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Abstract. We report on an integral representation for the Fibonacci sequence

Fn =
1
√

5

(
√

5 + 1

2

)n

−
2

π

∫

∞

0

sin(x/2)

x

cos(nx)− 2 sin(nx) sin x

5 sin2 x+ cos2 x
dx

and give two different proofs, with or without invoking complex analysis. These proofs allow
us to present some generalizations of this integral representation along two different directions.

1. Introduction

Years ago, when one of us was working on the electron gas in a magnetic field, whose
quantum levels are expressible in terms of associated Laguerre functions, a uniform asymptotic
expansion of the latter was needed beyond the leading term available [2]. The first author
developed a procedure, based on obtaining a Fourier integral representation, for producing this
uniform asymptotic expansion. Essentially, if one has a generating series F(z) =

∑∞
n=0Anz

n

for the sequence {An|n ∈ Z≥0}, then

Abuc =
1

π

∫ ∞

0

sin(x/2)

x

[

ei(u−1/2)xF(e−ix) + e−i(u−1/2)xF(eix)
]

dx+R, u ∈ (0,+∞) r Z,

(1.1)
where the “remainder term” R comes in, if F(z) has singularities in the right-half com-
plex plane. Specializing (1.1) to the generating function of the Fibonacci sequence F(z) =
∑∞

n=0 Fnz
n = z/(1− z− z2), one could deduce, after some algebra, the integral representation

mentioned in the abstract (reproduced as (1.2) below).
In this brief note, we present two different proofs for the following integral representation

of the Fibonacci sequence

Fn =
1√
5

(√
5 + 1

2

)n

− 2

π

∫ ∞

0

sin(x/2)

x

cos(nx)− 2 sin(nx) sinx

5 sin2 x+ cos2 x
dx, n ∈ Z≥0, (1.2)

drawing on the methods developed independently by the authors. In Section 2, we outline
a proof of (1.1), thereby placing (1.2) in a complex-analytic context. In Section 3, we use
real-analytic methods to establish an equivalent formulation of (1.2):

2

π

∫ ∞

0

sin(x/2)

x

cos(nx)− 2 sin(nx) sinx

5 sin2 x+ cos2 x
dx =

(−1)n√
5

(√
5− 1

2

)n

, n ∈ Z≥0, (1.2′)

and extend the result to an evaluation of the integral

I(m,n) :=
2

π

∫ ∞

0

sin(x/2)

x

cos(nx)− 2 sin(nx) sinx

m sin2 x+ cos2 x
dx (1.3)

for arbitrary m > 0, n ∈ R.
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2. A Complex-Analytic Proof

For n < u < n + 1, the nth Fibonacci number can be written Fbuc. Consider this as a
function of u and let us take its Laplace Transform:
∫ ∞

0
e−uzFbuc du =

∞
∑

k=0

Fk

∫ k+1

k
e−uz du =

∞
∑

k=0

Fke
−kz

∫ 1

0
e−tz dt =

e−z

z

1− e−z

1− e−z − e−2z
, (2.1)

where we have noted the generating function

F(z) =

∞
∑

n=0

Fnz
n =

z

1− z − z2
. (2.2)

One might also note that (2.1) is equal to 1−e−z

z F(e−z), a relation that remains valid when
the aforementioned F is replaced by the generating function of other well-behaved sequences
[2, Equation 4].

Now take the inverse Laplace transform to obtain

Fbuc =
1

2πi

∫ c+i∞

c−i∞

dz

z
e(u−1/2)z sinh(z/2)

sinh z − 1/2
, u ∈ (0,+∞)r Z (2.3)

where c > sinh−1(1/2) = z0, the only real-valued singularity of the integrand. All the singular-
ities of the integrand that lie in the right half-plane can be enumerated as zk = z0+2kπi, k ∈ Z.

By displacing the contour to the imaginary axis z = iy, y ∈ R, we have

Fbuc =
1

2π

∫ ∞

−∞

sin(y/2)

y

ei(u−1/2)y

i sin y − 1/2
dy +

∞
∑

k=−∞

Ik, (2.4)

Ik =
1

2πi

∮

Ck

dz

z
e(u−1/2)z sinh(z/2)

sinh z − 1/2
, (2.5)

where the contour Ck is a small circle centered at zk. The infinite sum
∑∞

k=−∞ Ik in (2.4) is

understood as limN→+∞
∑N

k=−N Ik. Such an inversion formula as (2.4) can be generalized into
(1.1). However, we point out that it is generally hard to compute the residue contribution,
namely, the “remainder term” R in (1.1). For the case of the Fibonacci sequence, the sum
over the residues Ik can be evaluated in closed form, as we explain in the next paragraph.

