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Abstract. An overlooked formula of E. Lucas for the generalized Bernoulli numbers is proved
using generating functions. This is then used to provide a new proof and a new form of a sum
involving classical Bernoulli numbers studied by K. Dilcher. The value of this sum is then
given in terms of the Meixner-Pollaczek polynomials.

1. Introduction

The goal of this paper is to provide a unified approach to two topics that have appeared

in the literature. The first one is an expression for the generalized Bernoulli numbers B
(p)
n

defined by the exponential generating function
∞
∑

n=0

B(p)
n

zn

n!
=

(

z

ez − 1

)p

. (1.1)

For n ∈ N, the coefficients B
(p)
n are polynomials in p named after Nörlund in [1]. The first few

are
B

(p)
0 = 1, B

(p)
1 = −1

2p, B
(p)
2 = − 1

12p+
1
4p

2, B
(p)
3 = 1

8p
2(1− p). (1.2)

In his 1878 paper, E. Lucas [5] gave the formula

B(p)
n =

(−1)p−1

(p− 1)!

n!

(n− p)!
βn−p+1(1 + β) · · · (p − 1 + β) (1.3)

for n ≥ p. This is a symbolic formula: to obtain the value of B
(p)
n , expand the expression (1.3)

and replace βj by the ratio Bj/j. Here Bj is the classical Bernoulli number Bn = B
(1)
n in the

notation from (1.1).
The second topic is an expression established by K. Dilcher [2] for the sums of products of

Bernoulli numbers

SN (n) :=
∑

(

2n

2j1, 2j2, . . . , 2jN

)

B2j1B2j2 · · ·B2jN , (1.4)

where the sum is taken over all nonnegative integers j1, . . . , jN such that j1 + · · · + jN = n,
and where

(

2n

2j1, 2j2, . . . , 2jN

)

=
(2n)!

(2j1)! · · · (2jN )!
(1.5)

is the multinomial coefficient and B2k is the classical Bernoulli number. One of the main
results of [2] is the evaluation, for N ≤ 2n,

SN (n) =
(2n)!

(2n −N)!

b(N−1)/2c
∑

k=0

b
(N)
k

B2n−2k

2n− 2k
, (1.6)
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where the coefficients b
(N)
k are defined by the recurrence

b
(N+1)
k = −

1

N
b
(N)
k +

1

4
b
(N−1)
k−1 , (1.7)

with b
(1)
0 = 1 and b

(N)
k = 0 for k < 0 and for k > b(N − 1)/2c.

Lucas’s original proof of (1.3) is recalled in Section 2. This section also contains an extension

of Lucas’s formula for B
(p)
n to 0 ≤ n ≤ p− 1 in terms of the Stirling numbers of the first kind.

A unified proof of the two formulas for B
(p)
n based on generating functions is given in Section

3. Another proof of Lucas’s formula, based on recurrences, is given in Section 4 while Section
6 contains a proof of

SN (n) =

N
∑

k=0

(2n)!

(2n− k)!
2−k

(

N

k

)

B
(N−k)
2n−k (1.8)

that expresses Dilcher’s sum (1.4) explicitly in terms of the generalized Bernoulli numbers.
Expressing this result in hypergeometric form leads to a formula for SN (n) in terms of the
Meixner-Pollaczek polynomials

P (λ)
n (x;φ) =

(2λ)n
n!

einφ2F1

(

−n λ+ ix

2λ

∣

∣

∣

∣

1− e−2iφ

)

. (1.9)

It is then established that the recurrence (1.7), provided by Dilcher in [2], is equivalent to the
classical three-term relation for this orthogonal family of polynomials.

2. Lucas’s Theorem

In his paper [5], E. Lucas gave an expression for the generalized Bernoulli numbers B
(p)
n ,

for n ≥ p. This section presents an outline of his proof and an extension of this expression for

B
(p)
n to the case 0 ≤ n ≤ p − 1. A proof based on generating functions is given in the next

section. Lucas’s formula uses the translation

βn =
Bn

n
(2.1)

coming from umbral calculus. Observe, for example, that

B
(2)
3 =

(−1)1

1!

3!

