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Abstract. Let k ≥ 1 be an integer and let Fk be the kth Fibonacci number. In this paper
we prove that if {F2k, 5F2k, c, d} with c < d is the set of four positive integers such that any
product of its two distinct elements increased by 4 is a perfect square, then d is uniquely
determined by k and c.

1. Introduction

Let n 6= 0 be an integer. A set {a1, a2, . . . , am} of m positive integers is called a D(n)-m-
tuple if aiaj + n is a perfect square for all i, j with 1 ≤ i < j ≤ m. The problem of finding
such sets has a long and rich history. All details about it, together with references and open
problems, can be found on webpage web.math.pmf.unizg.hr/\~{}duje/dtuples.html. Here
we will only consider the case n = 4. With the exception of that case, cases n = 1 and n = −1
have been studied extensively in the last few years.

In the case n = 4 there is a conjecture that does not exist, a D(4)-quintuple. Actually,
there exists a stronger version of that conjecture [4, Conjecture 1] that if {a, b, c, d} is a D(4)-
quadruple such that a < b < c < d, then

d = d+ = a+ b+ c+
1

2
(abc+ rst) ,

where r, s and t are positive integers defined by ab + 4 = r2, ac + 4 = s2, and bc + 4 = t2.
The D(4)-quadruple {a, b, c, d}, where d > max{a, b, c} is called a regular quadruple if d =
d+. We also define d− = a + b + c + 1/2 (abc− rst) . The set {a, b, c, d−} is also a D(4)-
quadruple if d− 6= 0, but d− < c. There are many results that support this Conjecture (see
[11, 10, 4, 9, 7, 8, 1, 2]).

In this paper we will generalize the result obtained in [4] where Dujella and Ramasamy
proved that if {F2k, 5F2k, 4F2k+2, d} is D(4)-quadruple, then d = 4L2kF4k+2, where k ≥ 1 is
an integer and Fk and Lk denote kth Fibonacci and kth Lucas number. Our main result is
the following theorem.

Theorem 1.1. Let k ≥ 2, ν ≥ 1 be integers and let c = cν be an integer defined by

c±ν :=
4

5F 2
2k

{(

3F2k ± F2k

√
5

2

)(

L2k + F2k

√
5

2

)2ν

+

(

3F2k ∓ F2k

2

)

(

L2k − F2k

√
5

2

)2ν

− 3F2k

}

. (1.1)
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Assume that c 6= c±1 = 4F2k±2. If the set {F2k, 5F2k , c, d} is D(4)-quadruple, then d = c±ν−1

or d = c±ν+1. Moreover, if c = c±1 = 4F2k±2 and {F2k, 5F2k, c, d} is D(4)-quadruple, then

d = c±2 .

Let us mention the case when k = 1 is solved completely in [2] where Baćić and the author
considered the extensions of D(4)-triples {k − 2, k + 2, c} so the triples {1, 5, c} were covered
there. The same authors [3, Lemma 3] proved this theorem for k ≤ 8. From this point onward
we will assume k ≥ 9. Also, the case c = c+1 is exactly what is proved in [4]. Theorem 1.1 also
implies the following corollary.

Corollary 1.2. Let k ≥ 2 be an integer. If the set {F2k, 5F2k, c, d} is D(4)-quadruple with
c < d then d is uniquely determined. Moreover, {F2k, 5F2k, c, d} is a regular D(4)-quadruple
and D(4)-pair {F2k, 5F2k} cannot be extended to a D(4)-quintuple.

Proof. The statement of the Corollary follows immediately from Theorem 1.1 if we know
that all possible c’s that extend D(4)-pair {F2k, 5F2k} are given by (1.1) and noticing that
c±ν−1c

±

ν+1 + 4 cannot be a perfect square. To prove this let us remember that if we want to
extend D(4)-pair {a, b} with element c, there should exist positive integers s and t such that
ac+ 4 = s2 and bc+ 4 = t2. Eliminating c, we get a pellian equation

bs2 − at2 = 4(b− a).