By residue calculus,

∞
∑

k=−∞

Ik =
ϕu−2

√
5

[

1

lnϕ
+ 2

∞
∑

k=1

cos(2kπu) lnϕ+ 2kπ sin(2kπu)

ln2 ϕ+ 4π2k2

]

, (2.6)

where ϕ = (
√
5 + 1)/2 is the Golden Ratio, and lnϕ = z0 = sinh−1(1/2). To evaluate the

infinite sum in (2.6), we require the series (cf. [2, Equation 12] and [3, Equation 5.4.5(2)])

∞
∑

k=1

cos(2πkx)

a2 + k2
=

π

2a

cosh[2aπ(x− bxc − 1
2)]

sinh(aπ)
− 1

2a2
, for all x ∈ R, ia ∈ Cr Z, (2.7)

and its derivative with respect to x ∈ Rr Z. After some algebra, one can deduce

∞
∑

k=−∞

Ik =

(√
5 + 1

2

)buc
1√
5
, u ∈ (0,+∞) r Z. (2.8)
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The remaining integral in (2.4) is equal to

1

π

∫ ∞

0

dx

x
sin(x/2)Re

[

ei(u−1/2)x

i sinx− 1/2

]

. (2.9)

Consequently, with u = n+ 1/2 for n ∈ Z≥0, one finds

2

π

∫ ∞

0
sin(x/2)

2 sin(nx) sinx− cos(nx)

5 sin2 x+ cos2 x

dx

x
= Fn − ϕn

√
5
. (2.10)

By Wells’ formula (see [1] and [4, p. 62]),

Fn =

⌊

ϕn

√
5

⌋

(2.11)

holds for non-negative even integers. So, for n even the integral in (2.10) is precisely the
negative of the fractional part of ϕn/

√
5.

3. A Real-Analytic Proof

In this section, we base the integral formula in (1.2′) on the following theorem.

Theorem 3.1. When n ∈ (2k − 1
2 , 2k + 1

2 ) ∩ [0,+∞) for a given integer k ∈ Z≥0, we have

I(m,n) :=
2

π

∫ ∞

0

sin(x/2)

x

cos(nx)− 2 sin(nx) sin x

m sin2 x+ cos2 x
dx =

(√
m− 1√
m+ 1

)k
1√
m
, for all m > 0;

(3.1)
when n ∈ (2k + 1− 1

2 , 2k + 1 + 1
2) for a given integer k ∈ Z≥0, we have

I(m,n) = −
(√

m− 1√
m+ 1

)k
2√

m(1 +
√
m)

, for all m > 0; (3.2)

when n− 1
2 ∈ Z≥0, we can compute I(m,n) = I(m,n+0+)+I(m,n−0+)

2 .

Proof. The entire proof hinges on the following Poisson kernel expansion
√
m

m sin2 x+ cos2 x
= 1 + 2

∞
∑

k=1

(√
m− 1√
m+ 1

)k

cos(2kx), for all m,x > 0. (3.3)

By elementary trigonometry, we have

2 sin(x/2)

x
[cos(nx)− 2 sin(nx) sinx] cos(2kx)

=
1

2x

[

2 sin
(

2kx− nx+
x

2

)

+ 2 sin
(

−2kx− nx+
x

2

)

− sin

(

−2kx− nx+
3x

2

)

+sin

(

2kx+ nx+
3x

2

)

+ sin

(

−2kx+ nx+
3x

2

)

− sin

(

2kx− nx+
3x

2

)]

. (3.4)

Bearing in mind that the Dirichlet integral evaluates to

2

π

∫ ∞

0

sinαx

x
dx = sgnα ≡











1, α > 0

0, α = 0

−1, α < 0

(3.5)
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Figure 1. Two typical plots of fn(k) as a function of k ∈ [0,+∞). We note
that for varying values of n ∈ (3/2,+∞), the shapes of the k-fn(k) plots are
just horizontal translates of each other.

we can compute
∫ ∞

0

2 sin(x/2)

πx
[cos(nx)− 2 sin(nx) sinx] cos(2kx) dx =

fn(k)

4
, (3.6)

where the function

fn(k) = 2 sgn

(

2k − n+
1

2

)

+ 2 sgn

(

−2k − n+
1

2

)

− sgn

(

−2k − n+
3

2

)

+ sgn

(

2k + n+
3

2

)

+ sgn

(

−2k + n+
3

2

)

− sgn

(

2k − n+
3

2

)

,

k ∈ [0,+∞) (3.7)

is supported on a bounded interval k ∈ [n2 − 3
4 ,

n
2 + 3

4 ] ∩ [0,+∞) (see Figures 1 and 2).

