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Abstract. Using a partition of the cube [0, 2)n into boxes obtained from a cube tiling of Rn

constructed by Lagarias and Shor, proofs of three well-known binomial identities related to
the Lucas cube are given.

1. Introduction

A cube tiling of Rn is a family of cubes [0, 2)n + T = {[0, 2)n + t : t ∈ T}, where T ⊂ R
n,

which fill in the whole space without gaps and overlaps. In [4] Lagarias and Shor constructed
a cube tiling code of Rn. In this note we show how it can be used to prove the following
well-known identities:

∑

k≥0

(

n− k

k

)

n

n− k
2k = 2n + (−1)n, (1.1)

∑

k≥0

(

n− k

k

)

2k =
2n+1 + (−1)n

3
(1.2)

and
∑

k≥0

(

n− k

k

)

k

n− k
2k =

2n + (−1)n2

3
. (1.3)

The code of Lagarias and Shor is constructed as follows. Let n ≥ 3 be an odd positive
integer, and let A be an n × n circulant matrix of the form A = A(n) = circ(1, 2, 0, . . . , 0).
Let AT be the transpose of A. By V (A) and V (AT ) we denote the sets of all possible sums of
distinct rows in A and AT , respectively. Moreover, we add to these sets the vector (0, . . . , 0).
Let

V = Ve(A) ∪ (Vo(A
T ) + (2, . . . , 2)) mod 4,

where Ve(A) denotes the set of all vectors in V (A) with an even number of 3’s, and Vo(A
T ) is

the set of all vectors in V (AT ) with an odd number of 0’s. We will refer to the code V as the
Lagarias-Shor cube tiling code. This code has very interesting applications. Originally in [4]
it was used to design a certain cube tiling of Rn that was the basis for estimating distances
between cubes in cube tilings of Rn. Recently in [3] the Lagarias-Shor cube tiling code was
used to construct interesting partitions and matchings of an n-dimensional cube.

To obtain a cube tiling of Rn from the code V , let T = V − 1+ 4Zn, where 1 = (1, . . . , 1).
It follows from [4, Proposition 3.1 and Theorem 4.1] that [0, 2)n + T is a cube tiling of Rn.
(To be precise, a tiling considered in [4] is of the form [0, 1)n + T ′, where T ′ = 1

2
V + 2Zn, but

[0, 2)n + T = [0, 2)n + 2T ′ − 1.) In the proofs of the identities (1.1)–(1.3) we do not need the
entire tiling [0, 2)n + T but only the cubes from it that intersect the cube [0, 2)n. These cubes
induce a partition of the cube [0, 2)n of the form F = {[0, 2)n ∩ ([0, 2)n + t) : t ∈ T}. Our
proofs of the identities (1.1)–(1.3) are based on the properties of the partition F .
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All three identities are related to the Lucas cube Λn. This is a graph whose vertices are all
elements of the box {0, 1}n which do not contain two consecutive 1’s in the cyclic order (i.e.,
in (v1, . . . , vn) ∈ {0, 1}n the coordinates v1 and vn are consecutive) and in which two vertices

are adjacent if they differ in exactly one position. It is known that
(

n−k
k

)

n
n−k

is the number of
all vertices in the Lucas cube Λn of weight k, i.e., containing k 1’s. This is also the number of
all k-element subsets of the set [n] = {1, . . . , n} without two consecutive integers in the cyclic
order ([5]). The number of all vertices in Λn of weight k which have 1 at the ith position,

i ∈ [n], is equal to
(

n−k
k

)

k
n−k

, while
(

n−k
k

)

is the number of all vertices in Λn of weight k which
have 0 at the ith position.

In the last section we show that for n ≥ 3 odd, the set of all vertices of the Lucas cube Λn

is a selector of a partition of the box {0, 1}n into boxes, which is a discrete analogue of the
above mentioned partition F of the cube [0, 2)n.

There are many tiling proofs that rely on counting the number of 1-dimensional tilings of a
1×n board by polyominoes (squares, dominoes, etc.) (see [1, 2]). In our case we examine just
one partition of the n-dimensional cube [0, 2)n into boxes and the structure of that partition
which reflects the local structure of the tiling [0, 2)n + T is exploited.