However, in our case we have a = F2k and b = 5a = 5F2k which implies t2 − 5s2 = −16.
It is not hard to see that all fundamental solutions which generate all the solutions of this
equation are given by (t0, s0) = (±2, 2), (±8, 4). The fundamental solution (t0, s0) = (±2, 2)
will generate the extensions with c = c±ν , while the fundamental solution (±8, 4) will not give
any extension to a triple because in that case c = (s2 − 4)/a and we can prove by induction
on parameter ν that s2 ≡ s20 ≡ 16 (mod a). So, c can be an integer only if a is divisor of 12,
which is obviously possible only for a = F2 = 1 and a = F4 = 3. �

In the proof of the main theorem we will use the already well-known standard methods
in solving those kind of problems. The main purpose of the paper is to illustrate the use of
Theorem 1 in [3] which will make our proof much faster and more elegant, because we will have
to consider the extendibility of D(4)-triples {F2k, 5F2k , c} only for few values of c. This will
help us give a lower bound for the solutions of the system of simultaneous pellian equations
using congruence methods which have some difficulties considering general c, because then it
is not so obvious which congruences to consider. We will show the application of some other
results from [4] and [3]. Both papers are easily accessible online. In the end we will combine
the lower bounds for the solution with the upper bound which was already known in [4] where
the authors used the hypergeometric method. Another interesting part here is that we do not
need to use linear forms in logarithms nor any reduction method which will also save us a lot
of time. However, those two tools were used in Lemma 3 [3] which allows us to assume that
k ≥ 9.

2. Preliminaries

Let a = F2k, b = 5F2k and {a, b, c, d} be a D(4)-quadruple with c = cν , which is given by
(1.1), and k ≥ 9. Notice that in the proof of Corollary 1.2 we showed that all c’s which extend
the pair {F2k, 5F2k} are given by (1.1). Moreover, let r, s and t be positive integers defined
by ab + 4 = r2, which implies r = L2k, and F2kc + 4 = s2, 5F2kc + 4 = t2. Then there exist
integers x, y and z such that
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F2kd+ 4 = x2, 5F2kd+ 4 = y2, cd+ 4 = z2. (2.1)

Eliminating d, we obtain the following system of simultaneous pellian equations

F2kz
2 − cx2 = 4(F2k − c) (2.2)

5F2kz
2 − cy2 = 4(5F2k − c). (2.3)

From [4, Lemma 2] we know that if (z, x) and (z, y) are positive solutions of (2.2) and (2.3),

respectively, then there exist indices i and m such that z = v
(i)
m , where

v
(i)
0 = z

(i)
0 , v

(i)
1 =

1

2

(

sz
(i)
0 + cx

(i)
0

)

, v
(i)
m+2 = sv

(i)
m+1 − v(i)m , (2.4)

and there exist indices j and n such that z = w
(j)
n , where

w
(j)
0 = z

(j)
1 , w

(j)
1 =

1

2

(

tz
(j)
1 + cy

(j)
1

)

, w
(j)
n+2 = tw

(j)
n+1 − w(j)

n . (2.5)

Here (z
(i)
0 , x

(i)
0 ) and (z

(j)
1 , y

(j)
1 ) are fundamental solutions of (2.2) and (2.3), respectively. So

now we have transformed the problem of solving the system of simultaneous pellian equations

to solving finitely many Diophantine equations z = v
(i)
m = w

(j)
n . For simplicity’s sake, from

now on, we will omit the superscripts (i) and (j). Initial terms of the sequences (vm) and (wn)
are almost completely determined in the following lemma.

Lemma 2.1. Let a < b < c.

(i) If the equation v2m = w2n has a solution, then z0 = z1. Moreover, |z0| = 2 or

|z0| = 1
2(cr − st) or |z0| < 1.608a

−5

14 c
9

14 .

(ii) If the equation v2m+1 = w2n has a solution, then |z0| = t, |z1| = 1
2(cr− st), z0z1 < 0.

(iii) If the equation v2m = w2n+1 has a solution, then |z1| = s, |z0| = 1
2(cr− st), z0z1 < 0.

(iv) If the equation v2m+1 = w2n+1 has a solution, then |z0| = t, |z1| = s, z0z1 > 0.

Moreover, if c = a+ b− 2r < b, then the equations v2m+1 = w2n, v2m = w2n+1, and v2m+1 =
w2n+1 do not have a solution, while if the equation v2m = w2n has a solution, then z0 = z1 = 2.

