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ABSTRACT. In this paper, we show that the Diophantine equation F, = z® + z® £ 1 has
only finitely many positive integer solutions (n, z,a,b) with n > 3, max{a,b} > 2 and z with
exactly two distinct prime factors.

1. INTRODUCTION

In this paper, we consider the Diophantine equation
Fy=a2%+a2"4+1 (1.1)

in positive integer variables n,x,a,b with max{a,b} > 2 and n > 3. Luca and Szalay [3]
showed that equation (1.1) has only finitely many positive integer solutions (n,z,a,b) with
prime x. We extend this result to the case when z has exactly two distinct prime factors.

Theorem 1.1. Equation (1.1) has only finitely many positive integer solutions (n,x,a,b) with
n > 3, max{a,b} > 2 and x having exactly two distinct prime factors. All such solutions have
max{a,b} < 4 x 10 and

T < exp (exp (exp (exp (5 X 1045)))) .
We point out that Bennett and Bugeaud [2] treated the similar equation (1.1) with F,

replaced by some perfect power y? of integer exponent ¢ > 2.

2. PRELIMINARY RESULTS

For the proof of Theorem 1.1, we need the following explicit lower bound for a linear form
in logarithms of real algebraic numbers due to Matveev [4]. But first, we need to remind the
reader of the definition of the height of an algebraic number. Let 1 be an algebraic number of
degree d over Q with minimal primitive polynomial over the integers

d
F(X) = a0 [J(X —n™) e Z[x],
=1

where the leading coefficient aq is positive. The logarithmic height of 1 is given by

d
1 .
h(n) = p (log ap + Zlog max{|n®|, 1}) .

i=1
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Lemma 2.1. (Matveev). Let L be a real number field of degree D, aq, s, ...,q; be non-zero
elements of L and by, ba, ..., b be nonzero integers. Set B = max{by,...,b} and

A=abr ..ol — 1,
Let Ay, ..., A be real numbers with
A; > max{Dh(«;),|log o;],0.16} for all 1 < j <t.
Assume that A # 0. Then
log |A] > —1.4-30"3¢*5D?(1 4 log D)(1 + log B) A - - - A;.
We also recall the following result of Baker from 1964 (see [1]).

Lemma 2.2. (Baker). Let f(X) = apX?+a1 X1 +---+ay € Z[X] be a polynomial of degree
d. Let (z,y) be an integer solution to the equation

y* = f(@).
If f(X) has at least three simple roots, then
max{e], |y|} < exp(exp(exp((d'*H)™))), (2.1)

where H = max{|ag|, ..., |aq|}
In order to be able to apply Lemma 2.2, we need the following result.
Lemma 2.3. Let a > b > 1 be fized integers and
f(X)=X"+e1X 46y and g(X)=5f(X)?+4es, where e1,e9,e3 € {£1}.
Then g(X) has only simple roots.
Proof. Let xy be a double zero of g(X). Then
g(wo) = 5f(w0)* +4e3 =0 and ¢ (x0) = 5/ (w0) ' (x) = 0. (2.2)

From the second equation (2.2), we get that either f(z9) =0 or f'(z9) = 0. If f(z¢) =0, the
the first equation (2.2) gives 4 = 0, which is false. Thus,

0= f'(x) = a:ng_l + slbxg_l = xg_l(axg_b + e1b).
If 29 = 0, then the first equation (2.2) gives 5 + 4e3 = 0, which is false. So a:g_b = —e1b/a.
Returning to g(zg) = 0, we get
azg(azg_b +e1) +e2 = f(mg) =4/ —4e3/5, (g4 € {£1})

and
—e9 + &4/ —4e3/5

ei(a—0)/a
Raising equation (2.3) to the power a — b, we get

(—52 + €4 —453/5>a_b = (237" = (—e1b/a)’,

b =

e1(a—"0b)/a

which leads to the conclusion that (—e2 + e4+/—4£3/5)%7" € Q. Analyzing this situation over
all the possibilities €3, €3, e4 € {£1}, we get to the conclusion that one of the numbers 2++/5
or 2 4+ +/—5 raised to some nonzero integer exponent is an integer, which is false. O
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3. PROOF OF THEOREM 1.1

Without loss of generality, we may assume that n > 500, a > b and x > 6 since = has
exactly two distinct prime factors. We rewrite equation (1.1) as

F,Fl=a@x""t+1). (3.1)

From [3, Lemma 2|, we know that
Fo4+e=FnsLns (3.2)
2 2

where
—e ifn=1 (mod 4)
€ if n=-1 (mod 4)
—2¢ ifn=2 (mod 4)
26 ifn=0 (mod4)

(e € {£1}).

Here and in what follows, L, is the mth Lucas number. Since
Fas | Fpgy Lugs | Frys and  ged(Fy, Fy) = Fuw),
we get that
ged(Fuzs, Lngs) | ged(Fns, Frys) | Fope) | Fa =3,
therefore,

ged(Fns,Lnis) =1 or 3 and it is 3 exactly when n is even and n =9 (mod 8).
2 2

From equations (3.1) and (3.2), we get
l‘b(:Ea_b + 1) = F@Lm.
2 2
Note that % + 2® £ 1 is always odd. So, Fj, is odd, therefore 3 { n. A case by case analysis

shows that either 3 | (n — 9)/2 or 3 | (n + ¢)/2. We then write (n + nd)/2 = 3k for some
n € {£1}. Recall that

Py = Fp(5F7 +3(—1)%) and Lg; = Li(L} — 3(-1)).