1!
β2(1 + β) = −6(β2 + β3)

= −6

(

B2

2
+

B3

3

)

= −3B2 = −
1

2
.

Observe also that the symbolic substitution (2.1) should be performed only after all the terms
have been expanded. For example,

β2(1 + β) = β2 + β3 =
B2

2
+

B3

3
= −

1

4
(2.2)

but

β2(1 + β) 6=
B2

2

(

1 +
B1

1

)

=
1

24
. (2.3)

Theorem 2.1 (Lucas). For n ≥ p, the generalized Bernoulli numbers B
(p)
n are given by

B(p)
n =

(−1)p−1

(p− 1)!

n!

(n− p)!
βn−p+1(1 + β)(2 + β) · · · (p− 1 + β) (2.4)
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where, in symbolic notation,

βn =
Bn

n
. (2.5)

Proof. We exhibit here Lucas’s proof as it can be found in [5]. A similar proof is provided by
Vandiver in [9]. Lucas’s argument begins with the identity

pB(p+1)
n = (p− n)B(p)

n − pnB
(p)
n−1 (2.6)

which follows directly from the identity for generating functions

x
d

dx

(

x

ex − 1

)p

= p(1− x)

(

x

ex − 1

)p

− p

(

x

ex − 1

)p+1

. (2.7)

Shifting n to n− 1 it follows that

pB
(p+1)
n−1 = (p− n+ 1)B

(p)
n−1 − p(n− 1)B

(p)
n−2. (2.8)

Now multiplying (2.6) by n(p+ 1) and (2.8) by (p− n+ 1) leads to

p(p+ 1)B(p+2)
n = (p − n+ 1)(p − n)B(p)

n − (p − n+ 1)(p + p+ 1)nB
(p)
n−1

+ p(p+ 1)n(n − 1)B
(p)
n−2

and then, by the same methods, he produces

(p+ 2)(p + 1)pB(p+3)
n = (p− n+ 2)(p − n+ 1)(p − n)B(p)

n

− (p− n+ 2)(p − n+ 1)(p + p+ 1 + p+ 2)nB
(p)
n−1

+ (p− n+ 2)(p(p + 1) + p(p+ 2) + (p+ 1)(p + 2))n(n − 1)B
(p)
n−2

− p(p+ 1)(p + 2)n(n− 1)(n − 2)B
(p)
n−3

and then, stating ‘and so on’, Lucas concludes the proof. �

The following alternate proof of Lucas’s Theorem using generating functions requires an

expression for B
(p)
n in the range 0 ≤ n ≤ p − 1, of the kind given in (2.4). This cannot be

obtained directly from (2.4) which holds only for n ≥ p; however, using (2.4) with n ≤ p and
a limiting argument yields the desired result as follows: first, the Stirling numbers of the first

kind s
(p)
k are used to produce an equivalent formulation of B

(p)
n . These numbers are defined

by the generating function

z(z − 1)(z − 2) · · · (z − (p− 1)) =

p
∑

k=1

s
(p)
k zk. (2.9)

Then (2.4) is written as

B(p)
n =

(−1)p−1

(p− 1)!
n(n− 1) · · · (n − (p − 1))βn−p(−1)p

p
∑

k=1

s
(p)
k (−β)k

= −
1

(p− 1)!
n(n− 1) · · · (n− (p− 1))

p
∑

k=1

s
(p)
k (−1)k

Bn−p+k

n− p+ k
.

Observe that the index n varies in the range 0 ≤ n ≤ p − 1, therefore the prefactor n(n −
1) · · · (n − (p − 1)) always vanishes. On the other hand, all the summands are finite, except
for the value of the index k = p−n: the corresponding denominator is then equal to zero, but
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canceled by its null counterpart in the prefactor. Hence only this term is non zero, and equal
to

−
1

(p− 1)!
n(n− 1) · · · 1× (−1)(−2) · · · (−(p− 1− n)))s

(p)
p−n(−1)p−n =

s
(p)
p−n

(p−1
n

) .

This gives the following theorem.