Proof. Statements (i) to (iv) are exactly [5, Lemma 9] and the last statement can be proven
the same way we found the initial terms in the proof after Lemma 1 in [8]. Notice only that
we had a < b < c = a+ b+ 2r while here a < c < b = a+ c+ 2s. �

From now on we will assume that c is “minimal” in some sense, which will help us narrow
the possibilities for the fundamental solutions (z0, x0) and (z1, y1).

Assumption 2.2. Assume that {F2k, 5F2k , c
′, c} is not a D(4)-quadruple for any c′ with 0 <

c′ < cν−1.

Remark 2.3. Notice that this assumption is not restrictive in any sense because we know all
possible values of c. If we prove that under Assumption 2.2 D(4)-triple {F2k, 5F2k, c} has only
two extensions to a quadruple (with d = d− = cν−1 and d = d+ = cν+1), which implies the
statement of Theorem 1.1.

Now remember in [3, Theorem 1], Baćić and the author proved that if {a, b, c} with b ≥ 5a is
D(4)-triple whose extension satisfies the Assumption 2.2, then c < 6b5 or it can be extended to
a quadruple only with d = d±. It implies that we have to consider the extensions of our triples
{F2k, 5F2k , c} only with c = c±1 , c

±

2 , c
±

3 and that is what we will do now. As we mentioned, the
case c = c+1 is solved in [4].
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Lemma 2.4. Let c = c±2 , c
±

3 . Then solving the equations vm = wn, it is enough to consider

(i) v2m = w2n if z0 = z1 = ±2 and
(ii) v2m+1 = w2n+1 if z0 = ±t, z1 = ±s and z0z1 > 0.

Proof. The proof for this follows immediately from the proof for [5, Lemma 9] and Assumption
2.2. The Assumption will help us to remove the third case of (i) from Lemma 2.1 because
in that case we must have an irregular D(4)-quadruple {a, b, d0, c} with 0 < d0 < c which
contradicts the Assumption. Furthermore, it is easy to see that other cases (v2m+1 = w2n and
v2m = w2n+1) give the exact same intersections of the sequences (vm) and (wn) as (i) and (ii)
in this Lemma. �

3. Lower Bounds for the Solutions

In this section we will give the lower bounds of the indices m and n in the equation vm = wn

for m > n ≥ 2. It is not hard to check that all solutions of vm = wn with smaller indices will
give the extension of D(4)-triple {a, b, c} to a quadruple with d = d− = c±ν−1 or d = d+ = c±ν+1.
So to prove Theorem 1.1 we must show that vm = wn for m > n ≥ 2 does not have a solution
for c = c−1 , c

±

2 , c
±

3 .

Lemma 3.1.

(i) Let c = c−1 = 4F2k−2. If v2m = w2n has a solution with n > 1, then

m > n ≥
√

F2k−2

6
.

(ii) Let c = c±2 = 4L2kF4k±2. If v2m = w2n has a solution with n > 1, then m > F2k/4.
Moreover, if v2m+1 = w2n+1 has a solution with n ≥ 1, then

m >
4
√
L2k

3
.

(iii) Let c = c±3 = 4(L4k+1)F6k±2. If v2m = w2n has a solution with n > 1, then m > F2k/4.
Moreover, if v2m+1 = w2n+1 has a solution with n ≥ 1, then

m >

4

√

F 3
2k

2
.

Proof. (i) Let us assume the opposite, i.e. n <
√

F2k−2/6. Let c = c−1 = 4F2k−2. Then
s = 2F2k−1 and t = 2L2k−1. Considering congruences modulo c2 (see [5, Lemma 12]) we have

am2 ± sm ≡ bn2 ± tn (mod c).

Now using F2k−1 = F2k − F2k−2 and L2k−1 = F2k + F2k−2 we get

F2km
2 ± 2F2km ≡ 5F2k ± 2F2kn (mod F2k−2).

Moreover, F2k and F2k−2 are relatively prime, so it implies

m2 ± 2m ≡ 5n2 ± 2n (mod F2k−2).

