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Abstract. Motivated by some recent work on a particular class of polynomial families asso-
ciated with certain types of integer sequences, we formulate a sufficient condition under which
the anti-diagonals products across sets of characterizing 2 × 2 matrices remain invariant as
matrix power increases. Two proofs are given along with some examples.

1. Introduction

1.1. A Theorem. We begin with the main result.

Theorem 1.1. Let

M(x) = M(A(x), B(x), C(x)) =

(

−B(x) A(x)
−C(x) 0

)

(1.1)

be a 2× 2 matrix with A(x), B(x), C(x) ∈ Z[x]. Likewise, let M′(x) = M(A′(x), B′(x), C ′(x))
be a matrix with the same structure. Then, for all n ≥ 1, if B(x) = B′(x) and A(x)C(x) =
A′(x)C ′(x) the products of the anti-diagonals of Mn and M′n are pairwise equal.

1.2. Examples and Background. Before we set out our proofs, we give a couple of simple
numeric examples (where matrix elements taken from Z[x] are merely integers (order zero
polynomials)) and a short background to Theorem 1.1.

Example 1.2. Let

M1(x) =

(

−2 4
−5 0

)

, M2(x) =

(

−2 −2
10 0

)

. (1.2)

As n = 1, 2, 3, 4, . . . , 10, . . . , we find that the anti-diagonals products of both matrices Mn
1,2(x)

have the common values −20,−80,−5120,−103680, . . . ,−6471396884480, . . ..

Example 1.3. Let

M1(x) =

(

1 2
6 0

)

, M2(x) =

(

1 −3
−4 0

)

, M3(x) =

(

1 12
1 0

)

. (1.3)

As n = 1, 2, 3, 4, . . . , 10, . . . , we find that the anti-diagonals products of all three matrices

Mn
1,2,3(x) have the common values 12, 12, 2028, 7500, . . . , 239795187852, . . ..

The above examples are straightforward in nature, and in the case where A(x), B(x), C(x)
are drawn from Z[x] a matrix such as M(x) is said to characterize a family of polynomials
∈ Z[x]; specifically, a polynomial family α0(x), α1(x), α2(x), . . . , is defined in general terms as

αn(x) = αn(A(x), B(x), C(x)) = (1, 0)Mn(x)

(

1
0

)

, n ≥ 0, (1.4)
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with closed form (see, for instance, [2, Eq. (1.4), p. 349])

αn(x) =
1

2n+1

[−B(x) + ρ(x)]n+1 − [−B(x)− ρ(x)]n+1

ρ(x)
, (1.5)

where ρ(x) = ρ(A(x), B(x), C(x)) =
√

B2(x)− 4A(x)C(x).
Regarding a context for consideration of the polynomial family class described, the ar-

guments A(x), B(x), C(x) are, conventionally, those arising as (functional) coefficients of a
governing quadratic equation

A(x)T 2(x) +B(x)T (x) +C(x) = 0 (1.6)

for the (ordinary) generating function T (x), of a particular integer sequence with which a
namesake polynomial family αn(A(x), B(x), C(x)) is associated. There are a great number of
such sequences and polynomial families, to say the least. Previous work has detailed results on
the specific instances of Catalan, (Large) Schröder and Motzkin polynomials (see the references
in [1]). It is a particular recent paper [2] on the general class of polynomial families which
motivates this one.

We now give our two proofs of Theorem 1.1, in which A(x), B(x), C(x) are assumed non-
zero, followed by a concluding example.

2. The Proofs

Proof I. Our first proof relies on a previous result which has been used elsewhere and permits
a very direct argument.

Proof. Any matrix of the form
(

1 x
y 0

)

has an nth power which is expressible in terms of so

called Catalan polynomials thus:
(

1 x
y 0

)n

=

(

Pn(−xy) xPn−1(−xy)
yPn−1(−xy) xyPn−2(−xy)

)

. (I.1)

Equation (I.1) can be seen in [2, Eq. (2.5), p. 351] where it has been deployed in a sufficiency
argument for cross-family polynomial equality. Catalan polynomials are a particular family of
polynomials characterized by the matrix instance M(x,−1, 1), the initial ones being P0(x) =
P1(x) = 1, P2(x) = 1 − x, P3(x) = 1 − 2x, P4(x) = 1 − 3x + x2, P5(x) = 1 − 4x + 3x2,
P6(x) = 1− 5x+ 6x2 − x3, P7(x) = 1− 6x+ 10x2 − 4x3, and so on. Writing