Theorem 2.2. The generalized Bernoulli numbers B
(p)
n , with 0 ≤ n ≤ p− 1 are given by

B(p)
n =

s
(p)
p−n

(p−1
n

) . (2.10)

In fact, this is a classical result. It is, for example, a direct consequence of the identity

(z − 1)(z − 2) · · · (z − p) =

p
∑

`=0

(

p

`

)

z`B
(p+1)
p−` (2.11)

which appears (unnumbered) in [6, p. 149].

3. The Proof via Generating Function

The expressions given in (2.4) and (2.10), namely

B̃(p)
n =

(−1)p−1

(p− 1)!

n!

(n− p)!
βn−p+1(1 + β)(2 + β) · · · (p− 1 + β), n ≥ p

and

B̃(p)
n =

s
(p)
p−n

(

p−1
n

) , 0 ≤ n ≤ p− 1,

are now used to compute the generating function

G(z) =
∞
∑

n=0

B̃(p)
n

zn

n!
(3.1)

and to show that it coincides with the generating function of the generalized Bernoulli numbers

(1.1), proving that the numbers B̃
(p)
n defined by identities (2.4) and (2.10) are indeed the

generalized Bernoulli numbers B
(p)
n .

Split the sum as G(z) = G1(z) +G2(z), where

G1(z) =

p−1
∑

n=0

B̃(p)
n

zn

n!
and G2(z) =

∞
∑

n=p

B̃(p)
n

zn

n!
. (3.2)

Observe that

G2(z) =
∞
∑

n=p

(−1)p−1

(p− 1)!

n!

(n − p)!
βn−p+1(1 + β) · · · ((p − 1) + β)

zn

n!

=
(−1)p−1

(p − 1)!
β(1 + β) · · · (p− 1 + β)

∞
∑

n=p

n!

(n− p)!
βn−p z

n

n!

=
(−1)p−1

(p − 1)!
(−1)p

p
∑

k=1

s
(p)
k (−1)kzpfk(z)
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with

fk(z) =

∞
∑

n=p

Bn−p+k

(n− p)!(n − p+ k)
zn−p. (3.3)

A (k − 1)st antiderivative of fk(z), denoted by gk(z), is

gk(z) =

∞
∑

n=p

Bn−p+k

(n− p+ k)!
zn−p+k−1

= z−1
∞
∑

`=k

B`

`!
z`

=
1

z

[

z

ez − 1
−

k−1
∑

`=0

B`

`!
z`

]

,

therefore,

fk(z) =

(

d

dz

)k−1 1

ez − 1
−

(

d

dz

)k−1 1

z

=

(

d

dz

)k−1 1

ez − 1
+

(−1)k(k − 1)!

zk
.

This gives

G2(z) = −
zp

(p− 1)!

p
∑

k=1

s
(p)
k (−1)kfk(z)

= −
zp

(p− 1)!

p
∑

k=1

s
(p)
k (−1)k

(

d

dz

)k−1 [ 1

ez − 1

]

−
zp

(p− 1)!

p
∑

k=1

s
(p)
k

(k − 1)!

zk
.

On the other hand,

G1(z) =

p−1
∑

n=0

B̃(p)
n

zn

n!

=

p−1
∑

n=0

s
(p)
p−n

(

p−1
n

)

zn

n!

=
1

(p− 1)!

p−1
∑

n=0

s
(p)
p−n(p− 1− n)!zn

=
1

(p− 1)!

p
∑

k=1

s
(p)
k (k − 1)!zp−k.

This sum cancels the second term in the expression for G2(z). Hence,

G(z) = G1(z) +G2(z) = −
zp

(p− 1)!

p
∑

k=1

s
(p)
k (−1)k

(

d

dz

)k−1 [ 1

ez − 1

]

. (3.4)

Using (2.9) gives

G(z) = −
(−z)p

(p− 1)!

(

(p− 1) +
d

dz

)

· · ·

(

1 +
d

dz

)[

1

ez − 1

]

. (3.5)
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The next lemma simplifies this expression. Its proof by induction is elementary, so it is
omitted.

Lemma 3.1. For n ≥ 1, the identity

(−1)n

n!

(

n+
d

dz

)(

n− 1 +
d

dz

)

· · ·

(

1 +
d

dz

)

1

ez − 1
=

1

(ez − 1)n+1
(3.6)

holds.

