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Abstract. We derive interesting arctangent identities involving the golden ratio, Fibonacci
numbers and Lucas numbers. Binary BBP-type formulas for the arctangents of the odd
powers of the golden ratio are also derived, for the first time in the literature. Finally we
derive golden-ratio-base BBP-type formulas for some mathematical constants, including π,
log 2, log φ and

√

2 arctan 2. The φ−nary BBP-type formulas derived here are considerably
simpler than similar results contained in earlier literature.

1. Introduction

This paper is concerned with the derivation of interesting arctangent identities connect-
ing the golden ratio, Fibonacci numbers and the related Lucas numbers. Binary BBP-type
formulas for arctangents of the odd powers of the golden ratio will be derived, as well as
golden-ratio-base BBP-type formulas for some mathematical constants. We will also present a
couple of base 5 BBP-type formulas for linear combinations of the arctangents of even powers
of the golden ratio. The golden ratio, having the numerical value of (

√
5 + 1)/2 is denoted

throughout this paper by φ. The Fibonacci numbers are defined, as usual, through the recur-
rence relation Fn = Fn−1 +Fn−2, with F0 = 0 and F1 = 1. The Lucas numbers are defined by
Ln = Fn−1 + Fn+1.

We shall often make use of the following algebraic properties of φ

φ2 = 1 + φ, (1.1a)
√
5 = 2φ− 1, (1.1b)

φ− 1 = 1/φ, (1.1c)

φn = φFn + Fn−1, (1.1d)

φ−n = (−1)n(−φFn + Fn+1), (1.1e)

and φn = φn−1 + φn−2. (1.1f)

We will also need the following trigonometric identities

tan−1 x+ tan−1 y = tan−1

(

x+ y

1− xy

)

, xy < 1 (1.2a)

tan−1 x− tan−1 y = tan−1

(

x− y

1 + xy

)

, xy > −1 . (1.2b)
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Results for arctangent identities involving the Fibonacci numbers and related sequences may
also be found in earlier references [7, 10, 9] and references therein, while results for φ−nary
BBP-type formulas may be found in references [4, 5, 6, 11].

2. Arctangents of the Odd Powers of the Golden Ratio

In this section we will present results for the arctangents of the odd powers of the golden
ratio in terms of the arctangents of reciprocal Fibonacci and reciprocal Lucas numbers, as well
as in terms of the arctangents of consecutive Fibonacci numbers.

2.1. Arctangent formulas involving reciprocal Fibonacci and reciprocal Lucas num-

bers.

Theorem 2.1. For positive integers k,

tan−1 φ2k−1 = 2 tan−1 1−
1

2
tan−1

(

2

L2k−1

)

. (2.1)

Proof. Choosing x = 1/φ2k−1 = y in equation (1.2a), we find

2 tan−1 1

φ2k−1

= tan−1

(

2

φ2k−1 − φ−(2k−1)

)

= tan−1

(

2

F2k−2 + F2k

)

= tan−1

(

2

L2k−1

)

,

and the result follows. �

Theorem 2.2. For non-zero integers k,

tan−1 φ2k+1 = 2 tan−1 1 +
1

2
tan−1

(

1

L2k

)

−
1

2
tan−1

(

1

F2k

)

(2.2a)

tan−1 φ2k−1 = 2 tan−1 1−
1

2
tan−1

(

1

L2k

)

−
1

2
tan−1

(

1

F2k

)

(2.2b)

Proof. Choosing x = 1/φ2k−1 and y = 1/φ2k+1 in equation (1.2a) and using the algebraic
properties of φ, it is straightforward to establish that

tan−1

(

1

φ2k−1

)

+ tan−1

(

1

φ2k+1

)

= tan−1

(

φ+ φ−1

φ2k − φ−2k

)

= tan−1

√
5

√
5F2k

= tan−1

(

1

F2k

)

.

That is

tan−1 φ2k+1 + tan−1 φ2k−1 = π − tan−1

(

1

F2k

)

. (2.3)
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Choosing x = φ2k+1 and y = φ2k−1 in equation (1.2b), we find

tan−1 φ2k+1 − tan−1 φ2k−1 = tan−1

(

φ− φ−1

φ−2k + φ2k

)

= tan−1

(

1

L2k

)

.