In each of the two cases, the above two factors are either coprime or their greatest common
divisor is exactly 3. Hence, we have from (3.2) that

— k i n—0 __ .
D@+ 1) = {F3kL3k+5 = Fp(5F% 4+ 3(—=1)%)Lajys, if 252 = 3k;

Fp—sLar = Fyp_sLy(L3 — 3(—=1)%), if 252 = 3k.

(3.3)

Hence, we can write 2°(2%7? 4+ 1) = G1G2G3, where the pairwise greatest common divisor of
G1, G and Gj is either 1 or 3 (note that G1G2G3 is positive since otherwise it would be zero
and we would get that F,, = 1, which is impossible since we are assuming that n > 500). We
label the G;’s such that G; = min{G1, G2, G3}. From formula (3.3) and the fact that n > 500
(so k > 50), it is easy to see that G; = F}, or Ly according to whether n+0 = 6k or n—4§ = 6k,
respectively.

We now let = p{'p5?, where p; and py are distinct primes and e; and ey are positive
integer exponents. Suppose first that a = b. Then G1G2G3 = 2% = 2p*©1¢®°2. The greatest
common divisor conditions imply G; < 6, so k < 5, which is not possible since n > 500.
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Assume next that @ > b. From (3.3), we get 2 = pilbp?b divides either 9G1G>, or 9G>G3,
or 9G3G1. Therefore,

9(F, +1)
<
Gy - Fy, - ak-2

where a = (1 + +/5)/2. Here, we used the fact that 9 < o, Fy > of~2 for all k¥ > 1, and
F, <a™ ! —1 for n > 500. These inequalities are consequences of the Binet formula
F,=2 _g . where B=(1-V5)/2 (3.4)
a fe—

9(F,+1) _a®-a"! n—k+6 _ 5n47

2? < 9G,G3 = = <a’s

On the other hand,
20 +1>a%+2+1=F,>a" 241  (n>500),

giving
n—2
% > > a4
Thus,
b 54T n—a\9 _ 6o Ga
' < a6 <(a )7<:E7, SO b<7

where in the above we used the fact that

5n 6(n —4)
- T< — 7
6 + 7

which holds because n > 500. Hence, a —b > a/7. This inequality together with (3.2) and the
Binet formula for the Fibonacci numbers (3.4) implies

Bn

an

— — % = ia:b+—i1' < 1.22%,
V5 V5
where the right-most inequality holds because x > 6 and b > 1, giving
ax™?
— 1| < 1.2¢7 (@b, 3.5
v (35)

The above inequality (3.5) implies that the left-hand side is < 1/2 since > 6 and a — b > 1.
Hence,

axr™?® 1 < mi 1 1.2 < mi 1 1.2 < mi 1 1 (3.6)
7 Sminqg, o Smingg, = min | 5, e[ .
In the above chain of inequalities we used the fact that 2 > 6 > 1.27. An argument of Shorey

and Stewart [5] implies that a is bounded. Let us recall their argument and use it to compute
an explicit bound for a. Write n = ag + r with 0 < r < a. Then inequality (3.6) is

a” [l (1 1

We apply Lemma 2.1 to the left-hand side above with the parameters L = Q(\/g), t = 3,
a1 =a, ag =+/5, a3 =al/z, by =71, by =1, b3 = a. Hence,

o [af\®
I'=—(—] —1. 3.8
V5 ( z ) (38)
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Clearly D = 2 and B = a. We can take 4; = 0.5 > max{2h(a),log a1,0.16}. Also, we can
take Ay = 1.7 > max{2h(a2),log az,0.16}. We need to compute Az. For this, we note that
the minimal polynomial of a?/x over Z is

fY) =2?Y? — (a?+ pN)aY + (~1)%

The conjugate of a?/x is 89/x whose absolute value is clearly smaller than 1. Further, by

(3.7), we have
_T <_q>a <
\/5 T
log 2

1 2 ad 0
h(az) = B} log 2 + log max ¢ 1, - <logx + 5 < 1l.5logx

since x > 6. Thus, we can take A3 = 1.5log z. We verify that I' # 0. Indeed, if this were not
so, then we would get that

N W

1/a
q
, therefore a7 <7/ (3—\2/5> < 2.
x

Hence,

o

NG
After squaring and manipulating the above relation, we get a?” € Q, implying n = 0, which
is false. So, we may apply Matveev’s Theorem Lemma 2.1 to the left-hand side of inequality
(3.7), getting

0| > exp (—1.4 x 30° x 3"% x 2%(1 + log 2)(1 + log a) x 0.5 x 1.7 x 1.5log z) . (3.9)

Hence,

=1.

IT| > exp(—1.3 x 10'%(1 +log a)log z). (3.10)
Combining the above inequality (3.10) with inequality (3.7), we get
((a —1)/7)log z < 1.3 x 10*3(1 + log a) log
giving a < 4 x 10'4. This proves the assertion about a. Assume now that both a > b > 1 are
fixed and let
f(X)=X2+X0+1.
Inserting the relation F,, = f(z) into the formula
Ly — 5F; = 4(-1)",
we get, with y = L,,, that
P = g(), (3.11)
where g(X) = 5f(X)? £4 € Z[X]. We shall apply Lemma 2.2 to bound the solutions of
equation (3.11). The condition that g(X) has at least three simple zeros is satisfied since

deg(g(X)) = 2a > 4 and by Lemma 2.3, the roots of g(X) are simple. Further, one checks
easily that H(g) < 15. Now (2.1) implies that

x < exp (exp (exp (((2a)20“ X 15)4“2>>> .
Inserting a < 4 x 10'4, we get the desired inequality for x. (]
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