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Abstract. We extend the well-known Lucas identity F
3
n+1 + F

3
n
− F

3
n−1 = F3n and the

Ginsburg identity F
3
n+2 − 3F 3

n
+ F

3
n−2 = 3F3n to Fibonacci and Lucas polynomials. This

yields interesting dividends to Pell and Pell-Lucas polynomials and numbers.

1. Introduction

Fibonacci polynomials fn(x) and Lucas polynomials ln(x) were originally studied by Catalan
in 1883 and Bicknell in 1970; see [1, 5]. They belong to a larger integer family of gibonacci
(generalized Fibonacci) polynomials gn(x), defined recursively as follows:

g1(x) = a, g2(x) = b

gn(x) = xgn−1(x) + gn−2(x),

where a = a(x), b = b(x), and n ≥ 3. When a = 1 and b = x, gn(x) = fn(x); and when a = x

and b = x2 + 2, gn(x) = ln(x). Clearly, Fn = fn(1) and Ln = ln(1).
Table 1 shows the first 10 Fibonacci and Lucas Polynomials.

n fn(x) ln(x)

1 1 x

2 x x2 + 2
3 x2 + 1 x3 + 3x
4 x3 + 2x x4 + 4x2 + 2
5 x4 + 3x2 + 1 x5 + 5x3 + 5x
6 x5 + 4x3 + 3x x6 + 6x4 + 9x2 + 2
7 x6 + 5x4 + 6x2 + 1 x7 + 7x5 + 14x3 + 7x
8 x7 + 6x5 + 10x3 + 4x x8 + 8x6 + 20x4 + 16x2 + 2
9 x8 + 7x6 + 15x4 + 10x2 + 1 x9 + 9x7 + 27x5 + 30x3 + 9x
10 x9 + 8x7 + 21x5 + 20x3 + 5x x10 + 10x8 + 35x6 + 50x4 + 25x2 + 2

TABLE 1. First 10 Fibonacci and Lucas Polynomials.

2. Pell and Pell-Lucas Polynomials

The polynomials pn(x) = fn(2x) and qn(x) = ln(2x) are the Pell and Pell-Lucas polynomi-

als, respectively; see [4, 6]. Table 2 shows the first 10 Pell and Pell-Lucas Polynomials. The
numbers Pn = pn(1) = fn(2) and Qn = 1

2
qn(1) = 1

2
ln(2) are the nth Pell and Pell-Lucas

numbers, respectively.
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n pn(x) qn(x)

1 1 2x
2 2x 4x2 + 2
3 4x2 + 1 8x3 + 6x
4 8x3 + 4x 16x4 + 16x2 + 2
5 16x4 + 12x2 + 1 32x5 + 40x3 + 10x
6 32x5 + 32x3 + 6x 64x6 + 96x4 + 36x2 + 2
7 64x6 + 80x4 + 24x2 + 1 128x7 + 224x5 + 112x3 + 14x
8 128x7 + 192x5 + 80x3 + 8x 256x8 + 512x6 + 320x4 + 64x2 + 2
9 256x8 + 448x6 + 240x4 + 40x2 + 1 512x9 + 1152x7 + 864x5 + 240x3 + 18x

10 512x9 + 1024x7 + 672x5 + 160x3 + 10x 1024x10 + 2560x8 + 2240x6 + 800x4 + 100x2 + 2

TABLE 2. First 10 Pell and Pell-Lucas Polynomials in x.

3. Binet’s Formula

The gibonacci polynomials gn(x) can also be defined explicitly by Binet’s Formula:

gn(x) =
cαn − dβn

α− β
,

where c = c(x) = a+ (a − b)β, d = d(x) = a + (a − b)α, and α = α(x) and β = β(x) are the
solutions of the equation t2 − xt− 1 = 0.

In the interest of brevity, clarity, and convenience, we let ∆ = ∆(x) = α − β =
√
x2 + 4,

and will denote gn(x), fn(x), ln(x), pn(x), and qn(x) by gn, fn, ln, pn, and qn, respectively.
It is easy to confirm that

ga+b = ga+1fb + gafb−1 (3.1)

gn+agn+b − gngn+a+b = (−1)nµfafb, (3.2)

where µ = µ(x) = a2 + abx − b2 = cd;µ = 1 when gn = fn; and µ = −∆2 when gn = ln.
Identity (3.1) is the addition formula for the gibonacci family, and (3.2) is a generalized
Cassini’s identity for the family.