Substituting in (3.5) produces

G(z) = −
(−z)p

(p− 1)!

(p− 1)!

(−1)p−1

1

(ez − 1)p
=

(

z

ez − 1

)p

, (3.7)

which is the generating function of the generalized Bernoulli numbers. This proves both

Lucas’s formula for B
(p)
n given in (2.4) with n ≥ p and in (2.10) for 0 ≤ p ≤ n− 1.

4. Lucas’s Formula via Recurrences

The generalized Bernoulli numbers B
(p)
n satisfy the recurrence

pB(p+1)
n = (p− n)B(p)

n − pnB
(p)
n−1. (4.1)

Lucas’s formula for B
(p)
n is now established by showing that the numbers B̃

(p)
n defined by

B̃(p)
n =

(−1)p−1

(p− 1)!

n!

(n− p)!
βn−p+1(1 + β)(2 + β) · · · (p− 1 + β), n ≥ p

satisfy the same recurrence.
Start with

(p− n)B̃(p)
n − pnB̃

(p)
n−1 = (p− n)

(−1)p−1n!

(p− 1)!(n − p)!
βn−p

p−1
∏

k=0

(k + β)−

pn
(−1)p−1n!

(p− 1)!(n − p− 1)!
βn−1−p

p−1
∏

k=0

(k + β),

and write it as

(p− n)B̃(p)
n − pnB̃

(p)
n−1 =

(−1)p−1n!

(p− 1)!(n − p− 1)!
βn−1−p

[

−

p−1
∏

k=0

(k + β)− pβ

p−1
∏

k=0

(k + β)

]

=
(−1)pn!

(p− 1)!(n − p− 1)!
βn−1−p(p+ β)

p−1
∏

k=0

(k + β)

= p
(−1)p

p!

n!

(n− p− 1)!
βn−1−p

p
∏

k=0

(k + β)

= pB̃(p+1)
n .

To conclude the proof, it suffices to check that the initial conditions match. This is clear,
since

B̃(1)
n =

n!

(n− 1)!
βn = nβn = n

Bn

n
= Bn. (4.2)

This establishes Lucas’s formula for the generalized Bernoulli numbers.
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5. Polynomial Versions of Lucas’s Formulas

To conclude this part of the paper about Lucas’s formula, we provide here without proof
its polynomial version. The generalized Bernoulli polynomials are defined by the generating
function

∞
∑

n=0

B(p)
n (x)

zn

n!
=

(

z

ez − 1

)p

exz.

Theorem 5.1. For n ≥ p, the generalized Bernoulli polynomials are given by

B(p)
n (x) =

(−1)p−1

(p − 1)!

n!

(n− p)!
βn−p+1(x) (β(x) + 1− x) · · · (β(x) + p− 1− x)

where, in symbolic notation,

βn (x) =
Bn (x)

n
.

A proof can be obtained, for example, using the recurrence technique as in the previous
section, given that the generalized Bernoulli polynomials satisfy the recurrence

pB
(p+1)
n+1 (x) = (n+ 1) (x− p)B(p)

n (x) + (p− n− 1)B
(p)
n+1 (x) .

For completeness, we also provide an equivalent formula for the generalized Euler polyno-
mials, defined by the generating function

∞
∑

n=0

E(p)
n (x)

zn

n!
=

(

2

ez + 1

)p

exz.

Theorem 5.2. For n ≥ p, the generalized Euler polynomials are given by

E(p)
n (x) =

2p−1

(p − 1)!
(E + x)n (E + 1) . . . (E + p− 1)

where, in symbolic notation,

En = E(1)
n (0) = En, (E + x)n = E(1)

n (x) .

This identity can be checked using the recurrence

E(p+1)
n (x) =

2

p
E

(p)
n+1 (x) +

2

p
(p− x)E(p)

n (x) .

6. A New Approach to Dilcher’s Formula

This section analyzes the sum

SN (n) :=
∑

(

2n

2j1, 2j2, . . . , 2jN

)

B2j1B2j2 · · ·B2jN , (6.1)

using Lucas’s expression for the generalized Bernoulli numbers B
(p)
n . An alternative formula-

tion is presented.