(2.4)

Addition of equations (2.3) and (2.4) gives equation (2.2a), while subtraction of equation
(2.4) from equation (2.3) gives equation (2.2b). �

Remark 2.1. Note that by performing the telescoping summation suggested by equation (2.4),
it is established that

tan−1 φ2n+1 = tan−1 φ+
n
∑

k=1

tan−1

(

1

L2k

)

,

which can be written as

tan−1 φ2n+1 = tan−1 1 +
1

2
tan−1 1

2
+

n
∑

k=1

tan−1

(

1

L2k

)

, (2.5)

since

tan−1 φ = tan−1 1 +
1

2
tan−1 1

2
(k = 1 in Theorem 2.1). (2.6)

2.2. Arctangent formulas involving the ratio of consecutive Fibonacci numbers.

Theorem 2.3. For non-negative integers n,

tan−1(φ4n−1) = 3 tan−1 1−
1

2
tan−1 1

2
− tan−1

(

F2n−1

F2n

)

, (2.7a)

tan−1(φ4n−3) = tan−1 1 +
1

2
tan−1 1

2
+ tan−1

(

F2n−2

F2n−1

)

. (2.7b)

Proof. Choosing x = 1/φ and y = Fp−1/Fp in the trigonometric identity (1.2b), clearing
fractions and using properties (1.1d) and (1.1e) to simplify the numerator and denominator
of the arctangent argument, and replacing tan−1 φ with the right-hand side of equation (2.6),
we obtain

(−1)p tan−1(φ2p−1) = (2(−1)p + 1) tan−1 1−
1

2
tan−1 1

2
− tan−1 Fp−1

Fp

. (2.8)

Setting p = 2n in (2.8), we obtain identity (2.7a), while p = 2n − 1 in (2.8) gives identity
(2.7b). �

3. Arctangents of the Reciprocal Even Powers of the Golden Ratio

Theorem 3.1. For non-negative integers k,

2 tan−1

(

1

φ2k

)

= tan−1

(

2

F2k

√
5

)

. (3.1)

Proof. Equation (3.1) follows from the choice of x = 1/φ2k = y in equation (1.2a). �
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Theorem 3.2. For non-negative integers k,

2 tan−1

(

1

φ2k

)

= tan−1

( √
5

L2k+1

)

+ tan−1

(

1

F2k+1

√
5

)

(3.2a)

2 tan−1

(

1

φ2k+2

)

= tan−1

( √
5

L2k+1

)

− tan−1

(

1

F2k+1

√
5

)

. (3.2b)

Proof. Choosing x = 1/φ2k and y = 1/φ2k+2 in equation (1.2a) and using the algebraic
properties of φ, it is straightforward to establish that

tan−1

(

1

φ2k

)

+ tan−1

(

1

φ2k+2

)

= tan−1

( √
5

L2k+1

)

. (3.3)

Choosing x = 1/φ2k and y = 1/φ2k+2 in equation (1.2b), we find

tan−1

(

1

φ2k

)

− tan−1

(

1

φ2k+2

)

= tan−1

(

1

F2k+1

√
5

)

. (3.4)

Addition of equations (3.3) and (3.4) gives equation (3.2a), while subtraction of equation
(3.4) from equation (3.3) gives equations (3.2b). �

Remark 3.1. Performing the telescoping summation invited by equation (3.4), we obtain

tan−1

(

1

φ2

)

− tan−1

(

1

φ2n+2

)

=
n
∑

k=1

tan−1

(

1

F2k+1

√
5

)

. (3.5)

Taking limit n → ∞, we obtain the formula

tan−1

(

1

φ2

)

=

∞
∑

k=1

tan−1

(

1

F2k+1

√
5

)

. (3.6)

4. Arctangent Identities Involving the Fibonacci and Lucas Numbers

4.1. Arctangent formulas involving reciprocal Fibonacci and reciprocal Lucas num-

bers.

Theorem 4.1. For non-zero integers n,

tan−1

(

1

F2n−2

)

= tan−1

(

1

F2n

)

+ tan−1

(

1

L2n−2

)

+ tan−1

(

1

L2n

)

, (4.1a)

tan−1

(

2

L2n−1

)

= tan−1

(

1

F2n

)

+ tan−1

(

1

L2n

)

, (4.1b)

tan−1

(

2

L2n+1

)

= tan−1

(

1

F2n

)

− tan−1

(

1

L2n

)

, (4.1c)

tan−1

(

2

F2n

√
5

)

= tan−1

( √
5

L2n+1

)

+ tan−1

(

1

F2n+1

√
5

)

