ANOTHER PROBABILISTIC PROOF OF A BINOMIAL IDENTITY

TOSHIO NAKATA

Abstract. J. Peterson (2013) gave a simple and interesting proof of a binomial identity using exponential random variables. In this note, we give another elementary and short proof using uniformly distributed random variables.

Recently Peterson [2] gave a simple and interesting proof of the binomial identity

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{\theta}{\theta+k}=\prod_{k=1}^{n} \frac{k}{\theta+k} \quad \text { for } \theta>0, \quad n=1,2, \ldots \tag{1}
\end{equation*}
$$

which also appeared in equation (5.41) in [1]. Several properties of exponential random variables were effectively used in his proof. In this note, we give another elementary and short proof using uniformly distributed random variables on $[0,1]$.

For $n \geq 1$ let $U_{1}, U_{2}, \ldots, U_{n}$ be independent $\operatorname{Unif}([0,1])$ random variables, where $\operatorname{Unif}([0,1])$ denotes the uniform distribution on $[0,1]$. For $t \in[0,1]$ we then have

$$
\begin{align*}
\mathrm{P}\left(\min _{1 \leq i \leq n}\left\{U_{i}\right\}>t\right)=\mathrm{P}\left(\bigcap_{i=1}^{n}\left\{U_{i}>t\right\}\right) & =(1-t)^{n} \tag{2}\\
& =\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} t^{k} \tag{3}
\end{align*}
$$

Although the last equality follows from the binomial theorem, we note that (3) can be also directly verified by the inclusion-exclusion principle.

Now, let V be a $\operatorname{Unif}([0,1])$ random variable which is independent of $\left\{U_{i}\right\}_{i=1}^{n}$. For $\theta>0$ it follows that

$$
\begin{aligned}
\mathrm{P}\left(\min _{1 \leq i \leq n}\left\{U_{i}\right\}>V^{1 / \theta}\right) & =\mathrm{E}\left[\mathrm{P}\left(\bigcap_{i=1}^{n}\left\{U_{i}>V^{1 / \theta}\right\} \mid V\right)\right] \\
& \left.=\int_{0}^{1} \mathrm{P}\left(\min _{1 \leq i \leq n}\left\{U_{i}\right\}>x^{1 / \theta}\right\}\right) d x
\end{aligned}
$$

Applying (2) and (3) to this probability yields two different expressions. Equation (2) provides

$$
\begin{aligned}
\mathrm{P}\left(\min _{1 \leq i \leq n}\left\{U_{i}\right\}>V^{1 / \theta}\right) & =\int_{0}^{1}\left(1-x^{1 / \theta}\right)^{n} d x=\theta \int_{0}^{1}(1-t)^{n} t^{\theta-1} d t \\
& =\theta \operatorname{Beta}(n+1, \theta)=\theta \frac{\Gamma(n+1) \Gamma(\theta)}{\Gamma(n+1+\theta)} \\
& =\frac{\theta n!\Gamma(\theta)}{(n+\theta)(n-1+\theta) \cdots \theta \Gamma(\theta)}=\prod_{k=1}^{n} \frac{k}{\theta+k}
\end{aligned}
$$

THE FIBONACCI QUARTERLY

where $\Gamma(\cdot)$ and $\operatorname{Beta}(\cdot, \cdot)$ are standard gamma and beta functions, respectively. On the other hand, equation (3) provides

$$
\mathrm{P}\left(\min _{1 \leq i \leq n}\left\{U_{i}\right\}>V^{1 / \theta}\right)=\int_{0}^{1} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} x^{k / \theta} d x=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{\theta}{k+\theta} .
$$

This completes the proof.
Remark. Letting $\operatorname{Exp}(\lambda)$ be the exponential distribution with parameter $\lambda>0$, namely the density is $\lambda e^{-\lambda x}$ for $x>0$, we suppose that X_{1}, \ldots, X_{n} are independent $\operatorname{Exp}(1)$ random variables, and T is an $\operatorname{Exp}(\theta)$ random variable which is independent of X_{i} for all $i=1, \ldots, n$. Note that the probability in this note $\mathrm{P}\left(\min _{1 \leq i \leq n}\left\{U_{i}\right\}>V^{1 / \theta}\right)$ is equivalent to $\mathrm{P}\left(\max _{1 \leq i \leq n}\left\{X_{i}\right\}<T\right)$ which was studied by Peterson [2], because the distribution of $-\log (1-U) / \lambda$ is $\operatorname{Exp}(\lambda)$, where U is a $\operatorname{Unif}([0,1])$ random variable.

References

[1] R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd. ed., Reading, MA, 1994.
[2] J. Peterson, A Probabilistic Proof of a Binomial Identity, American Math. Monthly, 120.6 (2013), 558-562.
MSC2010: 05A10
Department of Mathematics, Fukuoka University of Education, Munakata, Fukuoka, 811-4192, Japan

E-mail address: nakata@fukuoka-edu.ac.jp