Proposition 6.1. The sum SN (n) is given by

SN (n) =
N
∑

k=0

(2n)!

(2n− k)!
2−k

(

N

k

)

B
(N−k)
2n−k (6.2)

for 2n > N .
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Proof. The umbral method [8] shows that the sum SN (n) is given by

SN (n) =
1

2N

∑

εi=±1

(ε1B1 + · · ·+ εNBN )2n . (6.3)

Introduce the notation

Y
(M,N)
2n = (−B1 − · · · −BM +BM+1 + · · · +BN )2n (6.4)

where there are M minus signs and N −M plus signs. Thus,

SN (n) =
1

2N

N
∑

M=0

(

N

M

)

Y
(M,N)
2n . (6.5)

The next step uses the famous umbral identity

f(−B) = f(B) + f ′(0) (6.6)

(see Section 2 of [3] for details) to obtain

Y
(M,N)
2n = Y

(M−1,N)
2n + 2nY

(M−1,N−1)
2n−1 . (6.7)

This may be written as

Q
(M)
2n = Q

(M−1)
2n + 2nQ

(M−1)
2n−1 , (6.8)

where QM
j = Y

(M,P+j)
j and P = N − 2n. Then (6.8) is easily solved to produce

Q
(M)
2n =

M
∑

k=0

(

M

k

)

(2n)!

(2n− k)!
Q

(0)
2n−k. (6.9)

Since the initial condition is

Q
(0)
2n−k = Y

(0,N−k)
2n−k = B

(N−k)
2n−k , (6.10)

it follows that

Y
(M,N)
2n =

M
∑

k=0

(

M

k

)

(2n)!

(2n− k)!
B

(N−k)
2n−k . (6.11)

Substituting in (6.5) yields

SN (n) =
1

2N

N
∑

M=0

(

N

M

)

Y
(M,N)
2n

=
1

2N

N
∑

M=0

(

N

M

) M
∑

k=0

(

M

k

)

(2n)!

(2n− k)!
B

(N−k)
2n−k

=
1

2N

N
∑

k=0

(2n)!

(2n − k)!
B

(N−k)
2n−k

N
∑

M=0

(

M

k

)(

N

M

)

.

Now use the basic identity (see [4, 3.118])

N
∑

M=0

(

M

k

)(

N

M

)

=

N
∑

M=k

(

M

k

)(

N

M

)

= 2N−k

(

N

k

)

(6.12)

to obtain the result. �

Lucas’s identity for generalized Bernoulli numbers is now used to obtain a second expression
for the sum SN (n).
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Proposition 6.2. For 2n > N , the sum SN (n) is given by

SN (n) =
(2n)!

(2n −N)!
β2n−N+1

N−1
∑

`=0

(

N

`+ 1

)

(−1)`

2N−1−`

(β + 1)`
`!

. (6.13)

Proof. Using the Pochhammer symbol

(β + 1)p−1 =
Γ(β + p)

Γ(β + 1)
= (β + 1) · · · (β + p− 1), (6.14)

Lucas’s formula (2.4) is stated in the form

B(p)
n =

(−1)p−1

(p − 1)!

n!

(n− p)!
βn−p+1(β + 1)p−1. (6.15)

Using Proposition 6.1 and B
(0)
n = δn so that B

(0)
2n−N = 0 since 2n > N , it follows that

SN (n) =

N−1
∑

k=0

(2n)!

(2n− k)!
2−k

(

N

k

)

(−1)N−k−1

(N − k − 1)!

(2n− k)!

(2n −N)!
β2n−N+1(β + 1)N−k−1

=
(2n)!

(2n −N)!
β2n−N+1

N−1
∑

k=0

2−k

(

N

k

)

(−1)N−k−1

(N − k − 1)!
(β + 1)N−k−1

that reduces to the stated form. �

To obtain a hypergeometric form of the sum SN (n), observe that

N(1−N)` = (−1)`
N !

(N − `− 1)!
(6.16)

and (2)` = (`+ 1)! give

(−1)`
(

N

`+ 1

)

= N
(1−N)`

(2)`
, (6.17)

and the following result follows from Proposition 6.2.