. (4.1d)
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Proof. Equation (4.1a) is proved by setting k = n−1 in equation (2.2a) and k = n in equation
(2.2b) and eliminating tan−1(φ2n−1) between the two equations that result. Equation (4.1b)
is proved by setting k = n in equation (2.1) and k = n in equation (2.2b) and eliminating
tan−1(φ2n−1) between the two equations that result. Equation (4.1c) is proved by setting
k = n + 1 in equation (2.1) and k = n in equation (2.2a) and eliminating tan−1(φ2n+1)
between the two equations that result. Lastly, equation (4.1d) is proved by setting k = n+ 1
in equation (3.2b) and k = n in equation (3.2a) and eliminating tan−1(1/φ2n) between the
resulting equations. �

Remark 4.1. Using the identity (Theorem 4 of [7]),

tan−1

(

1

F2n

)

= tan−1

(

1

F2n+1

)

+ tan−1

(

1

F2n+2

)

, (4.2)

equations (4.1a)–(4.1c) can also be written

tan−1

(

1

F2n−1

)

= tan−1

(

1

L2n−2

)

+ tan−1

(

1

L2n

)

, (4.3a)

tan−1

(

2

L2n−1

)

= tan−1

(

1

L2n

)

+ tan−1

(

1

F2n+1

)

+ tan−1

(

1

F2n+2

)

, (4.3b)

tan−1

(

2

L2n+1

)

= tan−1

(

1

F2n+1

)

+ tan−1

(

1

F2n+2

)

− tan−1

(

1

L2n

)

. (4.3c)

Equation (4.3a) is Theorem 3 of [7].

Subtracting equation (4.1c) from equation (4.1b) we obtain, for non-zero integers, the fol-
lowing arctangent identity involving three consecutive Lucas numbers.

Theorem 4.2.

tan−1

(

2

L2n−1

)

= 2 tan−1

(

1

L2n

)

+ tan−1

(

2

L2n+1

)

. (4.4)

Remark 4.2. It is instructive to compare the two identities, equation (4.2) involving Fibonacci
numbers and equation (4.4) involving Lucas numbers.

4.2. Arctangent formulas involving the ratio of consecutive Fibonacci numbers.

Theorem 4.3. For positive integers n,

tan−1

(

F2n

F2n+1

)

=
2n
∑

k=1

tan−1

(

1

L2k

)

, (4.5a)

tan−1

(

F2n−1

F2n

)

= tan−1 2−
2n−1
∑

k=1

tan−1

(

1

L2k

)

, (4.5b)

tan−1

(

F2n

F2n+1

)

= tan−1 1−
1

2
tan−1 1

2
−

1

2
tan−1

(

2

L4n+1

)

(4.5c)

and tan−1

(

F2n−1

F2n

)

= tan−1 1−
1

2
tan−1 1

2
+

1

2
tan−1

(

2

L4n−1

)

. (4.5d)

Proof. Comparing identities (2.7b) and (2.5), we obtain identity (4.5a), expressing, as a sum of
reciprocal arctangents of even indexed Lucas numbers, the arctangent of the ratio of any two
consecutive Fibonacci numbers, with the even indexed Fibonacci number as the numerator.
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Similarly, by comparing identities (2.7a) and (2.5), we obtain identity (4.5b), expressing, as a
sum of the arctangents of reciprocal even indexed Lucas numbers, the arctangent of the ratio
of any two consecutive Fibonacci numbers, with the odd indexed Fibonacci number as the
numerator. Equation (4.5c) follows from equation (2.1) and equation (2.7b) while equation
(4.5d) is obtained by comparing equation (2.1) and equation (2.7a). �

Taking limit n → ∞ in equation (4.5a), we obtain the following theorem.

Theorem 4.4.

tan−1 1

φ
=

∞
∑

k=1

tan−1

(

1

L2k

)

. (4.6)

Remark 4.3. It is instructive to compare equation (4.5a) with the well-known result

tan−1 1

F2n
=

∞
∑

k=n

tan−1

(

1

F2k+1

)

, (4.7)

and to compare (4.6) with the case n = 1 in equation (4.7), namely,

tan−1 1 =

∞
∑

k=1

tan−1

(

1

F2k+1

)

. (4.8)

Equation (4.6) was also proved in [7] (Theorem 6).

5. BBP-type Formulas

The convergent series

C =
∑

k≥0

1

bk

l
∑

j=1

aj
(kl + j)s

≡ P (s, b, l, A), (5.1)

where s and l are integers, b is a real number, and A = (a1, a2, . . . , al) is a vector of real
numbers, defines a base-b expansion of the polylogarithm constant C. If b is an integer and A
is a vector of integers, then equation (5.1) is called a BBP-type formula for the mathematical
constant C. A BBP-type formula has the remarkable property that it allows the ith digit
of a mathematical constant to be computed without having to compute any of the previous
i − 1 digits and without requiring ultra high-precision [8, 2]. BBP-type formulas were first
introduced in a 1996 paper [3], where a formula of this type for π was given. The BBP-type
formulas derived in this section will be given in the standard notation, defined by equation
(5.1).