2. Proofs

Since the Lagarias-Shor cube tiling code is defined for odd numbers, we prove identities
(1.1)-(1.3) for odd and even positive integers separately.

Proof of (1.1) for n ≥ 3 odd. We intersect the cube [0, 2)n with the cubes from the tiling
[0, 2)n + T . Let F(n) = F = {[0, 2)n ∩ ([0, 2)n + t) : t ∈ T}. Since [0, 2)n + T is a tiling, F is a
partition of the cube [0, 2)n into boxes. Let m(K) denote the volume of the box K ∈ F , and
let m(F) =

∑

K∈F m(K). For every K ∈ F we have m(K) = 2k, where k is the number of 1’s

in the vector v ∈ V such that K = [0, 2)n∩([0, 2)n+v−1). Let Mk = |{K ∈ F : m(K) = 2k}|.
The family F is a partition of [0, 2)n and therefore m(F) = 2n and

m(F) =
∑

k≥0

Mk2
k.

Note now that if v ∈ V contains 3 at some position i ∈ [n], then the cubes [0, 2)n + v − 1

and [0, 2)n are disjoint. This means that these two cubes intersect if and only if v ∈ U ∪
{(0, . . . , 0), (2, . . . , 2)}, where U consists of all sums of non-adjacent rows of the matrix A, and
the row numbers are in the cyclic order (thus, the first and last rows are adjacent). Therefore,
for k ≥ 1 the number Mk is equal to the number of all k-element subsets of the set {1, . . . , n}
without two consecutive integers in the cyclic order, and M0 = 2 because [0, 1)n and [1, 2)n

are the only cubes in F with volume 1. Hence, Mk =
(

n−k
k

)

n
n−k

for k ≥ 1. This completes the

proof of (1.1) for n ≥ 3 odd. �

This proof needs only the portion U = U(n) of the Lagarias-Shor cube tiling code, where
the code U consists of all sums of non-adjacent rows of the matrix A(n), and the row numbers
of A(n) are in the cyclic order. For example,

326 VOLUME 52, NUMBER 4



BINOMIAL IDENTITIES

A(5) =













1 2 0 0 0
0 1 2 0 0
0 0 1 2 0
0 0 0 1 2
2 0 0 0 1













, U(5) =

































1 2 0 0 0
0 1 2 0 0
0 0 1 2 0
0 0 0 1 2
2 0 0 0 1
1 2 1 2 0
1 2 0 1 2
0 1 2 1 2
2 1 2 0 1
2 0 1 2 1

































,

where the rows of the matrix U(5) are the vectors of the family U(5).
Observe that if we replace 2 by 0 in every vector v ∈ U ∪ {(0, . . . , 0)}, then we obtain the

set of all vertices in the Lucas cube Λn.
To prove (1.2) and (1.3) for n ≥ 3 odd let F i

0,F
i
2 and F i

1, i ∈ [n], denote the sets of all
boxes in F which have the factors [0, 1), [1, 2) and [0, 2) at the ith position, respectively. Since
F = {[0, 2)n∩([0, 2)n+v−1) : v ∈ U∪{(0, . . . , 0), (2, . . . , 2)}}, for every k ∈ {0, 1, 2} the set F i

k

consists of all boxes in F which are determined by the vectors v ∈ U ∪ {(0, . . . , 0), (2, . . . , 2)}
such that vi = k. Let

m(F i
02) =

∑

K∈F i

02

m(K) and m(F i
1) =

∑

K∈F i

1

m(K),

where F i
02 = F i

0 ∪ F i
2.

The partition F (Figure 1) has the structure which will be utilized below. Note that for
every i ∈ [n] the set

⋃

F i
02, is an i-cylinder, i.e., for every line segment li ⊂ [0, 2)n of length 2

which is parallel to the ith edge of the cube [0, 2)n we have

li ⊂
⋃

F i
02 or li ∩

⋃

F i
02 = ∅. (2.1)

Obviously, the set
⋃

F i
1 is an i-cylinder too.

1

2
3

F

F

FF
3

0

3

2

3

1

2

2

2

0

Figure 1. The boxes in F are determined by the vectors U =
{(1, 2, 0), (0, 1, 2), (2, 0, 1)} (the three “long” boxes) and {(0, 0, 0), (2, 2, 2)} (the
two unit cubes).

