SOME BINOMIAL IDENTITIES ARISING FROM A PARTITION
OF AN n-DIMENSIONAL CUBE

ANDRZEJ P. KISTELEWICZ

ABSTRACT. Using a partition of the cube [0,2)" into boxes obtained from a cube tiling of R™
constructed by Lagarias and Shor, proofs of three well-known binomial identities related to
the Lucas cube are given.

1. INTRODUCTION

A cube tiling of R" is a family of cubes [0,2)" +T = {[0,2)" +t: ¢t € T}, where T' C R,
which fill in the whole space without gaps and overlaps. In [4] Lagarias and Shor constructed
a cube tiling code of R™. In this note we show how it can be used to prove the following

well-known identities: L
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The code of Lagarias and Shor is constructed as follows. Let n > 3 be an odd positive
integer, and let A be an n x n circulant matrix of the form A = A(n) = cire(1,2,0,...,0).
Let AT be the transpose of A. By V(A) and V(AT) we denote the sets of all possible sums of
distinct rows in A and AT, respectively. Moreover, we add to these sets the vector 0,...,0).
Let

V =Ve(A)U(Vo(AT) 4+ (2,...,2)) mod 4,

where V(A) denotes the set of all vectors in V(A) with an even number of 3’s, and V,(AT) is
the set of all vectors in V(AT) with an odd number of 0’s. We will refer to the code V' as the
Lagarias-Shor cube tiling code. This code has very interesting applications. Originally in [4]
it was used to design a certain cube tiling of R™ that was the basis for estimating distances
between cubes in cube tilings of R™. Recently in [3] the Lagarias-Shor cube tiling code was
used to construct interesting partitions and matchings of an n-dimensional cube.

To obtain a cube tiling of R from the code V', let T =V — 1 + 47", where 1 = (1,...,1).
It follows from [4, Proposition 3.1 and Theorem 4.1] that [0,2)" 4+ T is a cube tiling of R™.
(To be precise, a tiling considered in [4] is of the form [0,1)" + T”, where T’ = 3V + 2Z", but
[0,2)" +T = [0,2)" 4+ 27" — 1.) In the proofs of the identities (1.1)-(1.3) we do not need the
entire tiling [0,2)"™ 4+ T but only the cubes from it that intersect the cube [0,2)". These cubes
induce a partition of the cube [0,2)" of the form F = {[0,2)" N ([0,2)" +¢) : t € T'}. Our
proofs of the identities (1.1)—(1.3) are based on the properties of the partition F.
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All three identities are related to the Lucas cube A,. This is a graph whose vertices are all
elements of the box {0,1}" which do not contain two consecutive 1’s in the cyclic order (i.e.,
in (v,...,v,) € {0,1}" the coordinates v; and v, are consecutive) and in which two vertices
are adjacent if they differ in exactly one position. It is known that (";k) —r is the number of
all vertices in the Lucas cube A,, of weight k, i.e., containing k 1’s. This is also the number of
all k-element subsets of the set [n] = {1,...,n} without two consecutive integers in the cyclic
order ([5]). The number of all vertices in A, of weight k which have 1 at the ith position,
i € [n], is equal to (”;k) ﬁ, while (”;k) is the number of all vertices in A,, of weight k which
have 0 at the ith position.

In the last section we show that for n > 3 odd, the set of all vertices of the Lucas cube A,
is a selector of a partition of the box {0,1}" into boxes, which is a discrete analogue of the
above mentioned partition F of the cube [0,2)".

There are many tiling proofs that rely on counting the number of 1-dimensional tilings of a
1 x n board by polyominoes (squares, dominoes, etc.) (see [1, 2]). In our case we examine just
one partition of the n-dimensional cube [0,2)" into boxes and the structure of that partition
which reflects the local structure of the tiling [0,2)™ 4+ T is exploited.

2. PROOFS

Since the Lagarias-Shor cube tiling code is defined for odd numbers, we prove identities
(1.1)-(1.3) for odd and even positive integers separately.