5.1. Binary BBP-type formulas for the arctangents of odd powers of the golden

ratio. Identities (2.1), (2.2a), (2.2b), (2.7a) and (2.7b) give binary BBP-type formulas for the
odd powers of φ, whenever binary BBP-type formulas exist for the rational numbers whose
arctangents are involved. The first few BBP-type series ready examples are the following:

tan−1 φ = tan−1 1 +
1

2
tan−1 1

2
(equation (2.6)), (5.2)

tan−1 φ3 = 2 tan−1 1−
1

2
tan−1 1

2
(n=1 in equation (2.7a)), (5.3)
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tan−1 φ5 = tan−1 1 +
3

2
tan−1 1

2
(n=2 in equation (2.7b)), (5.4)

tan−1 φ7 = 3 tan−1 1−
3

2
tan−1 1

2
− tan−1 1

8
(n=2 in equation (2.7a)), (5.5)

and

tan−1 φ9 = 2 tan−1 1 +
1

2
tan−1 1

2
− tan−1 1

4
(n=3 in equation (2.7b)). (5.6)

In obtaining the final form of equation (5.6) we used

tan−1 3

5
= tan−1 1− tan−1 1

4
.

To derive the BBP-type formulas that correspond to equations (5.2)—(5.6), we will employ
the following BBP-type formulas in general bases, derived in reference [1]:

tan−1 1

u
=

1

u3
P (1, u4, 4, (u2, 0,−1, 0)), (5.7)

tan−1

(

1

2u− 1

)

=
1

16u7
P (1, 16u8, 8, (8u6, 8u5, 4u4, 0,−2u2,−2u,−1, 0)) (5.8)

and

tan−1

(

1

2u+ 1

)

=
1

16u7
P (1, 16u8, 8, (8u6,−8u5, 4u4, 0,−2u2, 2u,−1, 0)). (5.9)

Using u = 2 in equation (5.7) and u = 1 in equation (5.8), and forming the indicated linear
combinations, equations (5.2)—(5.4) give rise to the following BBP-type formulas:

tan−1 φ =
1

16
P (1, 16, 8, (8, 16, 4, 0,−2,−4,−1, 0)), (5.10)

tan−1(φ3) =
1

8
P (1, 16, 8, (8, 4, 4, 0,−2,−1,−1, 0)), (5.11)

and

tan−1(φ5) =
1

16
P (1, 16, 8, (8, 32, 4, 0,−2,−8,−1, 0)). (5.12)

Using u = 1 in equation (5.8) and u = 2 in equation (5.7) and expanding both series to
base 212, length 24, and using u = 8 in equation (5.7) and finally forming the indicated linear
combination gives the BBP-type formula for tan−1 φ7 as

tan−1(φ7) =
3

4096
P (1, 212, 24, (2048, 0, 1024, 0,−512,−1024,−256,

0, 128, 0, 64, 0,−32, 0,−16, 0, 8, 16, 4, 0,−2, 0,−1, 0)).
(5.13)

Using u = 1 in equation (5.8), u = 2 in equation (5.7) and u = 4 in equation (5.7), expanding
the three series to base 256, length 16, and forming the indicated linear combination in equation
(5.6) gives the BBP-type formula for tan−1 φ9 as
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tan−1(φ9) =
1

128
P (1, 256, 16, (128, 192, 64,−128,−32,−48,

− 16, 0, 8, 12, 4, 8,−2,−3,−1, 0)).
(5.14)

5.2. Base 5 BBP-type formulas. From the identities (3.1), (3.2a) and (3.2b) we can form
the following BBP-type series ready combinations

tan−1

(

1

φ2

)

+ tan−1

(

1

φ4

)

= tan−1

(√
5

4

)

= tan−1

(

1
√
5

)

+ tan−1

(

1
√
5
3

)

,

(5.15)

tan−1

(

1

φ2

)

+ tan−1

(

1

φ6

)

= tan−1

(

1
√
5

)

, (5.16)

and

tan−1

(

1

φ4

)

− tan−1

(

1

φ6

)

= tan−1

(

1
√
5
3

)

. (5.17)

According to equation (5.7),

√
5 tan−1

(

1
√
5

)

