M)| = p for some standard ordered pair (L,M) only if (L,M) =

(Fk−2ε, Fk) for some k ≥ 3. We tested the terms |R25(Fk−2ε, Fk)| for primality for 3 ≤ k ≤
1000. We found 5 primes and 13 probable primes. The five primes found are |R25(1, 2)| = 4049,
|R25(5, 2)| = 4649, |R25(1, 3)| = 282001, |R25(21, 8)| = 5366907001, and

|R25(8, 21)| = 83397852938401.

One sees that the size of the primes p for which |R25(L,M)| = p appears to grow very
rapidly. These computer results provide some plausibility for our conjecture that |R25(L,M)|
is prime for infinitely many standard ordered pairs (L,M).
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