Proof of (1.1) for n > 3 odd. We intersect the cube [0,2)" with the cubes from the tiling
[0,2)" +T. Let F(n) = F ={[0,2)" N ([0,2)" +t) : t € T}. Since [0,2)" + T is a tiling, F is a
partition of the cube [0,2)" into boxes. Let m(K) denote the volume of the box K € F, and
let m(F) = erm(K). For every K € F we have m(K) = 2, where k is the number of 1’s
in the vector v € V such that K = [0,2)"N([0,2)" +v—1). Let M, = |[{K € F : m(K) = 2F}|.
The family F is a partition of [0,2)™ and therefore m(F) = 2" and

m(F)=>_ M2~

k>0

Note now that if v € V contains 3 at some position i € [n], then the cubes [0,2)" +v — 1
and [0,2)" are disjoint. This means that these two cubes intersect if and only if v € U U
{(0,...,0),(2,...,2)}, where U consists of all sums of non-adjacent rows of the matrix A, and
the row numbers are in the cyclic order (thus, the first and last rows are adjacent). Therefore,
for k > 1 the number My, is equal to the number of all k-element subsets of the set {1,...,n}
without two consecutive integers in the cyclic order, and My = 2 because [0,1)" and [1,2)"
are the only cubes in F with volume 1. Hence, M} = (”;k) — for k > 1. This completes the
proof of (1.1) for n > 3 odd. O

This proof needs only the portion U = U(n) of the Lagarias-Shor cube tiling code, where
the code U consists of all sums of non-adjacent rows of the matrix A(n), and the row numbers
of A(n) are in the cyclic order. For example,
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where the rows of the matrix U(5) are the vectors of the family U(5).

Observe that if we replace 2 by 0 in every vector v € U U {(0,...,0)}, then we obtain the
set of all vertices in the Lucas cube A,,.

To prove (1.2) and (1.3) for n > 3 odd let F¢, Fi and F, i € [n], denote the sets of all
boxes in F which have the factors [0,1),[1,2) and [0, 2) at the ith position, respectively. Since
F={0,2"n([0,2)"+v—1) : v € UU{(0,...,0),(2,...,2)}}, for every k € {0,1,2} the set F
consists of all boxes in F which are determined by the vectors v € U U {(0,...,0),(2,...,2)}
such that v; = k. Let

m(Fop) = Y m(K) and m(F) = Y m(K),
KeFi, KeFi

where Fl, = F§ U Fi.

The partition F (Figure 1) has the structure which will be utilized below. Note that for
every i € [n] the set |J Fy, is an i-cylinder, i.e., for every line segment I; C [0,2)" of length 2
which is parallel to the ith edge of the cube [0,2)" we have

l; C U}“& or ;N Ufég =0. (2.1)
Obviously, the set U]:{ is an i-cylinder too.

2
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FiGure 1. The boxes in JF are determined by the vectors U =
{(1,2,0),(0,1,2),(2,0,1)} (the three “long” boxes) and {(0,0,0), (2,2,2)} (the
two unit cubes).

Proof of (1.2) and (1.3) for n > 3 odd. We will calculate m(F¢,) and m(F). For every v € U
we have v; = 1 if and only if v,y = 2. Thus, Fa'' = Fj U {[1,2)"} and then m(F3t!) =
m(Fi) + 1 (clearly, n + 1 is taken modulo n). It follows from (2.1) that m(F}) = m(F)
(see Figure 1). Since A is a circulant matrix, we have m(F}) = m(ff) for i,j € [n], and
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m(F) = m(F) + m(FL) + m(F}) because F is a partition. Thus, 2" = 3m(F}) + 2 and
consequently

o22m 41 oon 9
m(F) = 22 and i = F 2 (2.2)
As it was noted before the proof, the code U U{(0,...,0)} can be identified with the set of all

vertices in the Lucas cube A,,. Since (";k) ﬁ is the number of all vertices of weight k in A,

with 1 at the first position, we have |F}| = k>1 ("gk) ﬁ, and consequently

D =3 (")

k>1

which, by (2.2), gives (1.3) for n > 3 odd. Since

S () (e ()

k>0 k>0 k>0

the proof of the identity (1.2) for n > 3 odd is also completed. 0

For n > 3 odd all three identities are strongly related to the partition F. The sums
Y kst (";k) 28 42 and 3, (";k) %2’“ are the total volumes of the boxes from the partition
F which belong to the sets Fiy and F}, respectively (the number 2 in the first sum is the
sum of the volumes of the boxes [0,1)" and [1,2)™). The summands (”;k) 2k and (";k) %2’“
fork=1,..., L%J are the total volumes of the boxes in F{, and F%, respectively which have
exactly k factors [0, 2).

From now on we assume that n > 3 is an odd number. The identities (1.1)—(1.3) forn—1 > 2
even can be derived from the partitions F(n) and F(n — 2), where F(1) = {[0,1),[1,2)}.