4. Lucas and Ginsburg Identities

In 1876 Lucas established a charming identity involving the cubes of three consecutive
Fibonacci numbers: F 3

n+1+F 3
n −F 3

n−1 = F3n; see [5, 7, 10]. In 1986 Long discovered its Lucas

counterpart: L3
n+1 + L3

n − L3
n−1 = 5L3n [7].

Interestingly, in 1953 Ginsburg noted that Lucas’ identity is the only identity involving
the cubes of Fibonacci numbers mentioned in Dickson’s classic work History of the Theory of

Numbers [2, 10]. He then developed an equally delightful identity involving the cubes of three
Fibonacci numbers, separated by two spaces: F 3

n+2 − 3F 3
n + F 3

n−2 = 3F3n [3, 10].

5. Polynomial Extensions

We will now extend the two identities to Fibonacci and Lucas polynomials. Obviously, they
have Pell and Pell-Lucas implications. In both cases, their proofs involve some messy, but
carefully crafted algebra. So we will omit a lot of details for the sake of brevity. We will
capitalize on a powerful technique touched upon by Melham in 1999 [8].

We begin our pursuits with a lemma. Its proof is elementary; so we will omit it.
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Lemma 5.1. Let rn = g3n−gn+1gngn−1. Then rn satisfies the recurrence rn = −xrn−1+rn−2.

We are now ready to establish a generalization of Lucas’ identity. To this end, we will need
the following identities:

f
−n = (−1)n−1fn f2n = fnln

fn+1 + fn−1 = ln ln+1 + ln−1 = ∆2fn
f2
n+1 + f2

n = f2n+1 l2
n+1 + l2n = ∆2f2n+1.

Theorem 5.2.

g3n+1 + xg3n − g3n−1 =

{

xf3n if gk = fk

x(x2 + 4)l3n if gk = lk.

Proof. By Lemma 5.1, we have

g3n+1 − gn+2gn+1gn = −x(g3n − gn+1gngn−1) + (g3n−1 − gngn−1gn−2)

g3n+1 + xg3n − g3n−1 = gn+2gn+1gn + xgn+1gngn−1 − gngn−1gn−2

= (xgn+1 + gn)gn+1gn + xgn+1gngn−1 − gngn−1(gn − xgn−1)

= xg2n+1gn + g2n(gn+1 − gn−1) + xgngn−1(gn+1 + gn−1)

= xg2n+1gn + xg3n + xgngn−1(gn+1 + gn−1). (5.1)

Suppose gk = lk. Then (5.1) yields

g3n+1 + xg3n − g3n−1 = xl2n+1ln + xl3n + xlnln−1∆
2fn

= xln(l
2
n+1 + l2n) + x∆2ln−1f2n

= xln∆
2f2n+1 + x∆2ln−1f2n

= x∆2(lnf2n+1 + ln−1f2n)

= x(x2 + 4)l3n,

as desired. The other case can be handled similarly. �

For example,

f3
5 + xf3

4 − f3
3 = x12 + 10x10 + 36x8 + 56x6 + 35x4 + 6x2

= xf12;

l34 + xl33 − l32 = x12 + 13x10 + 63x8 + 138x6 + 129x4 + 36x2

= x(x2 + 4)l9.

We note that this theorem can also be established using the addition formula for gn.
Clearly, both Lucas’ and Long’s identities follow from this theorem. It also follows from the

theorem that

p3n+1 + 2xp3n − p3n−1 = 2xp3n

q3n+1 + 2xq3n − q3n−1 = 8x(x2 + 1)q3n

P 3
n+1 + 2P 3

n − P 3
n−1 = 2P3n

Q3
n+1 + 2Q3

n −Q3
n−1 = 4Q3n.