M(x) = −B(x)

(

1 −A(x)/B(x)
C(x)/B(x) 0

)

(I.2)

and using (I.1) with x = −A(x)/B(x), y = C(x)/B(x), the anti-diagonals product of Mn(x)
is immediate as −A(x)B2n−2(x)C(x)P 2

n−1(A(x)C(x)/B2(x)). It follows, therefore, that the

anti-diagonals product of M′n(x) is −A′(x)B′2n−2(x)C ′(x) P 2
n−1(A

′(x)C ′(x)/B′2(x)), and so
in turn that these two products are equal when B(x) = B′(x) and A(x)C(x) = A′(x)C ′(x). �

We can, by way of example, easily check by hand the predicted anti-diagonals product of
Mn(x) (formulated in terms of the nth Catalan polynomial Pn−1(x)) for a low order case.
After some simple algebra we find, for n = 4,

M4(x) =
(

−3A(x)B2(x)C(x) +A2(x)C2(x) +B4(x) −A(x)B3(x) + 2A2(x)B(x)C(x)
−2A(x)B(x)C2(x) +B3(x)C(x) −A(x)B2(x)C(x) +A2(x)C2(x)

)

, (2.1)
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with anti-diagonals product

[−A(x)B3(x) + 2A2(x)B(x)C(x)][−2A(x)B(x)C2(x) +B3(x)C(x)]

= −A(x)B6(x)C(x) + 4A2(x)B4(x)C2(x)− 4A3(x)B2(x)C3(x)

= −A(x)B6(x)C(x)

(

1−
4A(x)C(x)

B2(x)
+

4A2(x)C2(x)

B4(x)

)

= −A(x)B6(x)C(x)

(

1−
2A(x)C(x)

B2(x)

)2

= −A(x)B6(x)C(x)P 2
3 (A(x)C(x)/B2(x)). (2.2)

Many other cases, for higher values of n, have been verified algebraically by extensive compu-
tation.

Proof II. Our second proof is more of a first principles one, driven by a neat matrix diago-
nalization.

Proof. Let

N(α∗, β∗; z) =

(

α∗ β∗/z
z 0

)

, (II.1)

so that the general polynomial family characterizing matrixM(A(x), B(x), C(x)) has an equiv-
alent version in N(α∗, β∗; z) through the simple relation

N(−B(x),−A(x)C(x);−C(x)) = M(A(x), B(x), C(x)). (II.2)

In view of (II.2), therefore, it suffices merely to show that the anti-diagonals product of the
matrix Nn(α∗, β∗; z) is independent of z in order to establish Theorem 1.1.

As alluded to above, this is achieved by decomposing N(α∗, β∗; z) as

N(α∗, β∗; z) = P(α∗, β∗; z)D(α∗, β∗)P−1(α∗, β∗; z), (II.3)

where

P(α∗, β∗; z) =

(

α∗−K
2z

α∗+K
2z

1 1

)

, D(α∗, β∗) =

(

α∗−K
2 0

0 α∗+K
2

)

, (II.4)

and K = K(α∗, β∗) =
√

α∗2 + 4β∗. Thus,

Nn(α∗, β∗; z) = [P(α∗, β∗; z)D(α∗, β∗)P−1(α∗, β∗; z)]n

= P(α∗, β∗; z)Dn(α∗, β∗)P−1(α∗, β∗; z). (II.5)

Raising D(α∗, β∗) to the power n is trivial and, writing for convenience Sn = Sn(α
∗, β∗) =

[(α∗ +K)/2]n, Tn = Tn(α
∗, β∗) = [(α∗ −K)/2]n, we find, after some non-trivial algebra,

Nn(α∗, β∗; z) =

(

Sn+Tn+α∗(Sn−Tn)/K
2

β∗(Sn−Tn)
Kz

(Sn−Tn)z
K

Sn+Tn−α∗(Sn−Tn)/K
2

)