=
1

5
P (1, 25, 4, (5, 0,−1, 0)), (5.18)

and

√
5 tan−1

(

1
√
5
3

)

=
1

54
P (1, 56, 4, (53, 0,−1, 0)). (5.19)

Therefore, equations (5.15)—(5.17) give rise to the following base 5 BBP-type formulas:

√
5

{

tan−1

(

1

φ2

)

+ tan−1

(

1

φ4

)}

=
1

55
P (1, 56, 12, (55, 0, 2 · 54, 0, 53, 0,−52, 0,−10, 0,−1, 0)),

(5.20)

√
5

{

tan−1

(

1

φ2

)

+ tan−1

(

1

φ6

)}

=
1

5
P (1, 25, 4, (5, 0,−1, 0)), (5.21)

and

√
5

{

tan−1

(

1

φ4

)

− tan−1

(

1

φ6

)}

=
1

54
P (1, 56, 4, (53, 0,−1, 0)). (5.22)
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5.3. BBP-type formulas in base φ. Many BBP-type formulas in general bases were derived
in reference [1]. Base φ formulas are easily obtained by choosing the base in any general formula
of interest to be a power of φ, and using the algebraic properties of φ. We note that since φ is
not an integer, these series are, technically speaking, not BBP-type, in the sense that they do
not really lead to any digit extraction formulas, but rather correspond to base φ expansions
of the mathematical constants concerned. We now present some interesting degree 1 base φ
formulas. φ-nary BBP-type formulas for π were also derived in references [4, 6, 11]. The
formulas presented here are considerably simpler and more elegant than those found in the
earlier papers.

By setting n = φ in equation 27 of [1] we obtain a φ−nary BBP-type formula for π:

π =
4

φ5
P (1,−φ6, 6, (φ4, 0, 2φ2, 0, 1, 0)). (5.23)

The base φ12, length 12 version of equation (5.23) is

π =
4

φ11
P (1, φ12, 12, (φ10, 0, 2φ8, 0, φ6, 0,−φ4, 0,−2φ2, 0,−1, 0)). (5.24)

The following φ−nary formulas are also readily obtained:

log φ =
1

φ2
P (1, φ2, 2, (φ,−1)) (n = φ in equation 28 of [1]), (5.25)

log 2 =
1

φ3
P (1, φ3, 3, (φ2, φ,−2)) (n = φ in equation 33 of [1]), (5.26)

arctan(
1

φ
) =

1

φ3
P (1, φ4, 4, (φ2, 0,−1, 0)) (u = φ in equation 8 of [1]), (5.27)

√
3 arctan

(

√

3

5

)

=
3

2φ5
P (1, φ6, 6, (φ4, φ3, 0,−φ,−1, 0)) (n = φ in eq. 12 of [1]), (5.28)

√
3 arctan

(√
3

φ3

)

=
3

2φ2
P (1, φ3, 3, (φ,−1, 0)) (n = φ in equation 13 of [1]), (5.29)

arctan

(

1
√
5

)

=
1

16φ7
P (1, 16φ8, 8, (8φ6, 8φ5, 4φ4, 0,−2φ2,−2φ,−1, 0)) (5.30)

(n = φ in equation 17 of [1]),

arctan

(

1

φ3

)

=
1

16φ7
P (1, 16φ8, 8, (8φ6,−8φ5, 4φ4, 0,−2φ2, 2φ,−1, 0)) (5.31)

(n = φ in equation 18 of [1]),

√
2 arctan

√
2 =

2

φ7
P (1, φ8, 8, (φ6, 0, φ4, 0,−φ2, 0,−1, 0)) (n=φ2 in equation 21 of [1]),

(5.32)

27
√
3 arctan

(

1
√
15

)

=
3

2φ5
P (1,−27φ6, 6, (9φ4, 9φ3, 6φ2, 3φ, 1, 0)) (n = φ in eq. 25 of [1]),

(5.33)
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and

27
√
3 arctan

(

1

φ3
√
3

)

=
3

2φ5
P (1,−27φ6, 6, (9φ4,−9φ3, 6φ2,−3φ, 1, 0)) (5.34)

(n = φ in eq. 26 of [1]).

6. Conclusion

We have derived and presented interesting arctangent identities connecting the golden ratio,
Fibonacci numbers and the Lucas numbers. Binary BBP-type formulas for the arctangents of
the odd powers of the golden ratio and base 5 formulas for combinations of the arctangents of
the reciprocal even powers of the golden ratio were derived. We also presented results for the
φ−nary expansion of some mathematical constants.
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