Next we will generalize the Ginsburg identity in Theorem 2. Although it follows by Theorem
1, we will provide an independent proof. In addition, this approach will exemplify the power
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of Melham’s technique. To this end, we will need the next two lemmas. The proof of Lemma
5.3 is also straightforward; so we omit that too.

Lemma 5.3. Let sn = g3
n+2 − gn+4gn+2gn. Then sn = (x2 + 2)sn−2 − sn−4.

Lemma 5.4.

g2n+3 − xgn+3gn+2 − gn−1gn−3 =

{

x(x2 + 2)f2n if gk = fk

x(x2 + 2)(x2 + 4)f2n if gk = lk.

Proof. We have

g2n+3 − xgn+3gn+2 − gn−1gn−3 = gn+3(gn+3 − xgn+2)− gn−1gn−3

= gn+3gn+1 − gn−1gn−3

= gn+1[(x
2 + 1)gn+1 + xgn]−

(gn+1 − xgn)[(x
2 + 1)gn+1 − (x3 + 2x)gn]

= 2(x3 + 2x)gn+1gn − x(x3 + 2x)g2n

= (x3 + 2x)gn[gn+1 + (gn+1 − xgn)]

= (x3 + 2x)gn(gn+1 + gn−1). (5.2)

Since fn+1 + fn−1 = ln and ln+1 + ln−1 = (x2 + 4)fn, the desired results follow from (5.2), as
claimed. �

It follows by Lemma 5.4 that

x(x2 + 2)∆2f2n−2 − l2n+2 + xln+2ln+1 + ln−2ln−4 = 0.

We will employ this result in the proof of Theorem 5.8.
We are now ready to present the next generalization. In addition to Lemmas 5.3 and 5.4,

we will need the following three identities:

fn+2 − fn−2 = xln

ln+2 − ln−2 = x∆2fn

ln+1f2n + lnf2n−1 = l3n.

Theorem 5.5.

g3n+2 − (x2 + 2)g3n + g3n−2 =

{

x2(x2 + 2)f3n if gk = fk

x2(x2 + 2)(x2 + 4)l3n if gk = lk.

Proof. Using Lemma 5.3, we have

g3n+2 − gn+4gn+2gn = (x2 + 2)(g3n − gn+2gngn−2)− (g3n−2 − gngn−2gn−4)

g3n+2 − (x2 + 2)g3n + g3n−2 = gn+4gn+2gn − (x2 + 2)gn+2gngn−2 + gngn−2gn−4

= gn+2gn[(x
2 + 1)gn+2 + xgn+1]− (x2 + 2)gn+2gngn−2 + gngn−2gn−4

= (x2 + 2)gn+2gn(gn+2 − gn−2)− g2n+2gn+

xgn+2gn+1gn + gngn−2gn−4. (5.3)
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Suppose gk = lk. By Lemma 5.4, we then have

LHS = (x2 + 2)ln+2ln · x∆2fn − l2n+2ln + xln+2ln+1ln + lnln−2ln−4

= x(x2 + 2)∆2ln+2f2n − l2n+2ln + xln+2ln+1ln + lnln−2ln−4

= x(x2 + 2)∆2f2n(xln+1 + ln)− l2n+2ln + xln+2ln+1ln + lnln−2ln−4

= x2(x2 + 2)∆2ln+1f2n + x(x2 + 2)∆2f2nln−

l2n+2ln + xln+2ln+1ln + lnln−2ln−4

= x2(x2 + 2)∆2ln+1f2n + x(x2 + 2)∆2ln(xf2n−1 + f2n−2)−

l2n+2ln + xln+2ln+1ln + lnln−2ln−4

= x2(x2 + 2)∆2(ln+1f2n + lnf2n−1)+

ln[x(x
2 + 2)∆2f2n−2 − l2n+2 + xln+2ln+1 + ln−2ln−4]

= x2(x2 + 2)∆2l3n + ln · 0

= x2(x2 + 2)∆2l3n,

as claimed. The other case follows similarly. �

For example

f3
5 − (x2 + 2)f3

3 + f3
1 = x12 + 9x10 + 29x8 + 40x6 + 21x4 + 2x2

= x2(x2 + 2)f9;

l35 − (x2 + 2)l33 + l31 = x15 + 15x13 + 89x11 + 264x9 + 405x7 + 294x5 + 72x3

= x2(x2 + 2)(x2 + 4)l9.