Proof of (1.2) and (1.3) for n ≥ 3 odd. We will calculate m(F i
02) and m(F i

1). For every v ∈ U

we have vi = 1 if and only if vi+1 = 2. Thus, F i+1

2
= F i

1 ∪ {[1, 2)n} and then m(F i+1

2
) =

m(F i
1) + 1 (clearly, n + 1 is taken modulo n). It follows from (2.1) that m(F i

0) = m(F i
2)

(see Figure 1). Since A is a circulant matrix, we have m(F i
1) = m(F j

1
) for i, j ∈ [n], and
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m(F) = m(F i
0) + m(F i

2) + m(F i
1) because F is a partition. Thus, 2n = 3m(F i

1) + 2 and
consequently

m(F i
02) =

2(2n + 1)

3
and m(F i

1) =
2n − 2

3
. (2.2)

As it was noted before the proof, the code U ∪{(0, . . . , 0)} can be identified with the set of all

vertices in the Lucas cube Λn. Since
(

n−k
k

)

k
n−k

is the number of all vertices of weight k in Λn

with 1 at the first position, we have |F1
1 | =

∑

k≥1

(

n−k
k

)

k
n−k

, and consequently

m(F1
1 ) =

∑

k≥1

(

n− k

k

)

k

n− k
2k,

which, by (2.2), gives (1.3) for n ≥ 3 odd. Since

∑

k≥0

(

n− k

k

)

n

n− k
2k =

∑

k≥0

(

n− k

k

)

2k +
n
∑

k≥0

(

n− k

k

)

k

n− k
2k,

the proof of the identity (1.2) for n ≥ 3 odd is also completed. �

For n ≥ 3 odd all three identities are strongly related to the partition F . The sums
∑

k≥1

(

n−k
k

)

2k +2 and
∑

k≥1

(

n−k
k

)

k
n−k

2k are the total volumes of the boxes from the partition

F which belong to the sets F i
02 and F i

1, respectively (the number 2 in the first sum is the

sum of the volumes of the boxes [0, 1)n and [1, 2)n). The summands
(

n−k
k

)

2k and
(

n−k
k

)

k
n−k

2k

for k = 1, . . . ,
⌊

n
2

⌋

are the total volumes of the boxes in F i
02 and F i

1, respectively which have
exactly k factors [0, 2).

From now on we assume that n ≥ 3 is an odd number. The identities (1.1)–(1.3) for n−1 ≥ 2
even can be derived from the partitions F(n) and F(n− 2), where F(1) = {[0, 1), [1, 2)}.

Proofs of (1.1)-(1.3) for n − 1 ≥ 2 even. Denote by r1, . . . , rn the rows of the matrix A(n),
and let G = G(n − 1) ⊂ F(n) be the set of all boxes which are determined by the vectors
v ∈ U(n) which are sums of non-adjacent rows from the set {r1, . . . , rn−1}, where r1 and rn−1

are treated as adjacent. Thus, the number |G| is the same as the number of all vertices in the
Lucas cube Λn−1. Consequently

m(G) =
∑

k≥1

(

n− 1− k

k

)

n− 1

n− 1− k
2k.

Since Gn
0 = Fn

0 \ {[0, 1)n}, it follows that m(Gn
0 ) = m(Fn

0 )− 1, and by (2.2) and the fact that
m(Fn

0 ) = m(Fn
2 ) we get

m(Gn
0 ) =

2(2n−1 − 1)

3
.

We now calculate m(Gn
2 ). Every box in Gn

2 is generated by a vector v ∈ U which has 2 at the
nth position. Therefore, v = rn−1+

∑

i∈I ri for some I ⊂ {2, . . . , n−3}. Let R be the set of all
such sums

∑

i∈I ri. Every vector in R is a sum of non-adjacent rows from the set {r2, . . . , rn−3},

where r2 and rn−3 are not treated as adjacent. Let Un−2

0
(n − 2) be the set of all vectors in

U(n − 2) having 0 at the last position. Observe now that the function b : R → Un−2

0
(n − 2)

defined by the formula b(u) =
∑

i∈I−1
hi, where h1, . . . , hn−2 are rows of the matrix A(n− 2)
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and I − 1 = {i − 1 : i ∈ I}, is a bijection. Therefore, m(Gn
2 ) = 2m(Fn−2

0
(n − 2)) (recall that

we add rn−1 to
∑

i∈I ri). By (2.1), m(Fn−2

0
(n− 2)) = m(Fn−2

2
(n− 2)), and by (2.2),

m(Gn
2 ) =

2n−1 + 2

3
.