, (II.6)

whose anti-diagonals product β∗(Sn − Tn)
2/K2 is indeed not dependent on z. Thus, we have

our required result. �

Remark 2.1. Rewriting the top left-hand entry of Nn(α∗, β∗; z) in (II.6) as [(α∗ +K)n+1 −
(α∗ −K)n+1]/2n+1K, then on setting α∗ = −B(x), β∗ = −A(x)C(x), z = −C(x) and noting

that K(x) = K(α∗(x), β∗(x)) =
√

B2(x)− 4A(x)C(x) = ρ(x), the expression reduces pre-
cisely to αn(x) (1.5), as of course it should in view of (1.4) and (II.2); this is a pleasing check
on the form of Nn(α∗, β∗; z).
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Finally, although our context for the work here and elsewhere has been based on the notion
that A(x), B(x), C(x), and so αn(x), lie in Z[x], we finish with a final example in which they
are taken from C and Theorem 1.1 still holds (not surprisingly); with

M1(x) =

(

−5 + 2i −(7 + 19i)
2(1− 2i) 0

)

, M2(x) =

(

−5 + 2i 10(1 − i)
−(4 + 5i) 0

)

,

M3(x) =

(

−5 + 2i −(3 + i)
2(14 − 3i) 0

)

, M4(x) =

(

−5 + 2i −1 + 9i
10i 0

)

, (2.3)

we find computationally that the anti-diagonals products of Mn
1,2,3,4(x) are invariant for each

n = 1, 2, 3, . . ..

3. Summary

In this short paper we have provided two proofs of an observation which, although set in the
context of a polynomial family class, holds in a wider sense; the nature of each proof is quite
different. Work on these polynomials associated with integer sequences in the way described
will continue, and their properties explored.

We emphasize that the invariance condition given for anti-diagonals products across matrix
sets as described in the paper is a sufficient one. The existence of any necessary condition(s)
for the same result is not established here, indeed this would appear to be a very problematic
question to address which is left as an open one for any interested reader—our attempt to
make progress is detailed briefly in an Appendix for completeness.

In summary, we note that a thorough review of the appropriate literature reveals the possi-
bility of a fundamental product, of the type presented here for 2×2 matrices, going unnoticed
until now or at least being absent from it. This is somewhat surprising, and it may even prove
to be the case that the result detailed is but a special case of a more general one that applies
to powers of matrices of arbitrary order—this, too, remains an unresolved conjecture at the
present time.
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Appendix

We demonstrate here the difficulty in formulating any necessary condition(s) alluded to in
the Summary.

With reference to Proof I, a necessary argument for anti-diagonals product equality across
powers of Mn+1(x) and M′n+1(x) would, for n ≥ 0, require by assumption that

A(x)B2n(x)C(x)P 2
n (A(x)C(x)/B2(x)) = A′(x)B′2n(x)C ′(x)P 2

n(A
′(x)C ′(x)/B′2(x)), (A.1)

from which constraints on A(x), A′(x), B(x), B′(x), C(x), C ′(x) are to be determined. In order
to make any sense of (A.1) it is not unreasonable to seek a closed form for [xs]{P 2

n(x)}, the
coefficient of xs within the square of the (n + 1)th Catalan polynomial Pn(x). Noting that
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Pn(x) =
∑bn/2c

i=0

(n−i
i

)

(−x)i (see, for example, Theorem 2.2 of [2]), then

P 2
n(x) =

bn/2c
∑

i=0

(

n− i

i

)

(−x)i
bn/2c
∑

j=0

(

n− j

j

)

(−x)j

=

bn/2c
∑

i,j=0

(

n− i

i

)(

n− j

j

)

(−x)i+j

=
∞
∑

i,j=0

(

n− i

i

)(

n− j

j

)

(−x)i+j

=
∑

s≥0





∑

i+j=s

(

n− i

i

)(

n− j

j

)



 (−x)s, (A.2)

so that [xs]{P 2
n(x)} = (−1)sF (s, n) where

F (s, n) =

s
∑

i=0

(

n− i

i

)(

n− s+ i

s− i

)

, (A.3)

with s = 0, 1, . . . , n (n (even) = 0, 2, 4, 6, . . .) and s = 0, 1, . . . , n − 1 (n (odd) = 1, 3, 5, 7, . . .).
After some algebra, we can express F (s, n) as the finite hypergeometric series

F (s, n) =

(

n− s

s

)

4F3

(

n+ 1− s, 12 −
1
2n,−

1
2n,−s

1
2n+ 1

2 − s, 12n+ 1− s,−n

∣

∣

∣

∣

1

)

, (A.4)

but it cannot, however, be summed to a closed form which halts our line of enquiry (thanks
to Professor Dr. Wolfram Koepf for attempting to do so using his customized software).
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