Obviously, Theorem 5.5 also has Fibonacci, Lucas, Pell, and Pell-Lucas implications:

F 3
n+2 − 3F 3

n + F 3
n−2 = 3F3n

L3
n+2 − 3L3

n + L3
n−2 = 15L3n

p3n+2 − 2(2x2 + 1)p3n + p3n−2 = 8x2(2x2 + 1)p3n

q3n+2 − 2(2x2 + 1)q3n + q3n−2 = 32x2(x2 + 1)(2x2 + 1)q3n

P 3
n+2 − 6P 3

n + P 3
n−2 = 24P3n

Q3
n+2 − 6Q3

n +Q3
n−2 = 48Q3n.

Theorems 5.2 and 5.5 yield the following result.

Corollary 5.6.

g3n+2 − (x3 + 2x)g3n+1 − (x4 + 3x2 + 2)g3n + (x3 + 2x)g3n−1 + g3n−2 = 0.

Interestingly, we can generalize Theorems 5.2 and 5.5 into a single relationship linking
g3
n+k

, g3n, g
3
n−k

, and g3n, where gr = fr or lr. To this end, we need the next lemma.

Lemma 5.7.

(x2 + 1)g3n + 3gn−1gngn+1 =

{

f3n if gk = fk

(x2 + 4)l3n if gk = lk.
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Proof. Suppose gk = lk. Using the identities la+b = fa+1lb + falb−1, fnln = f2n, ln+1 + ln−1 =
∆2fn, and l2n + l2

n+1 = ∆2f2n+1, we have

∆2l3n = ∆2(f2n+1ln + f2nln−1)

= ln(l
2
n + l2n+1) + ∆2fnlnln−1

= l3n + ln(xln + ln−1)
2 + lnln−1(ln+1 + ln−1)

= (x2 + 1)l3n + 2ln−1ln(xln + ln−1) + ln−1lnln+1

= (x2 + 1)l3n + 3ln−1lnln+1.

The other half follows similarly. �

We are now ready for the generalization.

Theorem 5.8.

g3n+k − (−1)klkg
3
n + (−1)kg3n−k =

{

f2
k
lkf3n if gr = fr

(x2 + 4)f2
k
lkl3n if gr = lr.

Proof. Suppose gr = lr. The corresponding proof requires Lemma 5.7, and the identities
fk+1 + fk−1 = lk, fk+1fk−1 − f2

k
= (−1)k, and la−b = (−1)b(fb−1la − fbla−1). We then have

l3n+k + (−1)kl3n−k = (fk+1ln + fkln−1)
3 + (fk−1ln − fkln−1)

3

= l3n(f
3
k+1 + f3

k−1) + 3fkln−1l
2
n(f

2
k+1 − f2

k−1) + 3f2
k l

2
n−1ln(fk+1 + fk−1)

= l3n(fk+1 + fk−1)(f
2
k+1 − fk+1fk−1 + f2

k−1) + 3xf2
k lkln−1l

2
n + 3f2

k lkl
2
n−1ln

= l3nlk
[

(fk+1 − fk+1)
2 + fk+1fk−1)

]

+ 3f2
k lkln−1ln(xln + ln−1)

= lkl
3
n

{

x2f2
k +

[

f2
k + (−1)k

]

lkl
3
n

}

+ 3f2
k lkln−1lnln+1

= f2
k lk

[

(x2 + 1)l3n + 3ln−1lnln+1

]

+ (−1)klkl
3
n

= ∆2l3nf
2
k lk + (−1)klkl

3
n.

This yields the desired cubic identity for Lucas polynomials.
The corresponding identity for Fibonacci polynomials follows similarly. �

Clearly, Theorems 5.2 and 5.5 follow from this. So do the following identities:

p3n+k − (−1)kqkp
3
n + (−1)kp3n−k = p2kqkp3n

q3n+k − (−1)kqkq
3
n + (−1)kq3n−k = 4(x2 + 1)p2kqkq3n.
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