Proposition 6.3. For 2n > N , the hypergeometric form of the sum SN (n) is given by

SN (n) =
(2n)!

(2n−N)!
β2n−N+121−NN 2F1

(

1−N, 1 + β

2

∣

∣

∣

∣

2

)

. (6.18)

The final form of the sum SN (n) involves the Meixner-Pollaczek polynomials defined by
(see [7, 15.9.10])

P (λ)
n (x;φ) =

(2λ)n
n!

einφ2F1

(

−n, λ+ ix

2λ

∣

∣

∣

∣

1− e−2iφ

)

. (6.19)

Choosing λ = 1 and φ = π/2 gives the next result.

Theorem 6.4. For 2n > N , the sum SN (n) is given by

SN (n) =
(2n)!

(2n −N)!

1

(2i)N−1
β2n−N+1P

(1)
N−1

(

−iβ;
π

2

)

. (6.20)

Some examples are presented next.
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Example 6.5. The Meixner-Pollaczek polynomial

P
(1)
2

(

x;
π

2

)

= 2x2 − 1 (6.21)

gives

S3(n) =
(2n)!

(2n − 3)!
× (−1/4)β2n−2(−2β2 − 1)

=
(2n)(2n − 1)(2n − 2)

4

[

2
B2n

2n
+

B2n−2

2n − 2

]

= (2n − 1)(n − 1)B2n + 1
2n(2n− 1)B2n−2,

which coincides with [2, eq. (2.6)].

Example 6.6. The Meixner-Pollaczek of degree 3 is

P
(1)
3

(

x;
π

2

)

=
4

3
(−2x+ x3) (6.22)

that produces

S4(n) =
(2n)!

(2n− 4)!

1

(2i)3
β2n−3 4

3
(2iβ + iβ3)

= −1
3(2n− 1)(n − 1)(2n − 3)B2n − 1

3(2n)(2n − 1)(2n − 3)B2n−2,

which coincides with [2, eq. (2.7)].

The next step is to establish a correspondence between the Dilcher coefficients b
(N)
k in (1.6)

and the coefficients p
(n)
k in

P (1)
n (x;

π

2
) =

n
∑

k=0

p
(n)
k xk, (6.23)

the Meixner-Pollaczek polynomials. In particular, it is shown that the recurrence (1.7) is a
consequence of the classical three-term recurrence for orthogonal polynomials.

Theorem 6.7. For 2n > N, the coefficients b
(N)
k defined in (1.6) and the coefficients p

(n)
k of

the Meixner-Pollaczek polynomial P
(1)
n (x; π2 ) are related by

b
(N)
k =

(−1)N−1−k

2N−1
p
(N−1)
N−1−2k. (6.24)

The recurrence relation (1.7) is equivalent to the three-term recurrence

(n+ 1)P
(1)
n+1

(

x;
π

2

)

− 2xP (1)
n

(

x;
π

2

)

+ (n+ 1)P
(1)
n−1

(

x;
π

2

)

= 0 (6.25)

satisfied by the Meixner-Pollaczek polynomials.

Proof. The Meixner-Pollaczek polynomials are orthogonal, hence they satisfy a three-term
recurrence. The specific form for this family in (6.25) appears in [7, Chapter 18]. In terms of

its coefficients p
(n)
k this is expressed as

(n+ 1)p
(n+1)
k − 2p

(n)
k−1 + (n+ 1)p

(n−1)
k = 0. (6.26)

Comparing the two expressions for SN (n) in (1.6) and (6.20) gives (6.24). This is equivalent
to

p
(N−1)
` = 2N−1iN−1+`b

(N)
1
2 (N−1−`)

. (6.27)
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Replacing in (6.26) and simplifying yields (1.7). �

Theorem 2 in [2], stated below, may be proven along the same lines of the proof of Theorem
2.2. Details are omitted.

Theorem 6.8. If 2n ≤ N − 1, then

SN (n) = (−1)n
(2n)!(N − 2n− 1)!

2N−1
p
(N−1)
N−2n−1 (6.28)

= (−1)N−1(2n)!(N − 2n− 1)!b(N)
n .
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