Now from assumption n <
√

F2k−2/6 and the fact that we always have n < m < 2n we
see that both sides of the congruence are positive and less than F2k−2 which yields that we
actually have an equation

m2 ± 2m = 5n2 ± 2n
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which obviously does not have any solution in positive integers because the right-hand side is
larger. So we obtain a contradiction which implies (i).

(ii) Let us first consider the case with even indices v2m = w2n. Again assume the opposite,
n < m ≤ F2k/4. Also let us consider the case c = c+2 = 4L2kF4k+2. From [5, Lemma 12] we
conclude

±am2 + sm ≡ ±bn2 + tn (mod c).

Using that s = L2k(L2k + F2k)− 2, t = L2k(L2k + 5F2k)− 2 and n < m ≤ F2k/4 we conclude
that the absolute values of both sides of the congruence are less than c/2. It implies that we
actually have an equation

±am2 + sm = ±bn2 + tn.

Now, considering congruences modulo F2k together with L2
2k = 5F 2

2k + 4, we have

2m ≡ 2n (mod F2k).

Now using the assumption n < m ≤ F2k/4 we get an equation m = n which does not have a
solution, so again we have a contradiction. The case c = c−2 can be solved in the exactly same
way. There we have s = L2k(L2k − F2k)− 2 and t = L2k(5F2k − L2k) + 2 which would imply
m = −n and gives a contradiction.

Let us now consider the case with odd indices. Here we will use the fact that from s2t2 ≡ 16
(mod c) we know that st ≡ ±4 (mod c′) for some c′ which is a divisor of c and c′ ≥ √

c. Again
from [5, Lemma 12] we then conclude

am(m+ 1)± rm ≡ bn(n+ 1)± rn (mod
c′

2
).

Notice that c′ can be chosen to be divisible by 2, because c is always divisible by 4 which also
implies that both st+ 4 and st− 4 are even. Now we want both sides of the congruence are
less that c′/2 (they are already positive), i.e. less than

√

L2kF4k±2. To get that it is sufficient

to assume n < m ≤ 4
√
L2k/3. So we have the equation

am(m+ 1)± rm = bn(n+ 1)± tn

instead of a congruence. Now considering congruences modulo F2k we get

L2km ≡ L2kn (mod F2k).

Since the greatest common divisor of F2k and L2k is 1 or 2, we get a contradiction m = n using
n < m ≤ 4

√
L2k/3 < F2k/2 and in the case with odd indices we must also have n < m < 2n.

So we arrive at a contradiction again which finishes the proof of (ii).
(iii) This part can be proven in the exact same way as (ii). �

4. Upper Bounds for the Solutions and the Proof of the Main Theorem

Here we will use Lemma 5 and Lemma 6 from [4], which implies that if z = vm = wn, then

zλ < 14445b2c2,

where

λ =
log
(

51bc′

17600000

)

log(0.00425b2c′2)

and c′ = c/4. To prove this the authors have used the important facts that b = 5a and that c
is divisible by 4. Also, it was proved under the assumption bc′ > 59 which is valid in all our
cases of c remembering that we have k ≥ 9.
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So we have

log z <
log(14445b2c2) log(0.00425b2c′2)

log
(

51bc′

17600000

) .

We combine it with the lower bound for z = vm > (
√
ac)m−1. It implies that if vm = wn, then

m− 1 <
log(14445b2c2) log(0.00425b2c′2)

log(ac) log
(

51bc′

17600000

) . (4.1)

In the end we combine (4.1) with the lower bounds for m that we obtain in the previous
section together (when it is needed for a small k) with the fact that if vm = wn, thenm > n > 7
(see [6, Lemma 5]). It will give us the upper bound for k. Using that the right-hand side of (4.1)
is decreasing in k for k ≥ 9, we easily get that in all cases k < 9 which is a contradiction. So we
can have the solution of the equation vm = wn only with small indices and it is easy to check
(and it was done many times in the papers on the topic of Diophantine m-tuples) that it will
imply the statement of Theorem 1.1. In the case of c = c−1 , we only get solution v0 = w0 = ±2
which implies d = 0 which is no real extension to a quadruple. And v2 = w2 = (cr + st)/2,
which implies d = d+. In the case of c ≥ c−2 , we get the solutions: v0 = w0 = ±2 which gives
us d = 0, v1 = w1 = (cr ± st)/2 which gives us d = d±.
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