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Abstract. A recent identity of Larcombe and Fennessey is derived via a weighted version
of Cassini’s identity for Fibonacci numbers.

1. The Identities

Let M =

(

V U

W 0

)

and αn =
(

1 0
)

Mn

(

1
0

)

.

In [2], the non-linear identity

(−1)nUnW n = α2
n
− UWα2

n−1 − V αnαn−1

(n ≥ 1) was presented. Actually in [2], V and W were replaced by −V and −W , respectively,
and the quantities U, V,W could depend on a parameter x.

Here, we want to link this identity to the classical Cassini identity

F 2
n+1 − FnFn+2 = (−1)n

for Fibonacci numbers; we will deduce the Larcombe–Fennessey identity from the Cassini
identity.

2. Interpretation as Walks in a Graph

Consider the following graph:
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Then αn may be interpreted as the sum over all walks of length n from state 1 to state 1,
where each walk is coded by the letter attached to the directed edge. For example,

α4 = V 4 + UWV 2 + UWUW + V UWV + V 2UW.

Since a walk can start either with V or UW , we have the recursion formula

αn = V αn−1 + UWαn−2.

This works for n ≥ 1, provided we set α
−1 = 0.

Consequently, we have

αn+1αn−1 = V αn−1αn + UWα2
n−1.

Therefore, the Larcombe–Fennessey identity follows from the simpler identity

α2
n
− αn+1αn−1 = (−1)nUnW n.
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We will deduce this one from Cassini’s identity.

3. Interpretation as Tilings of an n× 1 Rectangle

We want to tile an n × 1 rectangle using 1 × 1 and 2 × 1 rectangles. Each such tiling is
in obvious correspondence with a walk, where the edge V corresponds to a 1 × 1 rectangle,
and the two consecutive edges UW correspond to a 2 × 1 rectangle. For example, the walk
V UWUWV V V UW can be interpreted as

V U W U W V V V U W

It is plain to see, compare [1, p. 1], that the number of tilings of an n× 1 rectangle is Fn+1,
a Fibonacci number. We refer to the graphical proof of Cassini’s identity in [1, p. 8] which
we repeat here for the readers’ convenience. Consider two such tilings, which we arrange in 2
rows, but the second one shifted one unit to the right. Their number is F 2

n+1; we call this a
type 1 tiling. Here is an example:

V U W U W V V V U W

V U W V U W U W U W

The rightmost vertical line that is common to both tilings is especially indicated. Now the
part to the right of this line will be flipped: top and bottom are exchanged; the result we will
call a type 2 tiling:

V U W U W V V

V U WV U W V U W

U W U W

The number of type 2 tilings is Fn+2Fn. Note that this operation is reversible, and this
mapping is “almost” a bijection. There is a correction to be made, namely when a common
vertical line does not exist. Let n = 2m be even. Then there is a tiling of the first type,
namely both rows are (UW )m, which has no correspondence of the second type. On the other
hand, if n = 2m+ 1 is odd, there is a tiling of the second type, namely (UW )m+1 in the first
row and (UW )m in the second row, which has no corresponding element of the first type. In
[1, p. 8], this is only used for the numbers of tilings, but the operation is weight preserving.
Putting things together, we have shown that

α2
n
− αn−1αn+1 =

{

(UW )m(UW )m for n = 2m,

−(UW )m+1(UW )m for n = 2m+ 1,

which is the identity that we needed to prove.
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