Proofs of (1.1)-(1.3) for n —1 > 2 even. Denote by r1,...,7, the rows of the matrix A(n),
and let G = G(n — 1) C F(n) be the set of all boxes which are determined by the vectors
v € U(n) which are sums of non-adjacent rows from the set {ry,...,r,—1}, where r; and r,,_;
are treated as adjacent. Thus, the number |G| is the same as the number of all vertices in the
Lucas cube A,_1. Consequently

n—1-k\ n—-1 _,
m@)_§:< k >n—1—k2'
k>1
Since G = F§ \ {[0,1)"}, it follows that m(Gg) = m(F{) — 1, and by (2.2) and the fact that
m(Fy) = m(Fy) we get
2(2nt — 1)
—

We now calculate m(Gy). Every box in G is generated by a vector v € U which has 2 at the
nth position. Therefore, v = r, 1+, ;r; for some I C {2,...,n—3}. Let R be the set of all
such sums ), ; ;. Every vector in R is a sum of non-adjacent rows from the set {ra,...,r,_3},

m(Gy) =

where ro and r,_3 are not treated as adjacent. Let U€_2(n — 2) be the set of all vectors in
U(n — 2) having 0 at the last position. Observe now that the function b : R — U ?(n — 2)
defined by the formula b(u) = > ,c;_; h;, where hi, ..., h,_2 are rows of the matrix A(n — 2)
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and I —1={i—1:4 € I}, is a bijection. Therefore, m(Gy) =
we add 1,1 t0 >,y 74). By (2.1), m(Fy 2 (n — 2)) = m(Fy %
n—1
migy) = 52

Thus, m(G) = m(G%) + m(Gy) = 27! because G = (). This completes the proof of (1.1) for
n—12>2 even. '

Since m(GE) = m(GL), m(G}) = m(G]) and m(G) = m(G}) +m(Giy) for i, € [n — 1], it
follows that

2m(Fg~%(n — 2)) (recall that
n —2)), and by (2.2),

a2y 2(2n1t -1
mig) = 212 A

for i € [n — 1]. By the definition of the set G, we have |G| = D k>t ("_]i_k) ﬁ, and thus

Y e

k>1

and m(Ghy) =

which proves (1.3) for n — 1 > 2 even. Having this in the same manner as for n > 3 odd, we
prove (1.2) for n — 1 > 2 even. O

3. VERTICES OF THE LucAS CUBE AS A SELECTOR

Let L = L(n) be the code that arises from U = U(n) by making in every vector v € U the
following substitutions: 0 — 0, 2 — 1 and 1 — *. For example,

[« 1.0 0 0]
0 = 1 00
00 = 10
00 0 % 1
1 0 0 0 «
L) = *+ 1 = 1 0|’
* 1 0 * 1
0 « 1 % 1
1 = 1 0 =
1 0 = 1 =%

where the rows of the matrix L(5) are the vectors of the family L(5).

The set L consists of all sums of non-adjacent rows of the matrix circ(x,1,0,...,0), where
the row numbers of this matrix are in the cyclic order. Therefore, if we replace * by 0 in every
vector of LU {(0,...,0)}, then we obtain the set V' (A,) of all vertices in the Lucas cube A,,.

The code LU {(0,...,0),(1,...,1)} induces a partition £ of the discrete box {0,1}" into
boxes which is a discrete analogue of the partition F from the previous section. The boxes
K(l)=K(l) x --- x K,(I) € £, where l € LU{(0,...,0),(1,...,1)}, are of the form

(0} il =0,
KM= {1} ifli=1,
{0,1} if l; ==

for i € [n], and |K(I)| = 2* for every box K(I) € £ having k factors {0,1}. Therefore, the
proofs from the previous section can be repeated, but this time we consider the partition £
instead of F.
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Observe now that for every n > 3 odd the set V(A,) of the vertices of the Lucas cube is a
selector of the family of boxes £\ {{1} x --- x {1}}: for every v € V(A,) there is exactly one
K() e L\ {{1} x--- x {1}} such that

ve K(I).
Indeed, let K(1) € L\ {{1} x--- x {1}} and pick v = (v1,...,v,) € K(I) in the following way:

u={ 1K) = {1},
0 if K;(1) = {0,1}.

Since [ does not contain two consecutive 1’s in the cyclic order and if K; = {0,1}, then
K11 = {1}, it follows that v € V(A,) and for every w € K(I), w # v, there is i € [n] such
that w; = 1 while v; = 0. Thus, K(I) NV (A,) = {v}.
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