Judging from Figure 1, it is clear that whenever n− 1
2 ∈ (1,+∞)rZ, there are at most two

terms in the series expansion for the Poisson kernel (see (3.3)) that can have a net contribution
to the integral I(m,n). Specifically, when n ∈ (2k− 1

2 , 2k+
1
2)∩ (3/2,+∞) for a given integer

k ∈ Z>0, only the term cos(2kx) matters, which leads to

I(m,n) =
2fn(k)

4

(√
m− 1√
m+ 1

)k
1√
m

=

(√
m− 1√
m+ 1

)k
1√
m
; (3.8)

when n ∈ (2k+1− 1
2 , 2k+1+ 1

2)∩ (3/2,+∞) for a given integer k ∈ Z>0, the terms cos(2kx)
and cos[2(k + 1)x] both come into play, which results in

I(m,n) =

[

2fn(k + 1)

4

(√
m− 1√
m+ 1

)k+1

+
2fn(k)

4

(√
m− 1√
m+ 1

)k
]

1√
m

=

[

(√
m− 1√
m+ 1

)k+1

−
(√

m− 1√
m+ 1

)k
]

1√
m

= −
(√

m− 1√
m+ 1

)k
2√

m(1 +
√
m)

. (3.9)

So far, we have confirmed (3.10) and (3.11) under the additional constraint that n > 3/2.
When 0 ≤ n < 3/2, we will need to cope with the k = 0 term (i.e. the leading constant “1”)

in the Poisson kernel expansion. The leading constant “1” is exactly half of the value “2” that
precedes each cos(2kx), k ∈ Z>0 term in the Fourier series expansion; in the meantime, the
actual value of fn(0), 0 ≤ n < 3/2 also doubles what would come from a direct extrapolation
of the fn(0), n > 3/2 scenario (see Figure 2). These two rescaling effects cancel each other, so
the validity of (3.10) and (3.11) remains unshaken for 0 ≤ n < 3/2.
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Figure 2. Two atypical plots of fn(k) as a function of k ∈ [0,+∞). We note
that for varying values of n ∈ [0, 3/2), the actual value of fn(0) doubles what
is anticipated from a näıve horizontal translation of the plot in Figure 1.

Finally, the identity fn(k) = limε→0+
fn+ε(k)+fn−ε(k)

2 brings us I(m,n) = I(m,n+0+)+I(m,n−0+)
2 ,

as claimed. �

We note that a similar discussion can be carried out for n < 0. We record the results in the
theorem below, and leave the proof to interested readers.

Theorem 3.2. When −n ∈ (2k − 1
2 , 2k + 1

2) ∩ (0,+∞) for a given integer k ∈ Z≥0, we have

I(m,n) :=
2

π

∫ ∞

0

sin(x/2)

x

cos(nx)− 2 sin(nx) sin x

m sin2 x+ cos2 x
dx =

(√
m− 1√
m+ 1

)k
1√
m
, for all m > 0;

(3.10)
when −n ∈ (2k + 1− 1

2 , 2k + 1 + 1
2) for a given integer k ∈ Z≥0, we have

I(m,n) = +

(√
m− 1√
m+ 1

)k
2√

m(1 +
√
m)

, for all m > 0; (3.11)

when n− 1
2 ∈ Z<0, we can compute I(m,n) = I(m,n+0+)+I(m,n−0+)

2 . �

Specializing to the case m = 5, and combining the results for I(5, n) and I(5,−n), we obtain
the following integral representations for the even and odd terms in the Fibonacci sequence:

F2n =
1√
5

(√
5 + 1

2

)2n

− 2

π

∫ ∞

0

sin(x/2)

x

cos(2nx)

5 sin2 x+ cos2 x
dx, (3.12)

F2n+1 =
1√
5

(√
5 + 1

2

)2n+1

+
4

π

∫ ∞

0

sin(x/2)

x

sin[(2n + 1)x] sin x

5 sin2 x+ cos2 x
dx, (3.13)

where n ∈ Z≥0.
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