Thus, m(G) = m(Gn
0 ) +m(Gn

2 ) = 2n−1 because Gn
1 = ∅. This completes the proof of (1.1) for

n− 1 ≥ 2 even.
Since m(Gi+1

2
) = m(Gi

1), m(Gi
1) = m(Gj

1
) and m(G) = m(Gi

1) +m(Gi
02) for i, j ∈ [n − 1], it

follows that

m(Gi
1) =

2n−1 + 2

3
and m(Gi

02) =
2(2n−1 − 1)

3

for i ∈ [n− 1]. By the definition of the set G, we have |G1
1 | =

∑

k≥1

(

n−1−k
k

)

k
n−1−k

, and thus

m(G1
1) =

∑

k≥1

(

n− 1− k

k

)

k

n− 1− k
2k

which proves (1.3) for n − 1 ≥ 2 even. Having this in the same manner as for n ≥ 3 odd, we
prove (1.2) for n− 1 ≥ 2 even. �

3. Vertices of the Lucas Cube as a Selector

Let L = L(n) be the code that arises from U = U(n) by making in every vector v ∈ U the
following substitutions: 0 → 0, 2 → 1 and 1 → ∗. For example,

L(5) =

































∗ 1 0 0 0
0 ∗ 1 0 0
0 0 ∗ 1 0
0 0 0 ∗ 1
1 0 0 0 ∗
∗ 1 ∗ 1 0
∗ 1 0 ∗ 1
0 ∗ 1 ∗ 1
1 ∗ 1 0 ∗
1 0 ∗ 1 ∗

































,

where the rows of the matrix L(5) are the vectors of the family L(5).
The set L consists of all sums of non-adjacent rows of the matrix circ(∗, 1, 0, . . . , 0), where

the row numbers of this matrix are in the cyclic order. Therefore, if we replace ∗ by 0 in every
vector of L ∪ {(0, . . . , 0)}, then we obtain the set V (Λn) of all vertices in the Lucas cube Λn.

The code L ∪ {(0, . . . , 0), (1, . . . , 1)} induces a partition L of the discrete box {0, 1}n into
boxes which is a discrete analogue of the partition F from the previous section. The boxes
K(l) = K1(l)× · · · ×Kn(l) ∈ L, where l ∈ L ∪ {(0, . . . , 0), (1, . . . , 1)}, are of the form

Ki(l) =







{0} if li = 0,
{1} if li = 1,

{0, 1} if li = ∗

for i ∈ [n], and |K(l)| = 2k for every box K(l) ∈ L having k factors {0, 1}. Therefore, the
proofs from the previous section can be repeated, but this time we consider the partition L
instead of F .
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Observe now that for every n ≥ 3 odd the set V (Λn) of the vertices of the Lucas cube is a
selector of the family of boxes L \ {{1} × · · · × {1}}: for every v ∈ V (Λn) there is exactly one
K(l) ∈ L \ {{1} × · · · × {1}} such that

v ∈ K(l).

Indeed, let K(l) ∈ L\ {{1} × · · · × {1}} and pick v = (v1, . . . , vn) ∈ K(l) in the following way:

vi =







0 if Ki(l) = {0},
1 if Ki(l) = {1},
0 if Ki(l) = {0, 1}.

Since l does not contain two consecutive 1’s in the cyclic order and if Ki = {0, 1}, then
Ki+1 = {1}, it follows that v ∈ V (Λn) and for every w ∈ K(l), w 6= v, there is i ∈ [n] such
that wi = 1 while vi = 0. Thus, K(l) ∩ V (Λn) = {v}.
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E-mail address: A.Kisielewicz@wmie.uz.zgora.pl

330 VOLUME 52, NUMBER 4


